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1. Introduction 

Two dynamic storage allocation algorithms derived 
f rom the buddy system have recently been proposed.  
Knowlton [5] and Knuth [6] described the original 
buddy system. This memory  management  scheme allo- 
cates blocks whose sizes are powers of 2. (In this paper ,  
we call this system the binary buddy system to distin- 
guish it f rom the other buddy systems considered.) 
Hirschberg [4], taking Knuth 's  suggestion [6, problem 
2.5.31] has designed a Fibonacci buddy system with 
block sizes which are Fibonacci numbers.  Shen and 
Peterson [12] have described an algorithm for a 
weighted buddy system which provides blocks whose 
sizes are 2 k and 3 . 2  k. 

These three buddy systems are similar in the overall 
design of the algorithm, with the major  differences 
being in the sizes of the memory  blocks provided and 
the consequent address calculation for locating the 
buddy of a released block. The address calculation for 
the binary and weighted buddy systems is straightfor- 
ward, but the original procedure for the Fibonacci 
buddy system was either limited to a small, fixed num- 
ber  of block sizes or a t ime consuming computat ion [4]. 
A recent note by Cranston and Thomas  [1] has re- 
moved this problem and made the address calculation 
for the Fibonacci buddy system comparable  with the 
address calculation for the binary or weighted buddy 
systems. 

Another  important  variat ion among these three 
buddy systems is in memory  utilization. Buddy systems 
suffer f rom both internal and external fragmentat ion.  
Internal fragmentation is the result of  allocating mem-  
ory only in predefined block sizes. A request for a 
block of memory  which is not one of these specified 
block sizes must be satisfied by allocating the next 
larger block size, with a resulting loss in available 
memory .  External fragmentation results from breaking 
available memory  into blocks which can be recombined 
only if they are buddies. Thus a request for memory  
may have to be rejected because no single block is large 
enough, although the total amount  of available mem- 
ory (in smaller blocks) may be sufficient to satisfy the 
request many times over. 

The amount  of  internal and external fragmentat ion 
in a buddy system depends upon the distribution of 
requests for memory  which must be satisfied and the 
block sizes provided.  For  a particular distribution, one 
buddy system may have lower fragmentat ion than the 
other systems, while the situation may be reversed for 
another  distribution. Since it is generally not easy to 
change the memory  distribution to match the allocation 
strategy, it would be useful to have available a class of 
dynamic storage allocation algorithms. For a particular 
problem, an algorithm could be selected f rom this class 
to minimize fragmentat ion and hence maximize mem- 
ory utilization. Hirschberg [4] has suggested that such a 
class of algorithms could be defined to allocate block 
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Fig. 1. The block at the address of the buddy of the block at P is 
available, but the buddy of the block at P (at Q) is not available. 
Squares (O) indicate available blocks; circles indicate blocks reserved 
by the user (O) or blocks split into buddies (©). 
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sizes which satisfy the following recur rence  relat ion:  

Li = Li-1 + Li_k, k > 0. 

For  each value of k ,  a new buddy  system is def ined.  
(k = 1 is the b inary  buddy  system; k = 2 is the 
Fibonacci  buddy  system.)  The  weighted buddy  system 
does not  satisfy the above recur rence  re la t ion ,  how- 
ever,  so this class appears  to be too restrictive.  In  
general ,  a buddy  system can be based upon  any se- 
quence  of n u m b e r s  which satisfy a set of n recur rence  
relat ions with the form,  

Li >-- Li-1 + tt~ti), i = 1 . . . .  , n ,  Lo = O. (1) 

where  fl is any func t ion  over  the posit ive integers  with 

/3(0 < i. 
In  Sect ion 2, we presen t  an a lgor i thm for the re- 

quest  and release procedures  which can be used to 
imp lemen t  any buddy  system whose blocks sizes satisfy 
the set of recur rence  re la t ions  (1). In  Sect ion 3, we 
discuss an even  more  genera l  class of buddy  systems 
and their  i m p l e m e n t a t i o n .  Sect ion 4 presents  some 
analytic results  on  the expected in te rna l  f r agmen ta t ion  
for a un i fo rm dis t r ibut ion  of requests ,  while Sections 5 
and 6 invest igate  both  in te rna l  and  externa l  f ragmenta-  
t ion for several  buddy  systems by means  of s imula t ion .  
Section 7 summar izes  and  presents  some conclus ions  
concern ing  the advantages  and  disadvantages  of the 
buddy  systems for dynamic  storage al locat ion.  

2. Generalized Buddy Algorithm 

Let L~, L2 . . . . .  Ln be the set of block sizes 
provided by the buddy  system such that  these block 
sizes satisfy the set of n recur rence  re la t ions  (1) for a 
func t ion /3  with LI < L2 < • • • < Ln. For  a block size 
L~, we call i its size index.  The genera l ized  buddy  
system will split a block of size L~ into two blocks of size 
Li-1 and  L~ti~. 

The  ma jo r  data  s t ructure  for the general ized buddy  
system is its available space list.  The  available space list 
is an n -vec to r  which is indexed  by the size index of a 
block.  The  i th  e l emen t  of the avai lable space list is a 
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record with a H E A D  and T A l L  field po in t ing  to the 
front  and  rear  of a doubly  l inked list of all avai lable 
blocks of size Li. O the r  fields may be presen t  in the 
available space list e lements  (such as a field which 
records the n u m b e r  of avai lable blocks of size L 0 .  In  

par t icular ,  Li and  /3(i) may be s tored as fields of an 
e l emen t  of the available space list. This  data  s t ruc ture ,  
or any of its fields, may be i m p l e m e n t e d  as separa te  
parallel  n -vec tors  ra ther  than  as a vector  of records if 
necessary for efficient accessing. 

The general ized buddy  a lgor i thm can now be 
stated.  For  a reques t  for a b lock of size index i ,  the 
request  p rocedure  is: 

Q1. Search up the available space list from the ith entry for the 
smallest available block (of size index j at location P) such that 
j -> i. If no block of sufficient size is available, memory overflow 
has occurred, and the appropriate action must be taken. If such 
a block exists, remove it from the available space list, and 
continue to step Q2. 

Q2. While j > i, split the block at location P of size index j into two 
buddies: (1) a left buddy at location P of size index/3(j) and (2) 
a right buddy at location P + L~o ~ of size index j - 1. Reset P 
and j to specify the smaller of the two buddies which is large 
enough to satisfy the request, and attach the other to the 
available space list. (i.e. if/_< fl(j) then (P,j) ~- (P, fl(j)) else 
(P, j) <-- (P + L~,, j - 1).) 

Q3. When j = i, allocate the block at location P. 

For  a release of a block at locat ion ~ of size index i, 
the release p rocedure  is: 

L1. Setj <--i. 
L2. While the buddy of the block at location P of size index j is 

available, 
(a) Remove the buddy from its available space list. 
(b) Recombine the block at location P of size index j and its 

buddY. Reset P andj to specify the block which results from 
this recombination. (i.e. if the buddy of (P, j) is ( Q, 1), then 
(P,j)  ~ (min (P, Q), 1 + max (j, 1).) 

L3. When the block at location P, of size index j, cannot be recom- 
bined with its buddy (because the buddy is not available), attach 
the block at location P to the available space list for blocks of 
size index j. 

The de t e r mi na t i on  of the avai labi l i ty of the buddy  
of a block is the central  compu ta t i on  of a buddy  system. 
It involves first calculat ing the address  of the buddy  and  
then de t e rmin ing  that the block at that  address  is (1) 
available and  (2) the desired buddy .  Figure  1 i l lustrates 
this p rob lem.  

To aid in the computa t ion  of the availabil i ty of the 
buddy  of a block,  we define three  fields which are 
stored in each block in the buddy  system: 

(1) A TAG field, a Boolean value which records the available (TAG 
= 0) or allocated (TAG = 1) status of the block. 

(2) A TYPE field, a two bit value (ab) which specifies by its first bit 
(a) whether this block is a left (a = 0) or right (a = 1) buddy. 
The second bit (b) records the first (ifa = 0) or second (ifa = 1) 
bit of the TYPE field of the parent block of this block. This 
allows the TYPE field of the parent block to be redefined when 
this block and its buddy are recombined. (The definition of this 
field is due to Cranston and Thomas [1].) 

(3) An INDEX field, specifying the size index of the block. Ifn block 
sizes are provided by the buddy system, then [log2n] bits are 
needed for this field. 
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On most  machines,  for many buddy systems, these 
fields can be packed into the first word of the block. 

Using these fields, we can now define the computa-  
tion of the address, Q,  of the buddy of a block at 
location P with size index j ,  as 

Q = P + L~, if T Y P E ( P )  = Ob, 

= P -  L~o+l ), if T Y P E ( P ) =  lb .  

The block at Q is the buddy of the block at P only if 
the buddy of P has not been split into subblocks. If P is 
a left buddy ( T Y P E ( P )  = Ob), then the block at Q is the 
buddy of P if (and only if) the b lock  at Q is a right 
buddy ( T Y P E ( Q )  = lb) .  All subblocks of Q which are 
at location Q are left buddies. If P is a right buddy 
( T Y P E ( P )  = lb) ,  then the block at Q is the buddy of P 
if and only if the size index field of Q, I N D E X ( Q ) ,  is 
equal to /3(./ + 1), where j is the value of the I N D E X  
field of the block at location P.  Tile size index of the 
parent of the block at location P is]  + 1 and/3( j  + 1) 
is the size index of the buddy of the block at location 
P. 

This completes the description of the generalized 
buddy system algorithm. For special cases of the /3 
function, more specific and more efficient algorithms 
can be defined (such as in [6] for the binary buddy 
system), but the algorithm just described will work for 
any/3 function. The Appendix lists a P A S C A L  version 
of the request and release procedures,  where size[i] is 
Li and subbuddy  [i] is /3(0.  

The algorithm described was designed to allocate 
memory  from a large initially available block of size M, 
addressed from 0 to M - 1, where M = L , .  In this case 
the available space list is initialized to indicate one 
available block, of size index n at address O. If the size 
of the initial block M is not one of the defined block 
sizes L~, L2 . . . .  , L , ,  then we initialize the available 
space list to indicate that a set of blocks of sizes L~, Lj2, 
• . . ,  L h is available at locations 0, L~,, Lj, + L ~ , . . . ,  
~=~ Lj,, respectively, with M = Y.~=~ LS. The T Y P E  
fields are set to indicate all blocks as left buddies (0b). 
This prevents the release routine from trying to com- 
bine these blocks when any of them became available. 
If an address of a buddy is generated which is greater  
than M - 1, it is t reated as a buddy which is not 
available. As an example,  an initial block of size 25 
would provide initial blocks of size 16, 8, and 1 at 
locations 0, 16, and 24, respectively, for the binary 
buddy system, or of sizes 21, 3, and 1 at locations 0, 
21, and 24, respectively, for the Fibonacci buddy 
system. 

Block sizes can be in any unit of storage (bytes, 
halfwords, words, doublewords,  etc.) since, if L1, 
Lz, • • . ,  Ln is a solution to a set of recurrence relations 
(1), then y "L1, y ' L e  . . . .  , y ' L n  is also a solution for 
constant y .  An initial block whose absolute starting 
address is L,  rather than zero,  can be used in a buddy 
system by considering all addresses to be relative to 
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location L.  Other  similar minor variations to the basic 
buddy system are also possible. 

3. An Even More General Class of Buddy Systems 

The major  problem in the algorithm described in 
Section 2 was the computat ion of the address of the 
buddy of a released block. An alternative approach to 
the solution given in Section 2 is to store the address of 
the buddy of a block explicitly in the block when the 
two buddies are created. Thus, if P and Q are buddies, 
each will contain a pointer  pointing to the other• This 
can be extended to allow any number  of buddies to be 
created f rom a block by linking them in a circularly 
linked list. However ,  now when a block is split into 
subblocks and these blocks are recombined,  we must be 
able to recreate the pointer to the buddies of the re- 
combined block. One solution would be to break the 
pointer up into parts which are stored in the header  of 
its subblocks, as was done with the T Y P E  field of the 
algorithm presented in Section 2. If  sufficient room 
exists in the header  word of each block, this change is a 
minor variation of the algorithm of Section 2. 

Another  approach is to retain the header  of a block 
when it is split into subblocks. I f  /x storage units are 
needed for a header  containing a T A G  field (to indicate 
available/allocated status), an I N D E X  field (to store a 
size index), and the pointer  to the next buddy in the 
circularly linked list, then a buddy system can be de- 
signed for any set of block sizes L1, L2, • • •, Ln which 
satisfy a set of recurrence relations to the form 

L~ >-- tx + Lj~, 1+ L&2 + " ' "  + L~,z, ), i =  1, . . . , n 

with the restriction thatj~,r < i for all r ,  1 <- r <- l ( i ) .  A 
block of size index i at location P is split into a header  
word (of length /z at location P) and l(i) buddies, 
circularly linked through their header  words, of size 
indices, j~,l, j~.z . . . . .  j~,z<i) at locations P + /z, P + /x + 
Lj~,I, . . . .  P + /z + ~ ] - 1  L&r, respectively. I f  the 
pointer is d ismembered and stored in the header  words 
of the subblocks as ment ioned above,  we have /z  = 0. It 
would be necessary to require that j~,r = i - 1 for some 
r (for each i) because of the search policy in the request 
procedure,  but a more complicated search policy might 
be able to remove this constraint also for some buddy 
systems. (The problem is; If  a block of size index i is 
requested and not immediately available, where do we 
look for a block which can be split to produce a block of 
size index i? In the algorithm of Section 2, we look at 
i + 1, i + 2, etc. If a block of size index i + 1 is 
available, it makes sense to use this to produce the 
requested block of size index i.) 

An example of the use of this algorithm is a system 
which requires blocks of sizes 12, 80, and 132, the first 
for a control block, the second for a card image buffer,  
and the third for a line printer  image buffer. Figure 2 
illustrates how blocks can be split in a system with ~ = 
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2, starting from a block of size 136. Under  the binary 
buddy system, it would be necessary to allocate blocks 
of sizes 16 ,128 ,  and 256 with large internal f ragmenta-  
tion. The weighted buddy system does somewhat  bet ter  
on internal fragmentat ion with blocks of sizes 16, 96, 
and 192. (Remember  that the header  word in these 
systems takes at least the first word; so to have 12 
usable words, at least 13 must be allocated.) The Fi- 
bonacci buddy has very low internal fragmentat ion with 
block sizes of 13, 89, and 144, but with an initial block 
of size 144, only 8 blocks of size 13 can be created,  
while 9 blocks of size 14 can be created from an initial 
block of size 136 in the pointer  buddy system of Figure 
2. 

4. Internal Fragmentation 

Unless the set of requested block sizes is a subset of 
the set of provided block sizes, it will be necessary to 
allocate more memory  than is requested for some re- 
quests. The memory  wasted due to this overallocation 
is internal fragmentat ion.  The amount  of internal frag- 
mentat ion will vary depending upon the set of provided 
block sizes and the distribution of requests for memory .  
Thus it can be used as a point of comparison for buddy 
systems. 

A measure of internal fragmentat ion can be defined 
in several ways. Several researchers [4, 7, 11] have 
considered the ratio of average allocated space to aver- 
age requested space. This measure is difficult to com- 
pare with external fragmentat ion in order to compute  
total f ragmentat ion,  however.  Another  suggested 
measure is the ratio of overallocated memory  (average 
allocation minus average request) to total memory  size 
M, but this results in a measure which is a function of 
both the buddy system and the memory  size. We have 
chosen to use a measure of internal fragmentat ion 
which is the ratio of overallocated memory  to allocated 
memory .  This measure is a function of the buddy sys- 
tem and the request distribution. By knowing the pro- 
portion of total memory  which is allocated, the ratio of 
overallocated memory  to total memory  can be com- 
puted. 

Letting h(i)  be the size of the allocated block for a 
request of size i and Pi be the probabili ty of a request of 
size i, we have the internal fragmentat ion for a request 
distribution with requests for blocks of memory  in the 
range 1 to rn defined by 

pi(X(i) - i) p,h(i). 
i=1 

Notice that since we are interested in comparing the 
utilization of memory  of buddy systems, the probabili ty 
pi is the probabili ty of finding a block of size i in 
memory .  This probabil i ty will, in general,  differ f rom 
the probability of a request for a block of size i. The 
probabili ty of a block being allocated in memory  is 
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influenced not only by the request distribution and the 
memory  management  scheme,  but also by the size of 
memory  and the lifetime distribution for requests.  If  
request lifetimes are independent  of request sizes and 
the size of memory  is large relative to the maximum 
request size, however,  the difference between these 
two probabilities will be minimal. 

In order  to compare  the performances  of the previ- 
ously published buddy systems (binary, Fibonacci,  and 
weighted), the internal f ragmentat ion for a uniform 
probabili ty distribution has been investigated. A uni- 
form distribution of blocks in memory ,  or even a uni- 
form request  distribution, is admittedly not very realis- 
tic, but it is mathematical ly tractable,  and the relative 
performance of buddy systems under  this distribution is 
believed by the authors to be indicative of the perform- 
ance under other  distributions. The simulation results 
of Section 5 for both a uniform distribution and a 
(truncated) exponential  distribution and of Section 6 
for three actual request distributions support  this be- 
lief, but a major  motivation for examining the uniform 
distribution is its mathematical  tractability and the fact 
that real memory  distributions tend to be very system 
specific and hard to work with analytically. 

For a uniform distribution of requests f rom 1 to m ,  
the average internal f ragmentat ion is 

( h  m -- am)/~k m = 1 - a m / X m  , 

where 

am = 1 + 2 + 3 + 4 +  " "  + m  = ~ i = ( m  z + m ) / 2 ,  
i=1 

Xm = X(1) + h(2) + X(3) + h(4) + " ' "  + X(m), 

with h(i)  being the size of the block which is allocated 
for a request of size i (h(i) = Lk such that Lk-1 < i <-- 
Lk). Noting that h(i)  is constant for Lk-1 < i --< Lk, we 
can express the s u m  hm, for Lk --< m -- Lk+l, as 

k 

A m = Z~  -[- ~a  t i  " ( t i  - t i - 1 )  "q- o g ( t k + l  - Z k ) " Z k + l ,  
i=2 

with m = Lk + ct(Lk+l - Lk), 0 <-- a --< 1. The parame-  
ter a indicates how close m is to Lk or Lk+l. For buddy 
systems based on the set of recurrence relations (1), 
this is then 

k 

h,, = L~ + ~ L i ' L , , )  + aLk+l"L~k+l). 
i=2 

The Fibonacci-like sequences which were suggested as 
the basis of a class of buddy systems by Hirschberg [4] 
have been studied by Harris  and Styles [3] and Fergu- 
son [2]. If we define 

u i =  0, f o r i < 0 ,  u0 = 1, 
ttt+l = u i  + Ut-p,  for i >-- 0, 

then we have Li = ui with 

fl(i) = i - p -  1, i > p  
= 0 ,  i<-p .  
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Fig. 2. Tree structure for a pointer buddy system with p. = 2, 
providing usable blocks of sizes 12, 80, 132. 
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Table I. Asymptotic values of the maximum and mimmum internal 
fragmentation for a uniform distribution of requests from 1 to m (as 
m ~ oo) for buddy systems based on the recurrence relations u~ = u ,  
+ Ui_u_ 1 . 

Internal fragmentation 

P 6 max min 

0 2.000 0.333 0.250 
1 1.618 0.236 0.191 
2 1.466 0.189 0.159 
3 1.380 0.160 0.138 
4 1.325 0.140 0.123 
5 1.285 0.125 0.111 
6 1.255 0.113 0.102 
7 1.232 0.104 0.094 
8 1.213 0.096 0.088 
9 1.197 0.090 0.082 
10 1.184 0.084 0.078 

( F o r p  = 0, ui = T ;  for P = 1, ui = Fi+i). Then  

k - - p - 1  

hm : 1 + ~ U i ' U i + p +  1 At- 0£ U k +  1 " U k _  p 
i=0  

m = u k  + a U k - p , O  <~ a <<- 1. 

Harris  and Styles [3] have invest igated the sequences  u~ 
and proved many  useful s u m m a t i o n  and  product  for- 
mulas .  They  also show that the l imit ,  as k ~ oo, of 
Uk÷~/Uk is the largest real root  of the e q u a t i o n x  v+~ - x p 
- 1 = 0. Fe rguson  [2] gives numer ica l  values for these 
roots.  

If we let 6 be the largest real root  o fx  p+I - x p - 1 = 
0 (1 - 6 -< 2), then  u~ may be approx imated  by c .  6 ~ for 
an appropr ia te  choice o f c .  ( F o r p  -- 0, u~ = 1 • T ;  f o r p  
= 1, ui = F ,  -~ 6 " / x / 5 . )  The  approx imat ion  is quite 
good even for small i owing to the form of the zeros of 
x p÷~ - x p - 112]. With this approx imat ion ,  

k--p-- i  

h m ~ 1 + ~ C262i+p÷l "~- 0LC262k-p+l 
i=0  

= 1 + c 2 ( 6 2 k - p ÷ i  - -  6 P ÷ 1 ) / ( 6 2  - -  1 )  

-~- O lC262k - -P+l  

= 1 + [c2/(62 - 1)]-[(1 + a (62  - 1)).62k~+l 
- 6p+q .  
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am = ~(m 2 + m )  
= ~ [c 2 62k + 2 a c  2 62k -v  + a 2 c 2 62k-2p + c 6  k 

+ ac6k-~]. 

A n d  in terna l  f r agmenta t ion  is 

1 - a m / h  m = 

(62 - 1) [62~ + 2 o~62k-p + a262~-2" + (6  k + a 6  k-") /c ]  
1 -  

2(62 - 1)/c 2 + [1 + (62 - 1) a]" 62k-p+~ - 6 p+~) 

and,  as k ~ 0% 

- 1  

= 1 -  

= 1 -  

(62 - 1)(62p + 2a6P + ~ )  

211 + a(62 - 1)]6 v+l 

( 6 2 -  1)(6 v +  002 

26(6p + a [ 6  p+2 - ¢p)]  

(62 - 1)(6p + a) 2 
0 _ < a < _ l .  

2 6 ( 6  ~ + ~ 6  + ~) '  

This funct ion  of a has a m a x i m u m  value of (6  - 1)/ 
(6 + 1) when a = 1/(6 + 1), and  a m i n i m u m  value of 
( 6  - 1)/26 when a = 0 or a = 1. Table  I lists the 
values of 6 and  the m i n i m u m  and  ma x i mum in te rna l  
f ragmenta t ion  for p = 0 . . . . .  10. The  b inary  buddy  
system (corresponding  to p = 0) has an in terna l  frag- 
men ta t i on  of 25 to 33 percent  of al located memory .  
The Fibonacci  buddy  system (p = 1) suffers f rom 19 to 
23.6 percent  wasted m e m o r y  due to in te rna l  f ragmen-  
tat ion.  This agrees with the computa t ions  of K n u t h  [6] 
(for the b inary  buddy)  and  Russell  [11] (for the F ibon-  
acci buddy) .  

The block sizes of the weighted buddy  system do 
not  cor respond to any of the systems whose in te rna l  
f ragmenta t ion  is given in Table  I. In te rna l  f ragmenta-  
t ion for the weighted buddy  system requires  the analy-  
sis of two cases: 

(1) 2 k - < m - < 3 - 2  k-l ,  m =  a2  ~, 1 - < a - - < ~ ,  

(2) 3 . 2  k - l - < m - < 2  k+l, m = a2 k, ~ -<  a - < 2 .  

As m ~ oo in these cases, in te rna l  f r agmenta t ion  be- 
comes 

(1) 1 - 2 a 2 / ( 6 a -  ~ )  

= ( 6 a  2 - -  18a + 11)/(11 - 18a),  1 -< a --< 

(2) 1 - 2 a 2 / ( 8 a  - ~- )  

= ( 3 a  2 - -  12a  + 10)/(10 - 12a),  § -< a -- 2. 

In te rna l  f r agmenta t ion  for the weighted buddy  system 
has a ma x i mum value of ~ (0 .185)  at a = ~ - and  a 
m i n i m u m  value of~  (0 .143)  at a = 1 or a = 2. A local 
ma x i mum of ~ (0 .167)  occurs at a = 5, and a local 
m i n i m i n u m  of ~ (0 .156)  occurs at a = 3. 

From these calculat ions,  we see that the weighted 
buddy  system always has lower in te rna l  f r agmenta t ion  
than the Fibonacci  buddy  system, which always has 
lower in te rna l  f r agmenta t ion  than the b inary  buddy  
system. Because  of the similar block sizes for the b inary  
and the weighted buddy  systems, we can compare  their  
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internal fragmentation directly to show that the binary 
buddy system has from 2.08 (m = 3"2 k) to 1.72 
(m = 1 .08 .2  k) times more internal fragmentat ion than 
the weighted buddy system. Clearly the weighted 
buddy system performs much bet ter  than either the 
binary or Fibonacci buddy systems in terms of internal 
fragmentation.  

It must be emphasized,  however,  that these results 
are valid only for the particular theoretical distribution 
considered here. For a real distribution, internal frag- 
mentat ion may be considerably different depending 
upon the "fi t"  of the provided block sizes to the re- 
quested block sizes. 

5. External Fragmentation, Total Fragmentation, and 
Execution Time 

Internal  fragmentat ion is not the only measure of 
memory  utilization, however.  External fragmentat ion 
can also decrease the effective size of available mem- 
ory. Unlike internal f ragmentat ion,  which occurs con- 
tinuously in a buddy system, it is a matter  of definition 
whether  external fragmentat ion can be said to occur 
before a request for memory  must be rejected because 
all available blocks are of insufficient size (i.e. before 
memory  overflows). A measure of external f ragmenta-  
tion is the proport ion of total memory  which is availa- 
ble when overflow occurs. This measure depends upon 
the specific sequence of requests and releases which 
precede overflow, and is therefore difficult to deal with 
analytically, al though at tempts  to analyze other mea-  
sures of external f ragmentat ion have been made [10]. 

Internal  and external fragmentat ion result f rom dif- 
ferent propert ies of the buddy system, but both de- 
crease the effective size of the available memory  which 
is being managed by making portions of that memory  
unusable. We define total fragmentation of a buddy 
system to be the total amount  of memory  which is 
unusable due to either internal or external f ragmenta-  
tion (normalized by dividing by the total memory  size). 
Since our definition of internal fragmentat ion is the 
proport ion of allocated memory  which is unusable,  
while external fragmentat ion is a proport ion of total 
memory ,  total f ragmentat ion is not a simple sum of 
internal and external,  but rather ,  

total = (1 - external) - internal + external 
= internal + external - in ternal .external .  

Another  important  proper ty  for a buddy system is 
its running time. The original advantage of the buddy 
system over first-fit or best-fit memory  management  
schemes was its reduction in search time to find and 
allocate an available block of the appropriate  size. 
Three statistics are important  in a buddy system. In the 
algorithm description of Section 2, these are the num- 
ber of times that steps Q1 (the number  of searches),  Q2 
(the number  of splits), and L2 (the number  of recombi- 

4 2 6  

nations) are executed. In equilibrium, the number  of 
splits will be equal to the number  of recombinations;  so 
only two statistics are needed.  Also, the number  of 
splits is always less than or equal to the number  of 
searches, and if, as would be hoped,  the number  of 
searches is normally 0 or 1, these two statistics will also 
be equal. (The discrepancy between the number  of 
searches and the number  of splits occurs when a block 
of size Lj is split into subblocks of sizes Lj-1 and L~j), 
and the block of size La~j) is used to continue the 
splitting. In the binary buddy system, ~(j) = j - 1, and 
the two statistics are equal.)  

A simulation of four buddy systems (binary, Fibon- 
acci, weighted, and the F-2 buddy system based on the 
recurrence relation L i +  1 = L~ + L,-2) was used to obtain 
comparat ive values of internal, external,  and total frag- 
mentat ion as well as the average number  of searches, 
splits, and recombinations.  Request  and release proce- 
dures for a general buddy system were p rogrammed .  
Since we wished to obtain both internal and external 
fragmentat ion figures, the memory  management  
schemes were driven at overflow in the simulation. A 
31-bit uniform pseudo-random number  generator  was 
used to produce an unbounded sequence of requests 
according to either a uniform distribution f rom 1 to m 
or a (truncated) exponential  distribution with mean 
m/2. Associated with each request was a uniformly 
distributed block lifetime. If a block was allocated at 
time ~-, then it was queued for release at r plus the 
lifetime of the block. Requests  were made until over- 
flow occurred. Then blocks were released (and the 
simulation timer incremented as needed)  until the 
block which caused overflow could be successfully re- 
quested; the system then returned to making requests 
until overflow occurred again. This process of alter- 
nately requesting and releasing blocks continued until a 
fixed number  of (simulated) t ime units had elapsed. At 
regular intervals, statistics on internal, external,  and 
total fragmentat ion were taken.  The number  of 
searches, splits, and recombinat ions was also recorded.  
Identical request sequences were given to all buddy 
systems. 

For our simulations, a memory  of 10,000 words was 
simulated. The block lifetimes were uniformly distrib- 
uted from 1 to 10. The simulations continued for 4000 
time units at first, and, as our budget became tighter, 
for 2000 time units (with no significant change in re- 
sults). The uniform request distributions were investi- 
gated as m, the maximum request size, varied from 40 
to 1000 in steps of 10. 

For the exponential  request distribution, the distri- 
bution was truncated to generate  requests which were 
less than 1000 with a mean which varied from 50 to 
about 400 (to match the mean of the uniform distribu- 
tion) by steps of 25 (due to budget pressures).  The 
actual mean did not vary by steps of 25, but increased 
more slowly owing to the effect of discarding requests 
greater  than 1000. Thus the mean of the last generating 
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Fig. 3. Internal fragmentation for a uniform request distribution. 
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Fig. 5. External fragmentation for a uniform request distribution. 
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Fig. 4. Internal fragmentation for a (truncated) exponential request 
distribution. 

Fig. 6. Externfil fragmentation for an exponential request distribu- 
tion. 
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exponential  distribution was 400, but the mean of the 
truncated distribution was only 345. All results are 
presented in terms of the true mean of the truncated 
distribution. 

The results of our simulations for internal fragmen- 
tation are presented in the graphs of Figure 3 (for a 
uniform distribution of requests) and Figure 4 (for an 
exponential  distribution of request) .  The curves of Fig- 
ure 3 agree with the computat ions of Section 4 to 
within 1 percent,  lending support  to the validity of our 
simulations. Notice that both the relative position and 
the average internal fragmentation of the four buddy 
systems do not change radically as a function of the two 
distributions presented.  

Figures 5 and 6 present our simulation results for 
external fragmentation.  We notice that although our 
measure of external fragmentat ion is not directly com- 

427 

parable to the measures of other studies, our results are 
compatible with the previous observations of Knuth [6] 
and Purdom and Stigler [10]. The values obtained for 
the buddy systems also seem reasonable if we consider 
that the lower internal fragmentat ion values of Figures 
3 and 4 were obtained because of the increased number  
of different block sizes which are available in the 
weighted buddy and F-2 buddy systems over the num- 
ber available in the binary and Fibonacci buddy sys- 
tems. With a smaller intrablock difference (Li - L H ) ,  a 
bet ter  fit to the requested block size can be made,  
yielding lower internal fragmentat ion.  However ,  this 
also produces a smaller available buddy (if a block is 
split), and this smaller block is less likely to be as useful 
as the larger buddies provided by the binary and Fibon- 
acci buddy systems. These small unusable but available 
blocks contribute to higher external fragmentat ion.  
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These considerations also lead us to the conclusion 
that these smaller blocks will (being unused) be availa- 
ble when their buddies are released and hence will be 
recombined immediately,  requiring the resultant par- 0.9 
ent block to again be split if the just released block size 
is requested again. This should result in an average 
number  of searches, splits, and recombinations which 
parallels the external fragmentat ion of a buddy system. ~" o.~ 
Figure 7 presents the average number  of searches for a 
uniform request distribution. The graphs for the num- .~ 
ber of splits and recombinat ions are identical to each "~ 

d~ 0,4 
other and similar to the graph of Figure 7. The savings ,~ 
in the number  of splits due to using the smaller of fl(j) ,~ 
and j - 1 are minor .  The largest savings are for the .~ 
Fibonacci buddy system where,  for example,  for a uni- z o.z g~ 
form distribution from 1 to 1000, the average number  "~ 
of searches is 0.44 while the average number  of splits is <~ 
0.35. The standard deviations of these performance o.o 
measures increase as the external fragmentat ion in- o 
creases also (being on the order of 1.00 for the 
weighted buddy system). 

The total f ragmentat ion for the four buddy systems 
investigated is plotted in Figure 8 (for a uniform distri- 
bution of requests) and Figure 9 (for an exponential  
distribution). While we apologize for the difficulty in 
reading these graphs, one very important  conclusion 
can be drawn from this exact problem: The total "=~ 0.4 
amount of  usable space in a buddy system is relatively 
independent of  the buddy system used. The total frag- 
mentat ion for all these buddy systems lies in a band,  .~ 
with the difference between the best and the worst total ~ o,a 
fragmentat ion being only 5 to 10 percent of total mem-  
ory. The standard deviation of the points on the total 
f ragmentat ion curves is in the same range (5 to 10 per- o.~ 
cent).  

6. Simulations of Actual Request Distributions 

Fig. 7. Average number of searches per request for a uniform re- 
quest distribution. 

i0o zOO sOO 46o s6o 
Average Request  Size 

Fig. 8. Total fragmentat ion for a uniform request  distribution. 

0.5 

V ~ " . . . . . . . . .  F-2 

~Weighted 

o 16o z6o a6o 460 560 
Average Request Size 

In addition to the simulations using the theoretical 
distributions, simulations were per formed for each of 
the four buddy systems with each of three actual re- 
quest distributions. The actual request distributions, 
listed in Table II ,  were the distribution of buffer re- 
quests on the UNIVAC 1108 Exec 8 system at the Uni- o = 
versity of Maryland [4], the distribution of memory  "5 0.4 
requests on an IBM 360 CP-67 system [8], and the 
distribution of partition size requests on the IBM 360/65 
OS MVT system at Brigham Young University. 

Note that the University of Maryland and Brigham ~ 0.8 
Young University distributions are labeled "continu- 
ous."  This is because their tables consist of points on 
the cumulative distribution function between which the 
probabili ty is equally distributed over the integers. 0.2 
Consider,  for example,  the first two entries in the 
University of Maryland table. This implies zero proba- 
bility for a request of size 1 or 2 and a probabili ty of 
0.06 for each of sizes 3-8.  

Fig. 9. Total fragmentation for an exponential request distribution. 
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The CP-67 distribution is a discrete distribution. 
There is zero probability of request sizes not shown in 
the table. 

The simulations were run in the same way as the 
Size CDF (%) 

simulations of Section 5, with the exception that the 
actual distributions listed in Table II were used to 2 0.0 

8 36.0 
generate the sequence of requests, and because of the 10 44.0 
smaller average request for these distributions, a mem- 15 54.0 
ory of only 1000 words was used. 25 84.0 

The results of these simulations are given in Tables 30 94.0 
I I I -V.  The measured internal, external, and total frag- 35 96.5 

40 97.5 
mentation are presented as well as the expected inter- 

50 98.5 
nal fragmentation for each distribution and buddy sys- 70 99.3 

tern. The expected internal fragmentation was com- 100 99.6 
puted directly from the request distribution as defined 200 100.0 
in Section 4. The results of these simulations compare 
very favorably with the results obtained in Section 5 
with the theoretical distributions. Between 28 and 43 
percent of available memory is being wasted owing to 
internal and external fragmentation. 

7. Summary and Conclusions 

We have, in this paper, considered a number of 
properties of dynamic storage allocation schemes based 
upon the buddy system. We have presented two gen- 
eral algorithms which can be used to implement a wide 
variety of buddy systems. Then, using these algorithms, 
we investigated, first analytically and then by simula- 

Table II. Actual request distributions. 

University of Brigham Young CP-67 
Maryland University 

Size CDF (%) Size PDF (%) 

3 0.0 1 11.1 
16 6.4 2 0.2 
32 16.8 3 3.7 
48 27.6 4 24.8 
64 40.0 5 21.9 
80 45.8 6 0.3 
96 62.7 7 0.6 

112 82.6 8 11.2 
128 94.9 9 2.0 
144 95.3 10 4.1 
160 95.7 11 0.2 
176 96.1 12 0.2 
192 96.4 17 0.9 
208 97.0 18 1.9 
224 98.3 21 0.2 
256 99.4 23 0.3 
272 99.6 27 0.1 
304 99.8 29 15.6 
352 99.9 31 0.4 
511 100.0 50 0.3 

("continuous" ("continuous" (discrete 
distribution) distribution) distribution) 

average request average request average request 
= 15.99 = 80.26 = 9.34 

Table III. Simulation results using University of Maryland request 
distribution [4]. 

tion, the fragmentation characteristics of several buddy Expected 
internal Internal External Total 

systems. These results, presented in Figures 3-9 and Buddy fragmenta- fragmenta- fragmenta- fragmenta- 
Tables I I I -V,  indicate that as internal fragmentation system tion tion tion tion 
decreases (owing to more block sizes) external frag- binary .276 .276 .179 .406 
mentation increases (owing to more small blocks). To- Fibonacci .198 .199 .217 .373 
tal fragmentation remains relatively constant, with F-2 .155 .154 .265 .378 
from 25 to 40 percent of memory being unusable owing weighted .137 .137 .305 .400 
to either internal or external fragmentation. The execu- 
tion time of the request and release procedures in- 
creases with external fragmentation. 

Some general comparisons can be made, however, Expected 
internal Internal External 

for the binary, Fibonacci, and weighted buddy systems. Buddy fragmenta- fragmenta- fragmenta- Total frag- 
The total fragmentation of the weighted buddy system system tion tion t ion  mentation 
is generally worse than that of the Fibonacci buddy binary .182 .188 .114 .281 
system. The total fragmentation of the binary buddy Fibonacci .131 .136 .189 .300 
system varies widely because of its internal fragmenta- F-2 .210 .216 .230 .397 
tion characteristics. Still the variation among these weighted .103 .107 .239 .321 

buddy systems is not great, and the lower execution 
time of the binary buddy would therefore seem to 
recommend it for general use, although the execution 
time of the Fibonacci buddy system is not much 

Expected 
greater. The weighted buddy system seems to be less internal In te rna l  External Total 
desirable than either the binary or the Fibonacci sys- Buddy fragmenta- fragmenta- fragmenta- fragmenta- 
tems owing to its higher execution time and greater system tion tion tion tion 
external fragmentation, binary .227 .227 .151 .343 

In conclusion then, we would recommend that the Fibonacci .222 .222 .212 .387 
memory management module of a system be con- F-2 .163 .162 .318 .429 

weighted .134 .132 .323 .413 
structed as either a binary or Fibonacci buddy system 

4 2 9  

Table IV. Simulation results using CP-67 request distribution [8]. 

Table V. Simulation results using Brigham Young University request 
distribution. 
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before any information concerning the actual distribu- 
tion of block sizes is obtained (assuming of course that 
a buddy system is to be used at all). With these systems, 
there is a reasonable assurance that no better  buddy 
system can be chosen without knowledge of the actual 
request distribution. With the system in actual use, 
statistics on the actual request distribution can be ob- 
tained and, if deemed appropriate,  a new buddy system 
can be tailored [9] to that distribution by use of the 
algorithms of either Section 2 or Section 3. The new 
system can then replace the original buddy system to 
improve memory utilization and execution speed. 

Appendix. A General Algorithm for Buddy Systems 

The following PASCAL procedures implement the al- 
gorithm of Section 2. The constants null, n, and m are: 
a special address indicating that overflow has occurred 
in the request procedure,  or that the buddy of the block 
at p is not available in the buddyaddress function; the 
number of different block sizes which are provided by 
the buddy system; and the size of the memory block 
which is being managed by the buddy system, respec- 
tively. The attachtoasl and removefromasl procedures 
are standard doubly linked list insertion and deletion 
routines. The buddyaddress function returns null or the 
address of the buddy of the block at p if the buddy is 
available for recombination. 

CONST null  = - 1; 

TYPE address : nul l  . . m ; 
s izeindex : 1 . . n;  

VAR size: array [sizeindex] of 1 . . m; 
subbudd y :  array [sizeindex] of 0 . . n ; 
m e m o r y :  array [0 . . m] 

of packed record 
tag: 
a,b : 
index: 
fo rward:  
backward:  

end; 
asl: array [sizeindex] 

of record 
head,  tail: address;  

end; 

procedure attachtoasl (p : address) ; 
begin 

end; 

(available, allocated) ; 
(left, right) ; 
s i ze index;  
address ; 
address ; 

with m e m o r y  [p], asl [index] 
do begin 

ba ckw a rd  := null;  
f o r w a r d  := head; 
head := p;  
if tail = null  then tail "= p ; 

end; 

procedure r em o ve f rom as l  (p: address);  
begin 

with m e m o r y  [p], asl [index] 

do begin 
if backward  = null  

then head := f o r w a r d  
else m e m o r y  [backward] . f o rward  := f o rward;  

if f o r w a r d  = null  
then tail := b a c k w a r d  
else m e m o r y  [ f o r w a r d ] . b a c k w a r d  := backw a r d ;  
end; 

end; 

function b u d @ a d d r e s s  (p : address): address ; 
var q : address;  

j: s ize index ; 
begin 

if m e m o r y  [p].a = left 
then begin 

q := p + size [memory[p] . index];  
if (q >_ m)  k~ (memory[q]  .a = left) k/  
(memory[q] .  tag =allocated) 
then q := null;  

end 
else begin 

j := s u b b u d d y  [1 m e m o r y [ p ] . i n d e x ] ;  
q := p - s ize [/']; 
if (memory[q] .  index 4 j )  
k/  (memory[q] . tag=al loca ted)  
then q := null;  

end 
buddyaddress  := q ; 

end; 

procedure request  (var p: address;  i: s ize index)  ; 
var j: s ize index;  

q: address ; 
begin 

j : = i ;  
while ( j<n)  /~ (asl [j] .head=nul l )  

d o j  : = j  + 1; 
if asl [j] . h ead=nu l l  

then p := null  
else begin 

p := asl [.]].head; 
r emove f romas l  (p); 
while j > i 

do begin 
q := p + size [subbuddy[j]];  
with m e m o r y  [q] 

do begin 
tag := available; 
b := m e m o r y  [p ] .b ;  
a := right; 
index := j - 1; 

end; 
with m e m o r y  [p] 

do begin 
tag := available; 
b := m e m o r y  [p ] . a ;  
a := left; 
index  := s u b b u d d y  [j]; 

end; 
if i <- s u b b u d d y  [j] 

then attachtoasl (q) 
else begin 

attachtoasl (p);  
p : = q ;  

end; 
j := m e m o r y  [p] . index; 

end; 
m e m o r y  [p] . tag  := allocated; 

end; 
end; 
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procedure release (p : address ; i: sizeindex) ; 
var q,r: address; 
begin 

q := buddyaddress (p); 
while q 4: null 

do begin 
removefromasl (q) ; 
ifp > q  

then begin r := p ; p  := q; q := r end; 
with memory [p] 

do begin 
tag := available; 
a := memory [p].b;  
b := memory [q].b; 
index := 1 + memory [q].index; 

end; 
q := buddyaddress(p); 
end; 

attachtoaslp (1) 
end; 
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A new algorithm is presented which copies cyclic 
list structures using bounded workspace and linear 
time. Unlike a previous similar algorithm, this one 
makes no assumptions about the storage allocation 
system in use and uses only operations likely to be 
available in a high-level language. The distinctive 
feature of this algorithm is a technique for traversing 
the structure twice, using the same spanning tree in 
each case, first from left to right and then from right to 
left. 
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