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ABSTRACT
In this paper, we introduce the notion of prolific and non-prolific
types, based on the number of instantiated objects of those types.
We demonstrate that distinguishing between these types enables a
new class of techniques for memory management and data locality,
and facilitates the deployment of known techniques. Specifically,
we first present a new type-based approach to garbage collection
that has similar attributes but lower cost than generational collec-
tion. Then we describe the short type pointer technique for reduc-
ing memory requirements of objects (data) used by the program.
We also discuss techniques to facilitate the recycling of prolific ob-
jects and to simplify object co-allocation decisions.

We evaluate the first two techniques on a standard set of Java
benchmarks (SPECjvm98 and SPECjbb2000). An implementation
of the type-based collector in the Jalapeño VM shows improved
pause times, elimination of unnecessary write barriers, and reduc-
tion in garbage collection time (compared to the analogous gener-
ational collector) by up to 15%. A study to evaluate the benefits of
the short-type pointer technique shows a potential reduction in the
heap space requirements of programs by up to 16%.

1. INTRODUCTION
A number of software and hardware technological trends point

to the growing importance of automatic memory management and
optimizations oriented towards reducing the cost of memory ac-
cesses. On the hardware side, the gap between processor and mem-
ory speeds continues to grow, motivating the need for optimizations
to enhance data locality, including those that reduce the amount of
memory being consumed by applications. On the software side,
the use of object-oriented programming and reliance on automatic
memory management is becoming more prevalent due to the ac-
companying productivity gains. In particular, the popularity of the
Java programming language [21] has increased a great deal the in-
terest in automatic memory management. Java is being widely used
on systems ranging from embedded devices to high-end servers.
On all of these systems, the efficient utilization of memory and re-
duced space requirements of applications (besides being inherently
useful for memory-limited embedded devices) lead to higher per-
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formance and lower power consumption.

Prolific and non-prolific types. In this paper, we introduce the
notion of prolific and non-prolific types as a framework for improv-
ing automatic memory management. We present results from an
empirical study of some well-known Java applications, which show
that for each program, relatively few object types usually account
for a large percentage of objects (and heap space) cumulatively al-
located by the program. We refer to those frequently instantiated
object types as prolific types and the remaining object types as non-
prolific types. We suggest several optimizations that can potentially
exploit the distinction between prolific and non-prolific types, both
to improve performance with new memory management techniques
as well as to simplify the deployment of some well-known tech-
niques. In this paper, we primarily focus on two specific applica-
tions of the idea: type-based garbage collection 1 and reducing the
amount of memory consumed by objects.

Type-based garbage collection We first present a novel type-
based approach to garbage collection based on the notion of prolific
and non-prolific object types. We propose a new prolific hypothe-
sis, which states that objects of prolific types die younger than ob-
jects of non-prolific types. Our approach relies on finding garbage
primarily among prolific objects. It is, therefore, conceptually sim-
ilar to generational garbage collection, but it distinguishes between
“generations” of objects based on type rather than age.

Generational garbage collection [29, 6] is one of the popular ap-
proaches to garbage collection. It is inspired by an observation,
known as the weak generational hypothesis, that most objects die
young [45]. A simple generational scheme involves partitioning the
heap space into two regions – a nursery (or new generation) and an
old generation (or a mature space) 2. All new objects are allocated
in the nursery. Most collections, termed minor collections, only re-
claim garbage from the nursery. Survivors from a minor collection
are promoted to the older generation, which is subjected to collec-
tion only during infrequent, major collections. In order to support
a generational collection, the compiler has to insert a write barrier
for each statement writing into a pointer field of an object, to keep
track of all pointers from objects in the old generation to objects in
the nursery. These source objects in the old generation are added as
roots for minor collection, so that objects in the nursery which are
reachable from those objects are not collected by mistake. Com-
pared with their non-generational counterparts, generational col-
lectors typically cause shorter pauses for garbage collection, due to
the need to look at a smaller heap partition at a time, but lead to

�
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There are also multi-generational garbage collection schemes with

more than two generations.
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lower throughput of applications due to the overhead of executing
write barriers.

In our type-based garbage collector, all objects of prolific types
are assigned at allocation time to a prolific region (P-region), which
is analogous to a nursery in a conventional generational collector.
All “minor” collections are performed in the P-region. All objects
of non-prolific types are allocated to a non-prolific region (NP-
region), which corresponds to the old generation in a generational
collector with two generations.3 Unlike generational collection, ob-
jects are not “promoted” from the P-region to the NP-region after
a minor collection. This approach leads to several benefits over
generational collection:


 It allows a compiler to identify and eliminate unnecessary
write barriers using simple type checks. This leads to per-
formance benefits like:

– reduction in the direct overhead of executing write bar-
riers; and

– for some write barrier implementations, a reduction in
the number of roots that are considered during minor
collections, leading to fewer objects being scanned and
potentially fewer collections.


 It reduces the number of reference fields examined during
garbage collection by using static type information to infer
the direction of pointers.


 It avoids the problems associated with premature promotion
of young objects that are going to die soon anyway, such as
executing more write barriers, dragging dead objects into the
old generation, and requiring more major collections.


 In a copying collector, the overhead of copying objects of
non-prolific types across generations is avoided.

With an implementation of the type-based (non-copying) col-
lector in the Jalapeño VM [2], the number of dynamically exe-
cuted write barriers is reduced by up to 74% for SPECjvm98 [37]
and SPECjbb2000 [38] benchmarks, and we observe shorter pause
times. The total garbage collection times are reduced by an average
of 7.4% over all benchmark programs, with an improvement of up
to 15.2% for javac.

Reducing memory consumed by objects We also use the con-
cept of prolific types in a technique that reduces the space require-
ments of applications written in object-oriented languages such as
Java and increases the data locality in those applications. The tech-
nique relies on three observations: (i) the number of prolific types
in a program is usually small, (ii) the pointers to type descriptors
(run-time objects with class information) in two different objects of
the same type are identical, (iii) objects of a prolific type are usu-
ally quite small. The short type pointer technique eliminates much
of the space overhead in the headers of prolific objects by eliminat-
ing the pointer to a type descriptor and replacing it with only a few
bits. An initial study on a suite of Java benchmarks (SPECjvm98,
SPECjbb200, and JavaGrande application suite) indicates potential
memory savings of 9% to 16% using this approach. Using smaller
heap space can lead to less frequent garbage collections as well
as fewer main memory accesses and improved data locality during
program execution.

Other optimizations We describe a technique for recycling pro-
lific objects. This technique can streamline the memory manage-
ment of commonly allocated objects. We also briefly discuss a new�

We can extend our approach to be analogous to a generational col-
lector with several generations by defining multiple levels of pro-
lificacy of types.

approach to object co-allocation which relies on the prolificacy of
types to make object co-allocation decisions. By placing closely-
related objects together, this technique can improve the data local-
ity of applications.

Organization The rest of the paper is organized as follows. Sec-
tion 2 describes prolific and non-prolific types and techniques to
identify prolific types. Section 3 discusses our proposed approach
to type-based garbage collection. In Section 4, we discuss the short
type pointer scheme. In Section 5, we describe other optimizations
like object recycling and object co-allocation that can benefit from
exploiting the distinction between prolific and non-prolific objects.
Section 6 describes an implementation of the simplest, non-copying
version of the type-based collection approach in the Jalapeño VM,
and presents our experimental results; it also presents empirical
data demonstrating the potential of the short type pointer technique.
Section 7 discusses related work. Section 8 presents conclusions
and Section 9 presents ideas for future work.

2. PROLIFIC AND NON-PROLIFIC TYPES
It is well known that for most applications, a large percentage

of the program execution time is spent in a relatively small section
of code. This behavior is exploited by adaptive runtime compil-
ers like the Hotspot compiler [26] and the Jalapeño adaptive opti-
mization system [4], as they focus expensive optimizations on those
“hot-spots”. It is not surprising that a similar hot-spot behavior is
exhibited by object-oriented programs with respect to the types of
objects that are created in those programs. In a study of some well-
known Java benchmarks (namely, SPECjvm98 and SPECjbb2000),
we have confirmed this observation. For example, in the jack pro-
gram, 13 types account for 95% of all allocated objects, which also
occupy 95% of the heap space allocated by this program. The data
for other applications we studied can be found in Table 6, Figure 2,
and Figure 3.

We define the term prolific to refer to a type that has a suffi-
ciently large number of instances. In other words, a type is prolific
with respect to a program if the fraction of objects allocated by the
program that are of this type exceeds a certain threshold.4 All
remaining types are referred to as non-prolific.

2.1 Identifying Prolific Types
We now discuss a few approaches that may be used to identify

prolific types. These approaches vary in terms of their overhead
and accuracy. However, a misclassification of types does not create
a correctness problem.

The simplest method of identifying prolific types is to use offline
profiling. In an offline run, a runtime system monitors memory al-
location requests issued by an application and counts the number
of objects of each type that are allocated on behalf of an applica-
tion. When an application exits, the collected allocation profile is
saved by a JVM into a file. During an actual run, the runtime sys-
tem uses previously collected allocation profiles to perform various
optimizations. Thus, no monitoring overhead is incurred during the
production run of the application.

An adaptive approach, in contrast to the offline profiling ap-
proach, is more accurate and attempts to identify prolific types dur-
ing the actual production run of the program. An obvious adaptive
strategy would be to monitor each memory allocation in an appli-
cation. To reduce the overhead of monitoring object allocations,
sampling techniques, such as those presented in [1], can be used.

It is not clear whether a static compile-time analysis alone (with-
out profiling) can be effective in identifying prolific types. In pro-
�
In our experiments, the threshold is set to 1% of the total number

of objects created by an application.
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grams where the number of objects created at run time depends on
the input data, it may not even be possible. Therefore, profiling is
a good choice for determining prolific types.

2.2 Checking a Variable for Prolific Type
Most of our optimizations that exploit the distinction between

prolific and non-prolific types require a compile-time test for whether
an object is of a prolific type. In an object-oriented language with
polymorphism, such as Java, this test requires analyses like class
hierarchy analysis [16] or rapid type analysis [5], similar to those
needed for inlining or devirtualization of methods. Given a de-
clared type 
 of an object � , the compiler checks for � being defi-
nitely prolific by checking that all children of 
 in the class hierar-
chy are prolific.

Dynamic class loading [21] is another feature of Java that forces
us to do compile-time analysis more conservatively. Again, the
problem is similar to the problem with inlining of virtual methods
in the presence of dynamic class loading [17, 36]. Due to dynamic
class loading, a program can load a new class that is non-prolific
but subclasses a prolific class, unless the prolific class is declared
final.

It is possible to use the techniques for inlining virtual methods
in the presence of dynamic class loading, like preexistence analy-
sis [17] and extant analysis [36], to improve the effectiveness of the
test for a type being definitely prolific. For example, using extant
analysis, if we create a specialized method in which the reference
to � is known to be extant (i.e., pointing to an existing object) [36],
the test for � being prolific can be performed based on the existing
class hierarchy, without worrying about any new classes that might
be loaded.

We propose an alternate approach, described below, which leads
to a much simpler compile-time test. We postulate that the prolific
types are likely to be leaves, or close to leaves, in a type hierarchy.
The intermediate classes are typically used for defining functional-
ity that is common to all of their children classes. The subclasses
refine the behavior of their parent classes and are usually instan-
tiated more frequently than their respective parent classes. While
it is possible that a prolific class may have one or more subclasses
that are not prolific, we have made a choice to treat all children of
prolific types as prolific. This greatly simplifies the test to check if
a type is definitely prolific. The test returns true if the declared
type of the variable is prolific, and returns false otherwise (with-
out looking any further at the class hierarchy).

Our decision to treat the children of a prolific type as prolific
seems to work well in practice. We have profiled all SPECjvm98
applications and the SPECjbb2000 benchmark and discovered that
with three exceptions, prolific types are indeed the leaves in a type
hierarchy. There are only two cases in which a subclass of a prolific
class would have been regarded as non-prolific, but the artificial re-
striction we put in causes those subclasses to be treated as prolific.

3. TYPE-BASED MEMORY MANAGEMENT
In this section, we use the concept of prolific and non-prolific

types to propose a prolific hypothesis. We then discuss a type-based
approach to memory management, based on the prolific hypothesis.

3.1 The Prolific Hypothesis
We postulate a hypothesis that objects of prolific types have short

lifetimes – we refer to it as the prolific hypothesis. An intuitive ba-
sis for this hypothesis is that if this were not true, an application that
continuously allocates dynamic memory would have unsustainable
memory requirements, as it would keep creating objects of prolific
types at a fast pace without reclaiming sufficient space. Stated an-
other way, our hypothesis predicts that the objects of prolific types

die younger than objects of non-prolific types. It follows that most
of the garbage collectible at various stages of the application would
consist of objects of prolific types.

We validated this hypothesis and found that the relative survival
rates are usually lower for objects of prolific types than for objects
of non-prolific types. We also found that most of the dead objects
and most of the garbage comes from short-lived objects of prolific-
types. The empirical data can be found in [32].

Interestingly, the prolific hypothesis has some resemblance to
a phenomenon commonly found in nature. Offsprings of prolific
species are often short-lived [47].

3.2 Type-Based Approach
Our approach is to distinguish between prolific and non-prolific

objects in the heap and direct the collection effort first towards pro-
lific objects.

3.2.1 Type-based allocation
The type-based memory allocator partitions heap space into a

prolific region and a non-prolific region: P-region and NP-region,
respectively. The actual allocation mechanism is related to the kind
of collector used by the system. When used with a copying collec-
tor, the allocator uses different regions of memory for the P-region
and NP-region. With a non-copying collector, the objects of prolific
and non-prolific types are tagged differently, but not necessarily al-
located in separate memory regions.

When an object of a certain type is to be allocated, the allocator
checks the type profile of the application (with information about
whether or not the type is prolific) to decide whether to place the
object in the P-region or NP-region. Hence, compared to a tradi-
tional memory allocator, the allocation path of the type-based allo-
cator would have an extra step for checking the type of the object.
However, since the prolificacy of types is known at compile-time,
the compiler can avoid the overhead of the run-time type check by
simply inserting a call to (or inlining) a specialized version of the
allocation routine for prolific or non-prolific types.5

3.2.2 Type-Based Collection
Based on the prolific hypothesis, the type-based garbage collec-

tor assumes that most objects of prolific types die young, and per-
forms (frequent) “minor” collections only in the P-region. Since
objects of prolific types account for most of heap space, we hope
to collect enough garbage on each P-region collection. When a P-
region collection does not yield a sufficient amount of free space,
a full collection of both P-region and NP-region is performed. If
enough unreachable objects are uncovered during a P-collection,
full collections will be infrequent. Objects remain in their respec-
tive regions after both P-region and full collections – i.e., unlike
generational collection, objects that survive a P-region (minor) col-
lection stay there and are not “promoted” to the NP-region. This
enables the compiler to eliminate unnecessary write barriers with a
relatively simple type check, as described in Section 3.2.3. Since
the survival rates of objects in the P-region are usually low, we ex-
pect the “pollution” of the P-region due to longer lived objects to
be insignificant.

To ensure that during a P-region (minor) collection no object
reachable from an object in the NP-region is collected, we have to
keep track of all pointers from objects in the NP-region to objects
in the P-region. This is accomplished by executing a write barrier
code for pointer assignments, which records such inter-region ref-
erences and places them in a write buffer. The contents of the write
buffer represents roots used in a P-region collection.
�
Our implementation does not perform this optimization.
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Table 1: The percentage of dynamic assignments into the refer-
ence fields of objects of prolific types

Benchmark % of ���������������
compress 53
db 1
jack 99
javac 42
jess 99
mpegaudio 63
mtrt 80
jbb 73

3.2.3 Eliminating Unnecessary Write Barriers with
Compile-Time Analysis

In the type-based collection, we do not move objects from the
P-region to the NP-region or vice versa. Hence, unnecessary write
barriers (other than those that keep track of references from the NP-
region to the P-region) can be eliminated at compile time based on
a simple type check. More specifically, given an assignment state-
ment where the pointer of an object of type source is assigned a
value corresponding to a pointer of an object of type target, we
express the condition for eliminating a write barrier as:

���! #"$ &%�')(+*),+- . /+021�(3-!*)4!576+�+ �8� +9�:;1)6�0!5�9)*+<
=?> /+021�(3-!*)@�6�%+4+576+�! �87 +9�:A(7')53B!*3(7<

(1)

Potential Opportunity. Table 1 shows the percentage of pointer
assignments into the reference fields of objects of prolific types,
i.e., those for which C 1&4!5763�! �8� +97:;136�0!5�9�*!< is true at run time.
These data were obtained by running SPECjvm98 benchmarks (with
size 100) and the SPECjbb2000 benchmark with the Jalapeño VM,
using the optimizing compiler and a non-copying generational col-
lector. The high percentages for all programs, except for db, show
that there is clearly a potential to eliminate a substantial percentage
of write barriers. Note that the numbers presented in Table 1 only
give an estimate regarding how many of the write barriers can be
eliminated (based on the C 1&4!576+�+ �8� +9�:;1)6�0!5�9)*+< part of the test).
The actual numbers may be lower due to language features like
polymorphism and dynamic class loading that introduce conserva-
tiveness in the compiler analysis.

Dealing with Polymorphism and Dynamic Class Loading We
use the approach described in Section 2.2 of ensuring that each
subclass of a prolific type is (artificially) regarded as prolific. This
leads to a simple compile-time test for eliminating write barriers,
which can be applied without worrying about any new classes that
may be dynamically loaded in the future. The test described in (1)
above is simplified to:

�7�! D"$ &%7')(!*),+- . C 1&E!*793�+')5+*3F34!5763�! �8� +97:;136�0!5�9�*!<
=?> /+021&(3-7*)@�6&%+4!576+�+ �8� +9�:A(!')5+B!*3(!<

(2)

3.2.4 Processing Fewer Pointers
In the type-based scheme, the number of pointers processed dur-

ing a P-region collection can be reduced: not all pointers stored in
objects that are scanned need to be examined.

During the P-region scanning process, for each object, the garbage
collector requests the list of reference fields. This list is created
when a class is loaded. Normally, the returned list contains all
such reference fields. Consequently, all such references are first
processed and then some of them (e.g., in a generational scheme,
those that point to young objects) are scanned. However, in the
type-based scheme, there is no need to return a complete list of ref-
erence fields to the collector during a P-region collection. Only the

Table 2: Many pointers scanned during garbage collection are
reference fields in object headers that point to type information
block (TIB) objects (i.e., type descriptors).

References Scanned
Benchmark # of TIB refs. # of all refs. % of TIB refs.

compress 8885294 28923650 30.719
db 1561864 2795719 55.866
jack 1446534 3796136 38.105
javac 4563270 14301008 31.908
jess 1940900 6551758 29.624
mpegaudio 409520 1421784 28.803
mtrt 2139610 3873905 55.231
jbb 2008508 5582408 35.979

references pointing to objects of prolific types have to be returned
(because object residing in the NP-region are only scanned during
a full collection). To support this optimization, the class loader
needs to provide to the collector with two different sets of methods
returning the lists of reference fields: one (returning a partial list)
for a P-region collection and one (returning a full list) for a full
collection. (Our current implementation does not perform this op-
timization yet. Therefore, the performance of our implementation
can be improved further.)

3.2.5 Avoiding Processing References to Type De-
scriptors

We will now discuss a special case of the optimization technique
presented in Section 3.2.4. Usually, one of the fields in an object
header points to a special object describing its type (or class) infor-
mation: a type descriptor. For example, in the Jalapeño VM, this
field points to a type information block (TIB) and is called a TIB
field. Table 2 provides data showing that a large fraction of scanned
pointers (28%-55% depending on the benchmark) are TIB pointers.
Scanning TIB pointers for every reachable object is not necessary
and can be avoided in the type-based scheme.

It is sufficient for only one object of a type to survive a collection
to ensure that the TIB of that object is scanned and marked as live.
The scanning of TIB fields in all other instances of that type is un-
necessary, although the garbage collector will realize after reaching
the TIB object that it has already been marked.

Since the number of distinct types is small, the number of TIB
objects representing them is also small. It follows that such objects
can be classified as instances of a non-prolific type and placed in the
NP-region. As a result, the TIB fields (which now point to the NP-
region) do not have to be examined during a P-region collection.

3.3 Discussion
The type-based approach, while similar to the generational ap-

proach in spirit, has some important differences.

G It involves pre-tenuring objects of non-prolific types into the
heap partition which is collected less often. These objects do
not need to be scanned during P-region (minor) collections.
However, we expect those savings to be limited because non-
prolific types, by their very nature, would not have occupied
a lot of space in the nursery.

G Objects of prolific types are never promoted to the heap par-
tition which is collected less often. This can be a double-
edged sword. If objects of prolific types live for a long time,
they can pollute the P-region, causing the scanning time to
increase during future minor collections.6 However, this ap-

H
Our experimental results show that the times for minor collections
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proach can also help avoid the negative side effects of pre-
mature promotion of young objects which are going to die
soon anyway (namely, executing more write barriers; drag-
ging more objects via write buffers into the old generation;
and requiring more major collections).

I The separation between the heap partitions is based on static
characteristics, i.e. the types of objects, rather than dynamic
characteristics such as their ages. This allows unnecessary
write barriers to be eliminated with a simple (and well-known
in the context of dealing with virtual methods) compile-time
analysis. This, apart from saving the direct overhead of exe-
cuting write barriers, can also help avoid adding unnecessary
objects to the write buffer, thus leading to fewer roots for mi-
nor collections, and potentially, more effective garbage col-
lection.

I During a P-region collection, only objects of prolific types
have to be scanned. As a result, reference fields that can
only point to objects of non-prolific types do not even need to
be examined. Fewer pointers to be examined translates into
shorter garbage collection pauses. This optimization is also
a consequence of the type-based nature of the division. It is
possible because in our scheme, the assignment of an object
to a separate region of collection depends only on the prolifi-
cacy of its type. This optimization cannot be performed in a
generational scheme in which a reference field can point to
either the nursery or the mature space; because the direction
of a pointer cannot be known without actually examining it,
all reference fields have to be checked for pointers into the
nursery.

The performance implications of these characteristics will be ex-
plored in Section 6.

4. USING SHORT TYPE POINTERS TO RE-
DUCE HEAP SPACE REQUIREMENTS

Each object in Java has an object header whose fields contain (or
refer to) various bookkeeping information used by the Java Virtual
Machine (JVM) and its components such as a garbage collector. A
typical object header occupies two machine words. For example,
in the Jalapeño VM, one of the fields in the object header, the sta-
tus field, is used to support garbage collection and synchronization.
The other field, the type field, is a class pointer and points to a spe-
cial object describing the type of the object in question. Since most
objects in Java programs are small (16-32 bytes),7 the eight-byte
object header carries 25%-50% space overhead. In this section, we
use the notion of prolific types to describe a short type pointer tech-
nique which in many cases allows us eliminate the pointer to a type
descriptor completely and reduce the length of the object header for
many objects drastically (e.g., in half, for two-word object headers).

4.1 Exploiting Prolific Types
Our technique takes advantage of three observations and reduces

the space requirements of Java applications. (The quantitative data
will be presented in Section 6.2.) First, objects of the same type
have the same pointer to a type descriptor. Second, only a handful
of object types (prolific types) generate most of the objects that
occupy most of the heap space. Third, objects of prolific types are

are, in fact, lower for our type-based collector than for a genera-
tional collector.J

We verified this by profiling more than a dozen of Java programs
from three different industry standard application suites. The data
on object sizes is presented later in this paper.

usually small. We will now show how to eliminate the pointer to
a type descriptor completely in many cases (for objects of prolific
types) by utilizing only a few bits in the status field, which are
usually available. Hence, the name – a short type pointer (STP).

A few bits, type bits, in the status field may be used to encode
the types of prolific objects. A special value, say all zeros, is used
to denote a non-prolific type. Given a maximum of K prolific types,
we need LNM&O!P)QRKTSVU&W bits for this encoding (e.g., X bits for KZY[U]\ ).
The JVM creates a type table with an entry for the class object for
each prolific type. Prolific objects no longer need a separate type
pointer in the object header.

In order to get the type descriptor of an object (for a virtual
method call or for an operation requiring a dynamic type check),
its type bits are examined. If they do not contain the special value
denoting a non-prolific type, the type bits are used to determine
an index into the type table, which yields the needed type descrip-
tor. Otherwise, the type descriptor is obtained via the type pointer
which is stored as usual in the object header for non-prolific ob-
jects.

4.2 Discussion
The discussed technique has a number of important advantages.

First, because no space is wasted for the pointer to the type descrip-
tor in the object header of commonly occurring (prolific) objects,
memory requirements of applications will be reduced noticeably.
Smaller memory footprint can lead to higher performance due to
better cache and page locality, and for long-running applications,
less frequent garbage collections.

Although some extra instructions have to be executed to deter-
mine the type of an object, this overhead should be extremely small
on modern superscalar processors. One of the extra instructions in-
troduced is a memory (load) instruction. However, since it loads
a reference from a very small type table which should fit in a few
cache lines, most of those memory loads will hit in the first level
cache. Furthermore, the frequency with which programs access
the pointer to a type descriptor (for virtual method calls and dy-
namic type checks) is usually quite small in optimized Java codes [35].

The short type pointer approach has several advantages over the
big bag of pages (BiBoP) technique [48] according to which ob-
jects of the same type are placed into the same page. While the
BiBoP technique avoids the need to store the type information in
any object, it has several disadvantages. First, since only objects of
a particular type can reside in one page, objects of different types
which point to each other cannot be allocated close to each other.
Hence, the BiBoP approach may reduce the data locality of appli-
cations. Second, the BiBoP approach leads to the problem of mem-
ory fragmentation, as memory pages allocated for objects of many
(non-prolific) types remain unfilled. Hence, this approach increases
the TLB miss rates in applications that employ many different types
of objects.

Interestingly, the notion of prolific and non-prolific types can be
used to alleviate the memory fragmentation problem of the BiBoP
technique by applying the BiBoP approach selectively and only
to objects of prolific types. Consequently, all non-prolific objects
would be co-allocated together. This would also reduce the TLB
miss rates in applications with many different object types.

5. OTHER APPLICATIONS
In this section, we discuss additional applications of the notion

of prolific and non-prolific types.

5.1 Object Recycling
Recycling dead objects is a technique that has often been used

explicitly by programmers. Recently, Brown and Hendren [11]

299



Table 3: The reduction of write barrier overhead.
Static count Dynamic count

% of WB eliminated # of write barriers executed # of ref. added to the write buffer
Benchmark optimized original optimized % elim. original optimized % elim.

compress 0.000 3514 3514 0 149 149 0
db 3.048 81440517 81407032 0 63 54 14.2
jack 0.840 29326975 20849265 28.9 3912 3775 3.5
javac 31.967 41026080 33728942 17.8 714812 603352 15.5
jess 15.838 30777556 8106063 73.7 1765 1602 10.2
mpegaudio 0.000 17436480 17436480 0 310 310 0
mtrt 17.187 9832002 3513591 64.3 1073 167 84.4
jbb 0.622 26740265 19967459 25.3 46707 8803 71.1

Table 4: Comparison of the best throughput results (collected in the GC timing run). Execution times are given in secs. for
SPECjvm98 programs (smaller is better) and throughput is given in ops/sec. for SPECjbb2000 (larger is better).

Non-Copying GC
Generational Non-Generational Type-Based

Benchmark Raw Raw Normalized w.r.t Raw Normalized w.r.t.
Generational GC (%) Generational GC (%)

compress 58.598 55.272 106.017 56.994 102.814
db 88.546 87.979 100.644 88.249 100.336
jack 51.619 52.478 98.363 50.732 101.748
javac 53.369 47.349 112.714 52.171 102.296
jess 31.728 34.813 91.138 31.122 101.947
mpegaudio 27.121 26.974 100.544 26.785 101.254
mtrt 22.485 23.239 96.755 22.975 97.867
jbb 1137.590 1119.240 98.386 1171.350 102.967

have discussed automating this technique using sophisticated whole-
program interprocedural flow analysis. We propose a simpler ap-
proach that may capture many of the benefits.

As discussed earlier, objects of prolific types tend to have short
lifetimes and account for most of the collectible garbage during
program execution. Since most of the objects allocated in a pro-
gram are of prolific types, it is worthwhile to recycle dead prolific
objects by placing them into a special free pool instead of returning
them to a general free pool. A special free pool is simply a linked
list of free, not necessarily contiguous, objects of a particular type.
Picking an object from such a pool requires a much shorter instruc-
tion sequence than allocating an object of arbitrary size. Hence, re-
cycling of prolific objects can lead to more efficient allocation, es-
pecially with support for specialization of the allocation site based
on the object type.

5.2 Object Co-allocation
Object co-allocation is known to have a positive impact on the

performance of programs with heap allocated data [13, 14]. The
problem is that it is usually very difficult to decide which objects
should be co-allocated together. In this section, we will discuss a
simple technique in which the knowledge of which types are pro-
lific and which are non-prolific is used to drive object co-allocation
decisions.

Considering our classification of objects into instances of prolific
and non-prolific types, we argue that objects of prolific types should
be allocated together with other objects of prolific types. First, in
looking for instances of objects which are likely to be accessed
together (such as objects connected via reference fields), there is
a greater chance of a one-to-one relationship between objects of
prolific types than between prolific and non-prolific objects (since
there are many more prolific objects than non-prolific objects). Sec-
ond, given the larger number of objects of prolific types, greater
performance benefit may be achieved by focusing the effort on co-

allocating prolific objects. We are investigating the effectiveness of
this approach further [34].

6. EVALUATION
In this section, we provide an evaluation of our type-based mem-

ory management approach, based on an implementation in the Jalapeño
VM [2]. We also provide a preliminary evaluation of the poten-
tial memory reduction from the STP technique, ahead of an ac-
tual implementation. We studied applications from the industry
standard SPECjvm98 benchmark suite [37] and the SPECjbb2000
benchmark [38]. The SPECjbb2000 benchmark, which we refer
to as jbb, is based on the pBOB (portable business object bench-
mark) [8], which follows the business model of the TPC-C bench-
mark [43] and measures the scalability and throughput of the JVM.
We used the largest data set size (set to 100) to run SPECjvm98
applications.

6.1 Type-Based Memory Management
We now describe our implementation in the Jalapeño VM and

the experimental results.

6.1.1 Implementation
The Jalapeño VM supports a number of different garbage collec-

tors in different configurations of the VM. We implemented our
type-based scheme by making several modifications to the non-
copying generational garbage collector, which we found the sim-
plest to start with.

Execution Modes. We modified the Jalapeño VM to introduce two
modes of execution. In the profiling mode, the allocation profile is
collected. In the production mode, the allocation profile collected
in the profiling run is used by the memory allocator and garbage
collector to implement type-based heap management, and by the
compiler to optimize away unnecessary write barrier code.
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Table 5: Garbage collection statistics. Execution times are given in seconds.
Non-copying GC Type-Based

# of GCs GC Time P-region col. pause time Full col. pause time
Benchmark P-region Full Total P-region Full Total Min Max Min Max

compress 2 94 96 0.184 50.935 51.120 0.068 0.121 0.531 0.631
db 14 3 17 5.041 2.682 7.724 0.150 0.172 0.590 1.061
jack 64 9 73 8.682 5.724 14.406 0.101 0.455 0.592 0.674
javac 28 31 59 20.845 46.723 67.569 0.232 0.815 0.595 1.935
jess 56 11 67 7.006 7.667 14.674 0.111 0.208 0.639 0.769
mpegaudio 1 2 3 0.177 1.222 1.400 0.179 0.179 0.592 0.634
mtrt 30 5 35 8.419 4.378 12.798 0.126 0.674 0.877 1.170
jbb 10 5 15 3.497 4.911 8.409 0.266 0.572 0.658 1.344

Non-copying GC Generational
# of GCs GC Time Minor col. pause time Major col. pause time

Benchmark Minor Major Total Minor Major Total Min Max Min Max

compress 2 94 96 0.193 55.786 55.979 0.102 0.142 0.604 0.756
db 14 3 17 5.314 2.967 8.282 0.180 0.186 0.661 1.202
jack 64 9 73 9.180 6.228 15.408 0.130 0.490 0.661 0.743
javac 53 38 91 17.468 62.253 79.721 0.250 0.913 0.672 2.119
jess 57 11 68 7.417 8.280 15.697 0.137 0.234 0.717 0.843
mpegaudio 1 2 3 0.183 1.313 1.497 0.209 0.209 0.660 0.703
mtrt 27 5 32 8.728 4.223 12.952 0.169 0.766 0.660 1.043
jbb 10 5 15 3.751 5.373 9.125 0.304 0.641 0.726 1.600

Non-copying GC
# of GCs GC Time Minor col. pause time Major col. pause time

Benchmark Minor Major Total Minor Major Total Min Max Min Max

compress . 96 96 . 45.563 45.563 . . 0.436 0.505
db . 14 14 . 10.710 10.710 . . 0.448 0.826
jack . 62 62 . 31.271 31.271 . . 0.436 0.619
javac . 58 58 . 46.948 46.948 . . 0.436 1.080
jess . 64 64 . 36.630 36.630 . . 0.439 0.689
mpegaudio . 3 3 . 1.398 1.398 . . 0.435 0.488
mtrt . 26 26 . 19.018 19.018 . . 0.435 0.874
jbb . 11 11 . 9.137 9.137 . . 0.447 0.963

Allocator and Collector. In the profiling mode, the memory allo-
cator monitors all allocation requests, collects a type profile, and
produces a file with the profile information, including class hier-
archy information. In the production mode, the memory allocator
uses the previously collected type profile to make allocation de-
cisions. Also, in the production mode, the garbage collector re-
peatedly collects space occupied by dead objects of prolific types
(P-region collections). When only a small portion of memory is
freed, it collects the entire heap (full collections).

Write Barriers. We have made modifications to the write barrier
code to ensure that the write barriers work appropriately for our
type-based approach. We also modified the Jalapeño optimizing
compiler to eliminate unnecessary write barriers during the pro-
duction run of a program. The compiler analysis to identify un-
necessary write barriers is based on the simplified test shown in
Equation (2).

6.1.2 Experimental Results
Our experiments were performed on an RS/6000 system with a

333 MHz PowerPC 604e processor and 768 MB of memory. For
all SPECjvm98 benchmarks, we used a 64 MB heap, except for
javac (80 MB). The jbb program ran with a 128 MB heap.

Reducing the Overhead of Write Barriers Table 3 demonstrates
the effect of our write barrier elimination technique on reducing
the overhead associated with execution of write barriers. Each
SPECjvm98 program ran through three iterations. The jbb bench-
mark ran for two minutes after the initial ramp up stage.

For some benchmarks, the fraction of sites at which write bar-
riers have been eliminated is fairly small (column 2). For others,
it is quite significant and ranges from 15% to 32%. The number
of write barriers eliminated at compile time does not translate lin-
early to the number of write barriers eliminated at run time (column
5). It can be seen that the programs that are amenable to our op-
timization execute 18%-74% fewer write barriers, which improves
the throughput of these programs. Interestingly, a comparison with
data presented in Table 1 suggests that there is a considerable po-
tential for eliminating more write barriers by using more precise
compiler analysis. In those programs, 3%-84% fewer entries are
added to the write buffer for processing (column 8), which reduces
the GC pauses and reduces the pollution of the heap. Benchmarks
like compress and mpegaudio do not allocate a lot of objects
which could be classified as instances of prolific types. Conse-
quently, on these benchmarks, we are not able to eliminate write
barriers. In db, most of the pointer assignments were to a few large
arrays of references (which were classified as non-prolific) used for
sorting data. As a result, the reduction of write barrier overhead for
that benchmark is insignificant.

Performance and Throughput of Applications Table 4 shows
the execution times of SPECjvm98 applications and the through-
put of SPECjbb200 benchmark under the Jalapeño VM built
with different garbage collectors (GC): our non-copying type-
based GC, the non-copying generational GC, and the non-copying
(non-generational mark-and-sweep) GC. Interestingly, our scheme
yields the highest throughput numbers on three benchmarks, most
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Figure 1: Normalized GC times of the type-based GC (with
respect to the generational GC).
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notably jack and jbb.
Compared to the generational GC, our scheme performs up to

3% better on all benchmarks, except for mtrt where the through-
put is 2% worse. (We believe this anomaly is due to data locality
effects and are investigating this further.) This is an encouraging
result, suggesting that our scheme can improve the throughput of
applications in systems where the generational GC is used.

Compared to the non-generational non-copying GC, our scheme
performs noticeably better (by almost 12%) on jess, and some-
what better on jack, mtrt and jbb on which it shows a 1.5%-
4.7% improvement. The non-generational GC performs better than
our scheme on compress, db, and mpegaudio, probably be-
cause these programs do not generate a lot of objects. This program
behavior limits the opportunities where our optimizations can ap-
ply.

Garbage Collection Statistics. Table 5 shows the benefits
of our technique for garbage collection. The data was collected
during performance runs for which the data was presented above.
Compared to the non-copying generational collector, our scheme
has fewer garbage collections during the execution of javac and
jess. Interestingly, on javac, the number of both P-region and
full collections (compared to minor and major collections in the
generational scheme) is reduced. On mtrt, the number of P-
region collections went up slightly. On all other benchmarks, the
number of collections is the same. Overall, except for the “atypi-
cal” Java benchmarks like compress and mpegaudio, both the
type-based and the generational collectors have a higher number
of collections than the non-generational GC (which is expected).
However, the number of expensive full collections is significantly
smaller in the type-based scheme (and in the generational scheme)
compared to the non-generational GC. This is done at the “ex-
pense” of performing more frequent, less-costly P-region (minor)
collections.

Compared to the generational scheme, the type-based GC spends
less time collecting the P-region. The javac program is an excep-
tion. For this benchmark, the average time spent on collecting the

P-region is approximately twice as much as the time spent on col-
lecting the nursery in the generational scheme. At the same time,
the average time spent on collecting the whole heap is noticeably
less (25%). Although the type based-scheme executes more inex-
pensive collections than the generational scheme during the execu-
tion of the mtrt benchmark, its average time for collecting young
objects is smaller. With exception of mtrt, the total time spent
on collecting the whole heap is smaller in the type-based scheme
than in the generational GC. Finally, for all benchmarks, the to-
tal time spent on garbage collection is smaller in the type-based
scheme compared to the generational GC. The improvements range
from 1.2% to 15.2%, with an average improvement of 7.4%. Short
average GC times is an attractive characteristic of the type-based
scheme.

Both the minimum and maximum GC pauses during collection
of young and all objects are shorter in the type-based scheme than
those exhibited by the generational GC. This observation is im-
portant since short GC pauses is a critical requirement for some
systems. The mtrt program is an exception where the maximum
pause time for a full collection is slightly longer.

6.2 Short Type Pointers
In order to evaluate the potential benefits of the short type pointer

(STP) technique before implementing this scheme, we instrumented
the Jalapeño VM. We present the data we obtained, which serves
as a preliminary evaluation. In addition to the SPECjvm98 and
SPECjbb2000 benchmarks, we selected applications from the Java
Grande suite for this study.

Table 6 presents various information about all objects as well as
the number of types of prolific scalar and array objects. It can be
seen that the number of prolific types is very small. Usually, there
are less than 16 of them. This implies that we will need only 4 bits
to encode interesting prolific types. Figures 2 and 3 illustrate that
most of the objects are instances of prolific types and that instances
of prolific types consume much of heap space, respectively.

Figure 4 depicts the average sizes of all objects as well as the
sizes of prolific scalar and array objects. Object sizes include the
sizes of object headers: 8 bytes for scalar and 12 bytes for array
objects. It appears that prolific array objects are often twice bigger
than prolific scalar objects. Interestingly, the average size of prolific
scalar objects (PSO) in non-scientific applications ranges from 16
to 27 bytes while in scientific applications the sizes of PSO range
from 30 to 39 bytes. This difference in sizes is partially due to a
frequent use of double types in scientific programs and a large num-
ber of instance fields in some prolific objects. For objects that are
16-32 bytes long, one four-byte type pointer carries a considerable
12.5%-25% space overhead.

Table 7 shows how much space can be saved by shortening object
headers in prolific objects. Eliminating the type pointer from the
headers of prolific scalar objects (PSO) leads to 10%-25% reduc-
tion of space occupied by PSO. The same technique applied to the
headers of prolific array objects (PAO), results in somewhat smaller
(8%-16%) reduction of space occupied by PAO. Larger sizes of
PAO contribute to this difference.

As can be seen from the data in Table 7, most of the savings come
from shortening the headers of PSO. This is due to the fact that
PSO consume much of the heap space but tend to be smaller than
PAO. For some programs (e.g., jack, jbb, search), short-
ening headers of prolific arrays is also beneficial. Programs like
compress and montecarlo which allocate huge arrays will
not benefit from smaller object headers. Overall, 9%-16% of heap
space can be saved by eliminating the type pointer from the headers
of prolific objects (both arrays and scalars). Figure 5 illustrates the
data presented in Table 7.
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Table 6: Basic characteristics of SPECjvm98, SPECjbb2000, and Java Grande benchmarks.
All Objects # of Prolific Types

Benchmark # of Instances Space Aver. Size Scalar Arrays
compress 2318291 1241294165 535 12 2
db 35803659 879328007 24 3 1
jack 91557185 3398711330 37 7 6
javac 84072706 2602769995 30 9 2
jess 85505057 2938589866 34 5 2
mpegaudio 3571666 106567458 29 14 2
mtrt 65782126 1488212740 22 8 1
jbb 33319753 893288468 26 11 6
euler 16699233 650826152 38 2 -
montecarlo 2894017 1807520655 624 13 6
raytracer 66680479 219480438 30 2 -
search 35258805 1544528206 43 - 1

Table 7: Heap space reduction as a result of shortening object headers in prolific scalar objects and prolific array objects.
Prolific scalar objects (PSO) Prolific array objects (PAO) Total space reduction (PSO + PAO)

Benchmark % of PSO space % of All space % of PAO space % of All space % of All space

compress 17.87 0.48 9.53 0.06 0.54
db 24.52 14.40 10.86 0.77 15.17
jack 17.10 5.60 15.72 5.66 11.26
javac 20.25 6.08 8.91 2.87 8.95
jess 14.67 7.45 8.20 3.57 11.02
mpegaudio 16.98 8.93 9.46 1.15 10.08
mtrt 19.81 15.45 10.00 0.42 15.87
jbb 17.53 7.76 10.00 4.03 11.79
euler 10.17 9.41 - - 9.41
montecarlo 12.81 0.32 0.21 0.20 0.52
raytracer 13.20 12.87 - - 12.87
search - - 9.06 8.93 8.93

Figure 2: Most of the objects are instances of prolific types.
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Figure 3: Most of the heap space is consumed by instances of
prolific types.
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Figure 4: Average sizes of prolific and all objects.
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7. RELATED WORK
The notion of “hot regions” in a program, wherein a program

spends much of its execution time in small sections of code, is
well-known. However, we are not aware of any previous work that
applies the analogous idea in the context of different object types.

Garbage collection Jones and Lins [28] present a comprehen-
sive overview of various memory allocation and garbage collection
strategies. Surveys by Wilson [48], and Wilson, Johnstone, and
others [49], discuss uniprocessor garbage collection and dynamic
memory allocation algorithms, respectively.

Exploitation of object lifetimes for garbage collection has been
investigated extensively. The key observation that the lifetime of
many objects is short was reported as early as 1976 [18]. This in-
sight then led to the formulation and exploitation of the weak gen-
erational hypothesis [45] which states that most objects die young.
This hypothesis forms the basis of generational garbage collec-
tion [29, 6]: focus on reclaiming objects that are most likely to
die, i.e., young objects.

Stefanovic et al. have investigated alternatives to the traditional
young-first generational collectors [39]. They propose age-based
garbage collection [40] algorithms, some of which use an older-first
collector that collects older objects before the younger ones. This
approach primarily reduces copying costs over the traditional gen-
eration collectors. Both the age-based and traditional generational
collectors follow the same philosophy: both use age as a criterion
for identifying objects for collection (young objects in generational
and old objects in age-based collectors). On the contrary, our type-
based garbage collector uses the prolificacy of object types as the
criterion for identifying prospective moribund objects.

Experimental studies by Zorn [50], and Tarditi and Diwan [42]
have shown that the cost of generational garbage collection is be-
tween 5% to 20%. Generational collectors usually segregate heap
objects by their age. However, substantial performance improve-
ment can be achieved by allocating large objects in a separate non-
copy region, usually termed as large object space(LOS) [12]. Iden-

Figure 5: Reduction of heap space requirements.
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tification of large objects can be an absolute measure (e.g., more
than 1024 bytes [46] or 256 bytes [27]) or a relative one (i.e., iden-
tify the object type whose instances occupy substantial space [25]).
Many recent generation collection implementations use the LOS
for storing large objects [23, 2].

The cost of write barriers is also significant, especially for pointer-
intensive applications [42]. While there have been several efforts
for improving the write barrier performance [24, 25], we did not
come across any work that eliminates write barriers via static compile-
time analysis.

Previous studies have investigated off-line feedback-driven ap-
proaches for segregating objects using criteria such as object life-
time and reference behavior. Barrett and Zorn [7] use full-run pro-
files on allocation-intensive C programs to predict short-lived ob-
jects, place them contiguously and delay their deallocation until
large 4KB batches become free. Seidl and Zorn [31] propose par-
titioning heap for storing objects according to their reference be-
havior (the frequently vs. infrequently referenced objects) and life-
times (short-lived vs. long-lived) objects. Blackburn et al. describe
profile-driven technique for reducing copying by pre-tenuring long-
lived objects, i.e., storing long-lived objects in an uncollected re-
gion [9]. Recently, Harris [22] has presented a dynamic technique
in which selection of objects for pre-tenuring is performed at run-
time.

Stefanovic et al. [41] describe analytical models for object life-
times in object-oriented programs. Appel [3] has proposed that a
plausible object lifetime distribution should use the following prop-
erty: the expected future lifetime of an object is proportional to its
current age.

Reducing space requirements We have compared the STP ap-
proach with the big bag of pages (BiBoP) technique in Section 4.2.
The STP approach is different from the techniques aimed at pro-
ducing compact code for embedded processors [30, 15], in that
it reduces memory consumed by data rather than code. It is also
different from the hardware-based techniques for compressing the
contents of main memory [44].
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A technique for delayed allocation of infrequently accessed or
cold objects, a construction on demand, which aims to reduce space
occupied by cold objects was suggested in [35].

Object recycling Bonwick [10] describes a slab allocator, a ker-
nel memory allocator that reduces the cost of allocating complex
objects by retaining the state of those objects between their uses.
On the other hand, we consider object recycling of prolific objects
in the context of a Java Virtual Machine.

Recently, Brown and Hendren [11] proposed an “object recy-
cling mechanism” and implemented it as an automatic compiler op-
timization in the Soot Java optimization framework. Their compiler
performs a conservative local program analysis to identify dead
Java objects (and return them to per-class object pools) and trans-
forms a program to recycle dead objects (from the object pools)
instead of creating new ones.

Object co-allocation Object co-allocation at allocation time, based
on hints supplied by the programmer, was reported by Chilimbi et
al in [13]. Object co-allocation at garbage collection time was de-
scribed in [14]. Object inlining was proposed by Dolby et al. in [19,
20].

8. CONCLUSIONS
We introduced a new framework of prolific and non-prolific types

based on the number of instances of those types. This type-based
rather than age-based framework serves as the foundation for sev-
eral techniques that aim to improve memory management and data
locality of programs with dynamic memory allocation.

We have presented a new type-based approach to garbage collec-
tion. Our approach directs the frequent collections towards objects
of prolific types, much like generational collection directs them to-
wards young objects. This leads to some important advantages over
generational collection – fewer write barriers, potentially more ef-
fective collections, need to scan fewer pointers, and lower copying
costs (the last one not verified yet, because our current implemen-
tation only performs non-copying collection).

With a preliminary implementation of this approach in the Jalapeño
VM, we have observed significant improvements over the gener-
ational collector. For the SPECjvm98 and SPECjbb2000 bench-
marks, the number of dynamically executed write barriers is re-
duced by 18% to 74% (except for three programs, for which there
is no reduction). The total garbage collection times are reduced
by an average of 7.4% over all benchmark programs. The overall
performance improves modestly for most programs.

Based on the same framework, we have presented a technique for
reducing the memory requirements of object-oriented applications.
The technique is based on the observations that objects of the same
type have the same type information pointer and that the number
of prolific types is very small. The basic idea is to eliminate type
pointers from the headers of prolific objects (which tend to be small
and occupy much of the heap space) and to encode the types of pro-
lific objects using only a few bits instead. The empirical data we
collected shows that when applied to twelve Java programs (from
SPECjvm98, SPECjbb200, and the Java Grande suites of applica-
tions) representing a variety of workloads, this technique can save
9%-16% of heap space.

Finally, we presented the use of prolific types for recycling and
co-allocation of objects. The former approach is based on the ob-
servation that most of the dead objects are those of prolific types
and attempts to recycle them instead of returning them to the main
free pool. The latter approach is based on the idea that an object of
a prolific type is likely to be referenced through another object of
prolific type.

9. FUTURE WORK
This work opens up a number of interesting possibilities for fu-

ture research. We plan to implement and measure the impact of
the short type pointer technique on program performance and on
the frequency of garbage collections. We also plan to investigate
the impact of object recycling and object co-allocation techniques
discussed in this paper on locality and performance [34].

Another interesting direction would be to investigate a more dy-
namic version of our automatic memory management approach,
where the detection of prolific types is done during program ex-
ecution in an adaptive manner. Changing the status of a type from
prolific to non-prolific, or vice versa, would require selective re-
compilation of sections of code where write barriers may have been
eliminated based on the older classification of types (we do not an-
ticipate a need to undo the effect of a previously eliminated write
barrier, as long as the existing objects are not moved across their
respective regions).

It would also be interesting to develop a copying version of our
type-based collector. This would also involve allocating objects of
prolific and non-prolific types in distinct regions of memory, which
will have a further impact on the data locality characteristics.

Designing and implementing a hybrid scheme, which combines
the characteristics of both type-based and age-based approaches, is
another interesting direction for future research. We are investigat-
ing the effectiveness of this approach further [33].
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