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1. Introduction and Previous Work 

List processing systems such as LISP [25] have slowly 
gained popularity over the years in spite of  some rather 
severe handicaps. First, they usually interpreted their 
programs instead of  compiling them, thus increasing 
their running time by several orders of  magnitude. Sec- 
ond, the storage structures used in such systems were 
inefficient in the use of  storage; for example, compiling 
a program sometimes halved the amount  of  storage it 
occupied. Third, processing had to be halted periodically 
to reclaim storage by a long process known as garbage 
collection, which laboriously traced and marked every 
accessible cell so that those inaccessible cells could be 
recycled. 

That  such inefficiencies were tolerated for so long is 
a tribute to the elegance and productivity gained by 
programming in these languages. These languages freed 
the programmer  from a pr imary concern: storage man- 
agement. The programmer  had only to call CONS (or its 
equivalent) to obtain a pointer to a fresh storage block; 
even better, the programmer  had only to relinquish all 
copies of  the pointer and the storage block would auto- 
matically be reclaimed by the tireless garbage collector. 
The programmer  no longer had to worry about prema- 
turely freeing a block of  storage which was still in use by 
another part  o f  the system. 

The first problem was solved with the advent of  good 
compilers [27, 32] and new languages such as S IMULA 
especially designed for efficient compilation [1, 5, 14]. 
The second was also solved to some extent by those same 
compilers because the user programs could be removed 
from the list storage area and freed from its inefficient 
constraints on representation. 1 Other techniques such as 
compact list representation ("CDR-coding")  [12, 19] 
have been proposed which also offer partial solutions to 
this problem. 

This paper  presents a solution to the third problem 
of  classical list processing techniques and removes that 
roadblock to their more general use. Using the method 
given here, a computer  could have list processing prim- 
itives built in as machine instructions and the program- 
mer  would still be assured that each instruction would 
finish in a reasonable amount  of  time. For example, the 
interrupt handler for a keyboard could store its charac- 
ters on the same kinds of  l is ts--and in the same storage 
a r ea - - a s  the lists of  the main program. Since there would 
be no long wait for a garbage collection, response time 
could be guaranteed to be small. Even an operating 
system could use these primitives to manipulate its bur- 
geoning databases. Business database designers no longer 
need shy away from pointer-based systems for fear that 
their systems will be impacted by a week-long garbage 
collection! As memory  is becoming cheaper, 2 even mi- 
crocomputers could be built having these primitives, so 

In many cases, a rarely used program is compiled not to save 
time in its execution, but to save garbage-collected storage space. 

2 Work is progressing on 106 bit chips. 
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that the prospect of  controlling one's kitchen stove with 
LISP is not so far-fetched. 

A real-time list processing system has the property 
that the time required by each of  the elementary opera- 
tions is bounded by a constant independent of  the num- 
ber of  ceils in use. This property does not guarantee that 
the constant will be small enough for a particular appli- 
cation on a particular computer, and hence has been 
called "pseudo-real-time" by some. However, since we 
are presenting the system independent of  a particular 
computer and application, it is the most that can be said. 
In all but the most demanding applications, the proper 
choice of  hardware can reduce the constants to accepta- 
ble values. 

Except where explicitly stated, we will assume the 
classical Von Neumann serial computer architecture with 
real memory in this paper. This model consists of  a 
memory, i.e., a one-dimensional array of  words, each of  
which is large enough to hold (at least) the representation 
of a nonnegative integer which is an index into that 
array; and a central processing unit, or CPU, which has 
a small fixed number of  registers the size of  a word. The 
CPU can perform most operations on a word in a fixed, 
bounded amount of  time. The only operations we require 
are load, store, add, subtract, test if zero, and perhaps 
some bit-testing. It is hard to find a computer today 
without these operations. 

As simple as these requirements are, they do exclude 
virtual memory computers. These machines are interest- 
ing because they take advantage of  the locality of  refer- 
ence effect, i.e. the nonzero serial correlation of  accesses 
to memory, to reduce the amount of  fast memory in a 
system without greatly increasing the average access 
time. However, the time required to load a particular 
word from virtual memory into a CPU register is not 
bounded because the primary memory may have to fetch 
it from a lower level memory. Since we are more inter- 
ested in tight upper bounds, rather than average perform- 
ance, this class of  machines is excluded. 

Since the primary list processing language in use 
today is LISP, and since most of  the literature uses the 
LISP paradigm when discussing these problems, we will 
continue this tradition and center our discussion around 
it. Due to its small cells, which consist of  2 pointers 
apiece, LISP is also a kind of  worst case for garbage 
collection overhead. 

There are two fundamental kinds of  data in LISP: 
list cells and atoms. List cells are ordered pairs consisting 
of  a car and a cdr, while atoms are indecomposable. 
ATOM(x)  is a predicate which is true if and only if x is 
an atom (i.e. if and only if x is not a list cell); EQ(x, y )  
is a predicate which is true if and only if  x and y are 
the same object; CAR(x)  and CDR(x)  return the car 
and cdr components of  the list cell x, respectively; 
CONS(x,  y)  returns a new list cell (not EQ to any other 
accessible list cell) whose car is initially x and whose cdr 
is initially y; RPLACA(x,  y)  and RPLACD(x,  y)  store 
y into the car and cdr of  x, respectively. We assume here 
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that these seven primitives are the only ones which can 
access or change the representation of  a list cell. 

There have been several attempts to tackle the prob- 
lem of real time list processing. Knuth [22, p. 422] credits 
Minsky as the first to consider the problem, and sketches 
a multiprogramming solution in which the garbage col- 
lector shares time with the main list processing program. 
Steele's paper [30] was the first in a flurry of  papers 
about multiprocessing garbage collection which included 
contributions by [16, 17] and [23, 24]. [28] independently 
detailed the Minsky-Knuth-Steele method, and both [28] 
and [33] analyzed the time and storage required to make 
it work. 

The  Minsky  - K n u t h  - Steele - Mul le r -  Wad le r  
(MKSMW) method for real-time garbage collection has 
two processes running in parallel. The list processor 
process is called the mutator while the garbage collector 
is called the collector (these terms are due to [16]). The 
mutator executes the user's program while the collector 
performs garbage collection over and over again. The 
collector has three phases: mark, sweep, and relocate. 
During the mark phase, all accessible storage is marked 
as such, and any inaccessible storage is picked up during 
the sweep phase. The relocate phase relocates accessible 
cells in such a way as to minimize the address space 
required. Since the mutator continues running while the 
mark and relocate phases proceed, the free list must be 
long enough to keep the mutator from starvation. During 
the sweep phase, cells must be added to the free list faster 
than they can be taken off, on the average, lest the net 
gain in cells from that garbage collection cycle be nega- 
tive. 

The behavior of  this algorithm under equilibrium 
conditions (which is when a cell is let go for every cell 
CONSED, and when the rates of  cell use by the mutator, 
and of  marking, sweeping, and relocating by the collec- 
tor, are all constant) was studied in [28] and [33]. If  we 
let m be the ratio of  the rate of  CONSING to that of  
marking, s be the ratio of  the rate of  CONSlNG to that of  
sweeping, and r be the ratio of  the rate of  CONSING to 
that of  relocating, then we can derive estimates of  the 
size of  storage needed to support an accessible population 
of  N cells under equilibrium conditions? Using these 
assumptions, we derive: 

Maximum MKSMW Storage Required 
m + ( m +  1 ) ( r +  1) 

<--. N + size of  collector stack 
1 - s ( r +  1) 

We note that r = 0 if there is no relocation (i.e. it 
happens instantaneously), in which case we have the 
simpler expression: 

Maximum MKSMW Storage Required 
1 + 2 m  

----- N - -  + size of  collector stack 
l - - s  

The collector stack seems to require depth N to 
handle the worst case lists that can arise, but each 

a Of course s < 1, or else the storage required is infinite. 
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position on the stack need only hold one pointer. Since 
a LISP cell is two pointers, the collector stack space 
requirement is 0.5N. Thus, we arrive at the inequality: 

Maximum MKSMW Storage Required 
1 . 5 + 2 m - . 5 s  

--<N- 
1 - - s  

These estimates become bounds for nonequilibrium 
situations so long as the ratios of  the rate of CONSING to 
the rates of  marking, sweeping, and relocating are con- 
stant. In other words, we relativize the rates of  marking, 
sweeping, and relocating with respect to a CONS counter 
rather than a clock. 

The Dijkstra-Lamport (DL) method [16, 17, 23, 24] 
also has the mutator and collector running in parallel, 
but the collector uses no stack. It marks by scanning all 
of  storage for a mark bit it can propagate to the marked 
cell's offspring. This simple method of  garbage collection 
was considered because their main concern was proving 
that the collector actually collected only and all garbage. 
Due to its inefficiency, we will not consider the storage 
requirements of  this method. 

Both the MKSMW and the DL methods have the 
drawback that they are parallel algorithms and as a 
result are incredibly hard to analyze and prove correct. 
By contrast, the method we present is serial, making 
analyses and proofs easy. 

2. The Method 

Our method is based on the Minsky garbage collec- 
tion algorithm [26], used by Fenichel and Yochelson in 
an early Multics LISP [18], elegantly refined in [11], and 
applied by Arnborg to SIMULA [1]. This method divides 
the list space into two semispaces. During the execution 
of  the user program, all list cells are located in one of  the 
semispaces. When garbage collection is invoked, all ac- 
cessible cells are traced, and instead of  simply being 
marked, they are moved to the other semispace. A for- 
warding address is left at the old location, and whenever 
an edge is traced which points to a cell containing a 
forwarding address, the edge is updated to reflect the 
move. The end of  tracing occurs when all accessible cells 
have been moved into the "to" semispace (tospace) and 
all edges have been updated. Since the tospace now 
contains all accessible cells and the "from" semispace 
(fromspace) contains only garbage, the collection is done 
and the computation can proceed with CONS now al- 
locating cells in the former fromspace. 

This method is simple and elegant because 1) it 
requires only one pass instead of  three to both collect 
and compact, and 2) it requires no collector stack. The 
stack is avoided through the use of  two pointers, B and 
S. B points to the first free word (the bottom) of  the free 
area, which is always in the tospace. B is incremented by 
COPY, which transfers old cells from the fromspace to 
the bottom of  the free area, and by CONS, which 
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allocates new cells. S scans the cells in tospace which 
have been moved, and updates them by moving the cells 
they point to. S is initialized to point to the beginning of  
tospace at every flip of  the semispaces and is incremented 
when the cell it points to has been updated. At all times, 
then, the cells between S and B have been moved, but 
their cars and cdrs have not been updated. Thus when 
S = B all accessible ceils have been moved into tospace 
and their outgoing pointers have been updated. This 
method of  pointer updating is equivalent to using a 
queue instead of  a stack for marking, and therefore 
traces a spanning tree of  the accessible cells in breadth- 
first order. 

Besides solving the compaction problem for classical 
LISP, the Minsky-Fenichel-Yochelson-Cheney-Arnborg 
(MFYCA) method allows simple extensions to handle 
nonuniformly sized arrays and CDR-coding because free 
storage is kept in one large block. Allocation is therefore 
trivial; one simply adds n to the "free space pointer" to 
allocate a block of  size n. 

Copying garbage collectors have been dismissed by 
many as requiring too much storage for practical use 
(because they appear to use twice as much as classical 
LISP), but we shall see that this judgement was, perhaps, 
premature. 

We present the MFYCA algorithm here in pseudo- 
Algol-BCPL notation. The notation "a[fl]" means the 
contents of  the word whose address is the value of  a plus 
the value offl ,  i.e. the contents of  a + B. I f  it appears on 
the left hand side of  ":=", those contents are to be 
changed. Thus, p[/] refers to the ith component of  the 
vector pointed to by p. The function size(p) returns the 
size of  the array pointed to by p. The notation "a  & fl" 
is similar to the notation "a; fl" in that a and fl are 
executed in order; however, "a  & fl" returns the value of  
a rather than the value of  ft. Thus, ";" and "&" are the 
duals of  one another: "al; a2; ..., an" returns the last 
value (that of  an) whereas "'al & a2 & ... & an" returns 
thefirst value (that of  al). 

Our conventions are these: the user program has a 
bank of  NR registers R[ 1 ] . . . . .  R[NR]. The user program 
may not "'squirrel away" pointers outside o f  the bank R 
during a call to CONS because such pointers would 
become obsolete if garbage collection were to occur. (We 
will show later how to deal with a user program stack in 
such a way that the real-time properties of  our system 
are not violated.) Pointers either are atoms or refer to 
cons cells in fromspace or tospace. A cons cell c is 
represented by a 2-vector of  pointers: car(c) = c[0], 
cdr( c) = c[1]. FLIP, F R O M S P A C E  and TOSPACE are 
implementation-dependent routines. FLIP interchanges 
the roles of  fromspace and tospace by causing CONS 
and C O P Y  to allocate in the other semispace and the 
predicates F R O M S P A C E  and TOSPACE to exchange 
roles. FLIP  also has the responsibility of  determining 
when the new tospace is too small to hold everything 
from the fromspace plus the newly consed cells. Before 
flipping, it checks if size(fromspace) is less than 
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% The Minsky-Fenichel-Yoehelson-Chaeney-Arnborg [26, 18, 11, 1 ] Garbage Collector 
pointer B; % Bottom; points to bottom of free area. % 
pointer S; % Scan; points to first untraced cell. % 
pointer/~, % Top; points to top of tospace. % 

% Assertions: S <-- B < T and T - B is even. % 
pointer procedure CONS(x, y) --- % Allocate the list cell (x.y). % 

begin 
if B =  T 

then 
begin 

flip( ); 
for i = 1 to NR 

do R[i]:= move (R[i]); 
x := move(x); y := move(y); 
while S < B 

do begin 
S[~] := move(S[~); 
S[I] := move(S[l]); 
S : = S + 2  

end 
end; 

if B --> T then error; 
B[IJ] := x; B[1] :=y; 
B&(B. - - -B+2)  

end; 
pointer procedure CAR(x) --- x[J~]; 
pointer procedure CDR(x) =- x[l]; 
procedure RPLACA(x, y) --- x [~  := y; 
procedure RPLACD(x, y) ---- x[l] := y; 
boolean procedure EQ(x, y) m x = y; 
boolean procedure ATOM(x) -= 

not tospace( x); 
pointer procedure MOVE(p) --- 

if not fromspace(p) 
then p 
else begin 

if not tospace(p[~l] ) 
then p[ff] := copy(p); 

t,[0~ 
end; 

pointer procedure COPY(p) -~ 
begin 

if B --> T then error; 
B[IJ] :=p[J~]; B[I] ~p[l];  
B&(B. - - -B+2)  

end; 
% 

% If there is no more free space, % 
% collect all the garbage. % 
% This block is the "garbage collector". % 
% Interchange semispaces. % 
% Update all user registers. % 

% Update our arguments. % 
% Trace all accessible cells. % 

% Update the car and cdr. % 

% Point to next untraced cell. % 

% Memory is full. % 
% Create new cell at bottom of free area. % 
% Return the current value of B % 
% after stepping it to next cell. % 
% A cell consists of 2 words; % 
% car is lst; cdr is 2nd. % 
% car(x) := y % 
% cdr(x) := y % 
% Are x, y are the same object? % 
% Is x an atom? % 

% Move p if not yet moved; return new address. % 
% We only need to move old ones. % 
% This happens a lot. % 

% We must move p. % 
% Copy it into the bottom of free area. % 
% Leave and return forwarding address. % 

% Create a copy of a cell. % 
% Allocate space at bottom of free area. % 
% Memory full? % 
% Each cell requires 2 words. 
% Return the current value of B % 
% after moving it to next cell. % 

TOSPACE, FROMSPACE test whether a pointer is in that semispace. 

( 1 + m)[size(tospace)  - ( T - B)] ,  w h e r e  T i s  t he  t op  o f  

tospace ,  a n d  i f  f r o m s p a c e  ( the  n e w  tospace)  is too  smal l ,  

e i t he r  it m u s t  be  e x t e n d e d ,  o r  t he  sys tem m a y  l a t e r  s top  

w i t h  a " m e m o r y  o v e r f l o w "  ind ica t ion .  
I n  o r d e r  to c o n v e r t  M F Y C A  in to  a r e a l - t i m e  a lgo-  

r i thm,  we  force  t he  m a r k  ra t io  m to  be  c o n s t a n t  by  

c h a n g i n g  C O N S  so tha t  it does  k i t e ra t ions  o f  t he  g a r b a g e  

co l l ec t i on  l o o p  b e f o r e  p e r f o r m i n g  e a c h  a l loca t ion .  Bu t  

this  m e a n s  tha t  b o t h  semispaces  c o n t a i n  access ib le  cel ls  
at  a l m o s t  a l l  t imes.  I n  o r d e r  to  s impl i fy  the  a l g o r i t h m  

a n d  the  proof ,  we trick the user program into believing 
that garbage collection ran and f inished at the time o f  the 
lastflip; i.e. we  assert  that ,  as before ,  the  use r  p r o g r a m  

sees addresses  o n l y  in tospace .  

S o m e  s l ight  e f fo r t  m u s t  be  m a d e  to k e e p  up  this  
a p p e a r a n c e .  W h e n  the  semispaces  are  i n t e r c h a n g e d ,  a l l  

the  use r  p r o g r a m  regis ters  m u s t  be  u p d a t e d  i m m e d i a t e l y  

to p o i n t  to tospace .  T h i s  g ives  t he  co l l ec to r  a h e a d  start  
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% 

% 

o n  the  m u t a t o r .  S ince  the  o n l y  o p e r a t i o n s  tha t  m i g h t  

v io l a t e  o u r  asser t ion  a re  C A R  a n d  C D R ,  we  m a k e  sure  

tha t  C A R  a n d  C D R  cause  f o r w a r d i n g  addresses  to be  

fo l lowed ,  a n d  cells  to be  m o v e d ,  w h e n  necessary .  T h i s  

ensu re s  tha t  t he  m u t a t o r  c a n n o t  pass  the  col lector .  It  

t u rns  ou t  tha t  p r e s e r v i n g  o u r  asse r t ion  is m u c h  s i m p l e r  

t h a n  p r e s e r v i n g  the  c o r r e s p o n d i n g  asser t ions  o f  D L  [16, 

17, 23, 24]. In  pa r t i cu la r ,  R P L A C A  a n d  R P L A C D  can-  

n o t  cause  a n y  t r oub l e  at all! 
T h e r e  is a n o t h e r  p r o b l e m  caused  by  i n t e r l e a v i n g  

g a r b a g e  co l l ec t i on  w i t h  n o r m a l  list p rocess ing :  the  n e w  

cells  tha t  C O N S  crea tes  wi l l  be  i n t e r l e a v e d  w i t h  those  

m o v e d ,  t h e r e b y  d i lu t ing  the  m o v e d  cel ls  w h i c h  m u s t  be  

t r a c e d  by  C O N S .  O f  course ,  n e w  cel ls  h a v e  the i r  cars  

a n d  cdrs  a l r e a d y  in t o space  a n d  the re fo re  do  n o t  n e e d  

to be  t raced.  W e  a v o i d  this  was te  o f  t race  e f fo r t  t h r o u g h  
the  use  o f  the  p o i n t e r  T, w h i c h  po in t s  to the  top o f  the  

f ree  area ,  a n d  by  a l l oca t i ng  al l  new cells  there .  
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% 

integer k; 

pointer/~, 
pointer procedure CONS(x,  y )  

begin 
if  B =  T 

then begin 
if S < B then error; 
flip( ); 
f o r / =  1 t o N R  

do R[i] ~ move(R[i]);  
x .= m o v e ( x ) ; y  .= move(y)  

end; 
f o r i =  1 t o k w h i l e S < B  

do begin 
S [ ~  ~ m ove (S [~ ) ;  
S[1] .--- move (S[I]) ;  
S : = S + 2  

end; 
if B = T then error; 
T ~  T - 2 ;  
T[I~] .'= x; T[I ]  ~ y ;  
T 

end; 
pointer procedure C A R ( x )  m x[JSq ~ move(x[ff] ); 
pointer procedure C D R ( x )  =- x[1] ~ move(x[ l ] ) ;  
% 

Serial Real-Time System (SRT) 

% Global trace ratio parameter: 
the number  of  cells to trace per cons. % 

% Top; Points to top o f  free area. % 
% Do some collection, 

then  allocate ( x .  y ). % 

% Check if free area is empty. % 
% Switch semispaces. Memory is full % 
% if tracing is not finished. % 
% Flip semispaces. % 

% Update  user registers % 
% and our arguments.  % 

% Do k iterations of  gc. % 

% Update car and cdr. % 

% Go on to next untraced cell. % 

% Actually create the cell. % 
% Move in car and cxlr. % 
% Return address of  new cell. % 

% Move, update and return x[ff]. % 
% Move, update and return x[ 1 ]. % 

Procedures not redefined here are as before. 

% 

% 

The time required by all of  the elementary list oper- 
ations in this algorithm, with the exception of  CONS, 
can easily be seen to be bounded by a constant because 
they are straight-line programs composed from primi- 
tives which are bounded by constants. CONS is also 
bounded by a constant because the number of  mutator 
registers is a (small) fixed number (e.g. 16), and the 
parameter k is fixed. In principle, given the number of  
registers and the parameter k, the two loops in CONS 
could be expanded into straight-line code; hence the time 
it requires is also bounded by a constant. 

The proof  that the incremental collector eventually 
moves all accessible cells to tospace is an easy induction. 
Upon system initialization there are no accessible cells, 
hence none in tospace, and so we have a correct basis. 
Suppose that at some point in the computation we have 
just switched semispaces so that tospace is empty. Sup- 
pose further that there are N accessible cells in fromspace 
which must be moved to tospace. Now, every cell which 
was accessible at the time of  flipping eventually gets 
moved when it is traced, unless lost through RPLACA 
and RPLACD, and as a result appears between S and B. 
Furthermore, a cell is moved only once, because when it 
is moved it leaves behind a forwarding address which 
prevents it from being moved again. When the pointer 
S reaches a cell, its edges are traced--i.e., the cells they 
point to are moved, if necessary. Finally, only cells which 
have been moved appear between S and B. Therefore, 
the number of  those accessible, unmoved cells in from- 
space decreases monotonically, eventually resulting in 
no accessible, unmoved cells in fromspace. At this point, 
the collector is done and can interchange the two sem- 
ispaces. 
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It should be easy to see why the other list operations 
cannot adversely affect the progress of  the collector. A 
CAR or CDR can move a cell before the collector has 
traced it. But since moving it increases B but not S, it 
will be traced later. RPLACA and RPLACD can affect 
connectivity, but since all of  their arguments are already 
in tospace, they have already been moved and may or 
may not have been traced. Consider RPLACA(p, q). 
Suppose that p has been traced and q has not. But since 
q has been moved but not traced, it must be between S 
and B and will not be missed. Suppose, on the other 
hand, that q has been traced and p has not. Then when 
p is traced, the old CAR o f p  will not be traced. But this 
is all right, because it may no longer be accessible. I f  it 
still is the target of  an edge from some accessible cell, 
then it either already has, or will be, traced through that 
edge. Finally, if  either both p and q have been traced or 
both have not been, there is obviously no problem. 

This algorithm can also be proved correct by the 
methods of  DL [16, 17, 23, 24], because this particular 
sequence of  interleaving collection with mutation is only 
one of  the legal execution sequences of  the DL algorithm 
on a serial machine. Therefore, if the DL algorithm is 
correct, then so is this one. The correspondence is this: 
white nodes are those which reside in fromspace, i.e. 
those which have not yet been moved; grey nodes are 
those which have been moved but have not yet been 
traced, i.e. those between S and B; and black nodes are 
those which have been moved and traced, and those 
which have been allocated directly in tospace (cells below 
S or above T). Then the assertions are: 

A) each node will only darken monotonically; 
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B) no edge will ever point from a black node to a white 
one; and 

C) the user program sees only grey or black nodes. 

We can now see why the burden is on CAR and 
C D R  rather than RPLACA and R P L A C D - - t h e  latter 
will not violate B so long as the former does not violate 
C. Using these assertions, we see that the mutator  and 
the mark  phase of  the collector are essentially doing the 
same thing: tracing accessible cells. The difference is that 
the collector goes about it systematically whereas the 
mutator  wanders. Thus, only the collector knows for sure 
when all the cells in fromspace have been traced so that 
the two semispaces can be interchanged. Assertion C 
also allows CAR and C D R  to update a cell in which a 
pointer to fromspace is found, thus reducing pointer- 
chasing for cells which are accessed more than once. 

We must now analyze the storage required by this 
algorithm. Suppose that at some flip of  the semispaces 
there are N accessible nodes. Then the collector will not 
have to move or trace any more than N cells. I f  it traces 
(makes black) exactly k cells per CONS, then when the 
collector has  finished, the new semispace will contain _< 
N + N / k  = N(1 + m) cells, letting m = 1 / k .  I f  only N o f  
these are accessible, as in equilibrium conditions, then 
the next cycle of  the collector will copy those N cells 
back to the first semispace, while performing N m  CON- 
SES. Hence, we have the inequality: 

Maximum SRT Storage Required _< N(2 + 2m) 
= N( 2 + 2 / k )  

Therefore, for a program which has a maximum cell 
requirement of  N cells operating on a fLxed-size real 
memory  of  2 M  cells, the parameter  k must be greater 
than N / ( M  - N )  to guarantee that tracing is finished 
before every flip. 

I f  we compare the bound for our algorithm with the 
bound for MKSMW, using the unlikely assumption that 
sweeping and relocation take no time (s = r = 0), we 
find that they are quite similar in storage requirements. 

Maximum M K S M W  Storage Required < N( 1.5 + 2m) 
Maximum SRT Storage Required ___ N{ 2 + 2m ) 

I f  m = 1 (which corresponds to one collector iteration 
per CONS), the two algorithms differ by only 1 part in 
8, which is insignificant given the gross assumptions we 
have made about MKSMW's  sweeping and relocation 
speeds. It is not likely that the storage requirements of  a 
MKSMW-type  algorithm can be significantly improved 
because it cannot take advantage of  techniques such as 
stack threading or CDR-coding. Stack threading cannot 
be done, because accessible cells have both their car and 
cdr in use? CDR-coding using M K S M W  is very awk- 
ward because CONS must search  for a free cell of  the 
proper size and location before allocating a cell, since 
the free space is fragmented. On the other hand, our 

4 The Deutsch-Schorr-Waite collector [22, p. 417-418] "threads" 
the stack but temporarily reverses the list structure, thus locking out 
the mutator for the duration. 
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algorithm can be easily modified to use CDR-coding and 
thereby reduce storage requirements to approximately 
N(1 + m). 

3. The Parameter m(= l /k )  

I f  k is a positive integer, then the parameter  
m ( =  1 / k )  will lie in the interval 0 < m --< I. Therefore, 
the factor of  1 + m in our bounds must lie between l 
and 2. This means that the storage requirements for our 
method can be adjusted by varying k, but they will not 
vary by more than a factor of  2 as long as k is integral. 
Now, the time to execute CONS is proportional to 
k + c, for some suitable constant c. Therefore, one can 
trade off storage for CONS speed, but only within this 
limited range. Furthermore, as k rises above 4 the storage 
savings become insignificant; e.g. doubling k to 8 yields 
a storage savings of  only 10%, yet almost doubles CONS 
time. Of  course, if  storage is limited and response time 
need not be fast, larger k's might be acceptable. 

I f  the method is used for the management  of  a large 
database residing on secondary storage, k could be made 
a positive rational number  less than 1, on the average. 
For example, to achieve an average k = l ( m  = 3 ), one 
could have CONS perform an iteration of  the collector 
only every t h i rd  time it was called. The result of  this 
would double the storage required (m + 1 = 4), but 
would reduce the average CONS time by almost ~-. Of  
course, the wors t  case  time performance for CONS would 
still be the same as though k were 1. 

This improvement  is significant because each itera- 
tion of  the collector traces all the pointers of  one record. 
This requires retrieving that record, updating all of  its 
pointers by moving records if  necessary, and then re- 
writing the record. I f  there are t pointers to be updated, 
then t + 1 records must be read and written. This sounds 
like a lot of  work, but this much work is done only when 
a record is created; if  there are no record creations, then 
with the exception of  the first access of  a record via a 
pointer stored in another record, the accessing and up- 
dating functions will be as fast as on any other file 
management  scheme. Therefore, since secondary storage 
is usually cheap but slow, choosing k < 1 in a file 
management  system allows us to trade off  storage space 
against average record creation time. 

With a little more effort, k can even be made var iab le  

in our method, thus allowing a program to dynamically 
optimize its space-time tradeoff. For example, in a da- 
tabase management  system a program might set k = 0 
during an initial l o a d  of  the database because it knows 
that, even though there are many records being created, 
none are being let go, and therefore the continual copy- 
ing of  the collector will achieve no compaction. The 
function READ in LISP might want to exercise the same 
prerogative and for the same reason. Of  course, any 
reduction of  k should not take effect until the next flip 
to avoid running out of  storage before then. 
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% Serial Real-Time System with User Stack % 
% The user stack resides in the array "ustk" and grows upward from "ustk[~".  The global variable "SP" is the user stack pointer and points to 

the current top of  the user stack. The global variable "SS" scans the user stack and points to the highest stack level which has not yet been 
traced by the collector. % 

integer S P  init(~); 
integer S S  init(£1); 
procedure USER__PUSH(x)  ---- 

begin 
SP.--- S P  + 1; 
ustk[SP] .--- x 

end; 
pointer procedure USER___POP() --- 

move( ustk[SP] ) & 
begin 

S P  := S P  - I; 
S S  .= min(SS,  S P )  

end; 
pointer procedure USER__GET(n  ) --- 

u s t k [ S P -  n] .~ m o v e ( u s t k [ S P -  n]); 
pointer procedure CONS(x,  y )  --- 

begin 
i f B  = T 

then begin 
if  SS >£1or  S <  B 

then error; 
N ~ flip( ); 
S S  .--- SP; 

k '  ~ c e l l ( k , S S / N ) ;  

f o r / =  I t o N R  

do R[i] .--- move(R[O); 
x := m o v e ( x ) ; y  ~ move(y)  

end; 
for i = 1 to k '  while S S  > SJ 

do begin 
ustk[SS] .---- move( ustk[SS]); 
S S  .--- S S  -- 1 

end; 
f o r i =  l t o k w h i l e S < B  

do begin 
S[fl] .--- move( S[it] ); 
S[I]  .--- move(S[1]);  
S . - - - S + 2  

end; 
if B = T then error; 
T.--- T - 2 ;  
T[O] .'= x; T[ 1 ] .---- y; 
T 

end; 

4. A User Program Stack 

If the user program utilizes its own stack as well as a 
bank of  registers, the stack may (in theory) grow to an 
unbounded size and therefore cannot be wholly updated 
when the semispaces are flipped and still preserve a 
constant bound on the time for CONS. This problem 
may be trivially solved by simulating the stack in the 
heap (i.e. PUSH(x)  = CONS(x ,  stack) and POP;( ) --- 
CDR(stack));  this simulation will satisfy the bounded- 
time constraints of  classical stack manipulation. How- 
ever, this simulation has the unfortunate property that 
accessing items on the stack requires time proportional 
to their distance from the top. 

In order to maintain constant access time to elements 
deep in the stack, we keep stack-like allocation and 
deallocation strategies but perform the tracing of  the 
stack in an incremental manner. We first fix the stack 
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% User stack pointer. % 
% User stack scanner. % 
% Push x onto user stack. % 
% Note: x will not be in fromspace. % 

% Pop top value from user stack. % 
% Move value if necessary; % 

% then update stack pointer. % 
% Keep stack scanner current. % 

% Get nth element from top of stack. % 
% Move and update if necessary. % 
% Collect some, then allocate (x  .y).  % 

% Check if free area is empty. % 
% Interchange semispaces. % 
% Check for memory  overflow. % 

% Set N to number of  cells in use. % 
% Start stack scan at op of  stack. % 
% Calculate stack trace effort. % 

% Update user registers % 
% and our arguments. % 

% Move k '  user stack elements and % 
% update scan pointer. % 

% Do k iterations of  gc. % 

% Trace and update car, cdr. % 

% Actually create the cell. % 
% Install car and cdr. % 
% Return address of  copied cell. % 

accessing routines so that the user program never sees 
pointers in fromspace. This change requires that the 
MOVE routine must be applied to any pointers which 
are picked up from the user stack. We must then change 
CONS to save the user stack pointer when the semispaces 
are flipped so that it knows which stack locations must 
be traced. Finally, the user stack POP routine must keep 
this saved pointer current to avoid tracing locations 
which are no longer on the user stack [28]. 

The only remaining question is how many stack 
locations are to be traced at every CONS. To guarantee 
that stack tracing will be finished before the next flip, we 
must choose the stack tracing ratio k' (the number of  
stack locations traced per CONS) so that the ratio k'/k 
is the same as the ratio of  stack locations in use to cons 
cells in use. We recompute k' at each flip, because the 
"in use" statistics are available then. Due to this com- 
putation, a constant bound on the time for CONS exists 
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only if the ratio of  stack size to heap size is bounded, 
and it is proportional to that ratio. 

The preceding code exhibits these changes. 
The complexity involved in this conversion is essen- 

tially that necessary to make the serial real-time method 
work for several different spaces [27]. In such a system, 
each space is a contiguous area in the address space 
disjoint from the other spaces, and has its own represen- 
tation conventions and allocation (and deallocation) 
strategies. The system of this section thus has two spaces, 
the heap and the user stack, which must be managed by 
cooperating routines. 

5. CDR-Coding (Compact List Representation) 

In this section, we discuss the interaction of our 
algorithm with a partial solution to the second big prob- 
lem with list structures: their inefficient use of storage. 
Whereas a list of 5 elements in a language like Fortran 
or APL would require only a 5 element array, such a list 
in LISP requires 5 cells having two pointers apiece. So- 
called "CDR-coding" [12, 19] can reduce the storage cost 
of LISP lists by as much as 50%. The idea is simple: 
memory is divided up into equal-sized chunks called Q's. 
Each Q is big enough to hold 2 bits plus a pointer/7 to 
another Q. The 2 bits are decoded via the table: 

00--NORMAL; CAR of this node is/7; CDR 
is in the following Q. 

01--NIL; CAR of this rode is/7; CDR 
is NIL. 

10--NEXT; CAR of this node is/7; CDR 
is the following Q. 

11--EXTENDED; The cell extension located at 
p holds the car and cdr for 
this node. 5 

CDR-c0ding can reduce by 50% the storage require- 
ments of a group of cells for which CDR is a 1 - 1 
function whose range excludes non-nil atoms. This is a 
non-trivial saving, as all "dotless" s-expressions read in 
by the LISP reader have these properties. In fact, it has 
been found [12] that, after linearization, 98% of the non- 
NIL cdrs in several large LISP programs referred to the 
following cell. These savings are due to the fact that 
CDR-coding takes advantage of the implicit linear or- 
dering of  addresses in address space. 

What implications does this coding scheme have for 
the elementary list operations of LISP?. Most operations 
must dispatch on the CDR code to compute their results, 
and RPLACD needs special handling. Consider 
RPLACD(/7, q). If/7 has a CDR code of NIL or NEXT, 
then it must be changed to EXTENDED, and the result 
of CONS(CAR(/7), q) placed in p.6 

5 These conventions are slightly different from those of [ 19]. 
s We note in this context that if RPLACD is commonly used to 

destructively reverse a list--e.g, by LISP's "NREVERSE"-- the  system 
could also have a "PREVIOUS" CDR-code so that RPLACD need 
not call CONS so often. 
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The number of memory references in the elementary 
operations has been minimized by making the following 
policies [20]: 1) every EXTENDED cell has a NORMAL 
extension; 2) the user program will never see a pointer to 
the extension of  an EXTENDED cell; and 3) when 
COPY copies an EXTENDED cell, it reconstitutes it 
without an extension. 

CONS, CAR, CDR, RPLACA, and RPLACD must 
be changed to preserve these assertions, but EQ and 
ATOM require no changes from their non-CDR-coded 
versions. Since an EXTENDED cell cannot point to 
another EXTENDED cell, the forwarding of  EX- 
TENDED pointers need not be iterated. These policies 
seem to minimize memory references because each cell 
has a constant (between flips) canonical address, thereby 
avoiding normalization [30] by every primitive list op- 
eration. 

CDR-coding requires a compacting, linearizing gar- 
bage collector if it is to keep allocation simple (because 
it uses two different cell sizes) and take full advantage of 
the sequential coding efficiency. The MFYCA algorithm 
presented above compacts, but does not linearize cdrs 
due to its breadth-first trace order. However, the trace 
order of an MFYCA collector can easily be modified at 
the cost of an additional pointer, PB. PB keeps track of 
the previous value of B (i.e. PB points to the last cell 
copied), so that tracing the cdr of the cell at PB will copy 
its successor into the next consecutive location (B), thus 
copying whole lists into successive contiguous locations. 

The meaning of the scan pointer S is then changed 
slightly so that it points to the next word which must be 
updated rather than the next cell. Finally, the trace 
routine is modified so that tracing the cdr of PB has 
priority over tracing the edge at S and the condition on 
the trace loop is modified to amortize both the copying 
effort (measured by movements of B) and the tracing 
effort (measured by movements of S) over all the CON- 
SES. These modifications do not result in a depth-first 
trace order, but they do result in cdr-chains being traced 
to the end, with few interruptions. Thus an MFYCA 
collector can minimize the amount of memory needed 
by CDR-coded lists. 

The size of the tospace needed for CDR-coding is 
(1 + m) times the amount of space actually used in 
fromspace. With a coding efficiency improvement of e 
over the classical storage of LISP cells, and under equi- 
librium conditions, we have the inequality: 

Maximum SRTC Storage Required --< Ne( 2 + 2m) 

Since we have claimed that e = . .5 ,  we get the 
following estimate: 

SRTC Storage Required = N( 1 + m) (!) 

But this latter expression is less than the bound 
computed for MKSMW. Thus, CDR-coding has given 
us back the factor of 2 that the copying garbage collector 
took away. 

The real-time properties of our algorithm have not 
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% 

pointer S; 
pointer PB; 

pointer L, H; 

pointer procedure CONS(x,  ),) ---- 
begin 

if T -  B < 2  
then begin 

if S < B then error; 
flip( ); 

for i = 1 to N R  
do R[i] := move (R[i]); 
x .--- move(x) ; ) ,  .--- move()'} 

end; 
while ( S  + B } / 2  - L < k * ( H -  T)  and S <  B 
do if P B  < B 

then P B  := ( B  & CDR(PB)) ;  
else begin 

Sift] .--- move (S [~ ) ;  
S . - = - S + I  

end; 
if B = T then error; 
T ~ T - i  

if) ,  = nil 
then code(T) .--- "NIL"  
else if3, = T + I 

then code(T) .'= "NEXT"  
else begin 

if  B = T then error; 
T . - - - T - 1 ;  
code(T) .--- "NOR M AL " ;  

T[ I ]  ~ f l  
end; 

T[£1] .--- x; 
T 

end; 

been affected in the least by CDR-coding; in fact, good 
microcode might be able to process CDR-coded lists 
faster than normal lists since fewer references to main 
memory are needed. 

CDR-coding is not the final answer to the coding 
efficiency problems of  list storage, because far more 
compact codes can be devised to store LISP's s-expres- 
sions. For example, both the car and cdr of  a cell could 
be coded by relative offsets rather than full pointers 
[12]. However, a more compact code would represent 
some cells in so few bits that the pointer we need for a 
forwarding address would not fit, rendering our scheme 
unworkable. Part of  the problem is inherent in LISP's 
small cell size; small arrays can perform much better. 

6. Vectors and Arrays 

Arrays can be included quite easily into our frame- 
work of  incremental garbage collection by simply en- 
closing certain parts of  the collector program in loops 
which iterate through all the pointers in the array, not 
just the first and second. The convergence of  the method 
with regard to storage space can also be proved and 
bounds derived. However, the method can no longer 
claim to be real-time because neither the time taken by 

2 8 8  

Serial Real-Time System with CDR-Coding  
% Next cell whose car needs tracing. % 
% Pointer to previous value of  B. % 
% Low and high limits of  tospace. % 
% Assertion: L <-- S <- P B  <- B <-- T <-- H. % 
% Create a new cell in tospace with % 
% cdr o f x  and cdr ofy.  % 
% Flip when free area is exhausted. % 
% This part is the same as usual. % 
% Copying is not done; memory  overflow! % 
% Interchange semispaces. % 

% 

% Update user registers. % 
% Update  our arguments.  % 

% Trace and copy a measured amount .  % 
% Extend current list, if  possible. % 
% C D R  will trace this edge for us. % 

% Update  this edge. % 
% Step S over this word. % 

% Check for memory  overflow. % 
% Create new cell at top o f  free area. % 

% l f y  is special case, % 
% then create a short cell % 
% with appropriate cdr-code, % 
% Otherwise, create a normal  cell. % 
% Need more space for the cdr. % 

% Set in " N O R M A L "  cdr-code. % 
% Set in the edr. % 

% Set the car in the new cell. % 
% Return the new cell. % 

the array allocation function (ARRAY-CONS) nor the 
time taken by the array element accessing function is 
bounded by a constant. This unbounded behavior has 
two sources: copying an array and tracing all its pointers 
both require time proportional to the length of  the array. 
Therefore, if these operations are included in a computer 
as noninterruptable primitive instructions, hard interrupt 
response time bounds for that computer will not exist. 
However, an arbitrary bound (say 10), placed on the size 
of  all arrays by either the system or the programmer, 
allows such bounds to be derived. 

A scheme which overcomes some of  these problems 
has been devised [31]. In it, each vector is given a special 
link word which holds either a forwarding pointer (for 
vectors in fromspace which have been partially moved), 
a backward link (for incomplete vectors in tospace), or 
NIL (for complete vectors). MOVE no longer copies the 
whole array, but only allocates space and installs the 
forward and backward links. Any reference to an ele- 
ment of  a moved but incompletely updated vector will 
follow the backward link to the fromspace and access 
the corresponding element there. When the scan pointer 
in the tospace encounters such a vector, its elements are 
incrementally updated by applying MOVE to the cor- 
responding elements of  its old self; after the new one is 
complete, its link is set to NIL. Element accesses to 
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pointer procedure CAR(x)  
brplaca( x, move( bcar(x ) ) ); 

procedure RPLACA(x,  ),) 
brplaca(x, ),); 

pointer procedure BCAR(x) 
if code(x) = "EXTENDED" 

then (x[ff])[ff] 
else x[ff]; 

pointer procedure BRPLACA(p, q) =- 
if code(p) = "EXTENDED" 

then (p[~)[if] ~ q 
else p [ ~  .--- q; 

pointer procedure CDR(x)  
brplacd( x, move( bcdr(x ) ) ); 

procedure RPLACD(x,  y)  --- 
begin 

if code (x) = "NIL" or 
code(x) = "NEXT" 
then 

begin pointer p; 
p := CONS(CAR(x) ,  "DUMMY");  
x ~ move(x);) ,  ~ move()'); 
x [ ~  .--- p; 
code(x) ~ "EXTENDED" 

end; 
brplacd(x, ),) 

end; 
pointer procedure BCDR(x)  ~- 

if code(x ) = "NORMAL" then x[ 1 ] 
else if code(x) = "NIL" then nil 
else if code(x) = "NEXT" then x + 1 
else (x[ff])[ l ] ;  

pointer procedure BRPLACD(p, q) 
if code(p) = "EXTENDED" 

then (p[fl])[1] .-=- q 
else if code (p) = "NORMAL" 

the np [ l ]  ~ q 
else q; 

integer procedure SIZE(p) ~- 
if code(p) = "NORMAL" 

then 2 else 1; 
pointer procedure COPY(p) =- 

begin 
if PB = B - 2 and bcdr(PB) = p 

then begin 
code(PB) ~ "NEXT"; 
B ~ B - 1  

end; 
if bcdr(p) = nil 

then code(B) ~ "NIL"; 
else code(B) ~ "NORMAL";  

B[fl] .--- bcar(p); 
brplacd( B, bcdr(p ) ); 
PB ~ B; 
B ~ B + size(B); 
if B > T then error; 
PB 

end; 
% 

~ertal It, eat- 11me ~ystem wltll ~r~rt-~oomg (contmuea) 

% CAR must move cell it uncovered. % 
% Update this edge. % 
% x[Jff] ~ ),. May require subtlety. % 

% Basic car; dispatch on CDR-code. % 
% Type "EXTENDED" means % 
% indirect car. % 
% All other types have normal cars. % 
% Basic rplaca; dispatch on CDR-code. % 
% If extended cell, clobber indirectly. % 

% All others have normal car. % 
% CDR moves uncovered cell, but updates % 
% only if still possible after move. % 
% x[1] ~ ) , .  May require brute force. % 

% Test for screw cases. % 
% EXTENDED case will fall through. % 

% Extend the cell x. % 
% Construct guaranteed NORMAL cell. % 
% Update arguments in case CONS flipped. % 
% Leave forwarding address in old cell. % 
% The old cell has now been extended. % 

% Finally replace the cdr. % 

% Basic cdr; dispatch on CDR-code. % 
% NORMAL cells have a second word. % 
% Interpret NIL CDR-code. % 
% Interpret NEXT CDR-code. % 
% EXTENDED cells point to NORMAL cells. % 
% Handle easy cases of  RPLACD. % 
% We have extended cell; % 
% clobber the NORMAL indirect. % 
% The easiest case of  all. % 

% In all cases, return q as value. % 
% Find the size o f p  from its CDR-code. % 
% "NIL", "NEXT", and "EXTENDED" all have % 
% size(p) = 1. % 
% Copy the cell p; append to current % 
% train if possible. % 
% See if we can hop this NEXT train. % 

% Convert NORMAL cell to NEXT cell. % 
% Reuse extra space now available. % 

% Create a NIL cell, if appropriate. % 

% Otherwise, all cells are NORMAL. % 
% Copy over car; % 
% and cdr too, if necessary. % 
% PB is end of  current NEXT train. % 
% Step B over newly copied cell, % 
% check for memory overflow, % 
% and return pointer to new copy. % 

Procedures not redefined here are as before. 

i n c o m p l e t e  v e c t o r s  c o m p a r e  t h e  s c a n  p o i n t e r  t o  t h e  e l e -  

m e n t  a d d r e s s ;  a c c e s s  is  m a d e  to  t h e  o l d  ( n e w )  v e c t o r  i f  

t h e  s c a n  p o i n t e r  is l e ss  ( g r e a t e r  o r  e q u a l ) .  T r a c i n g  a n d  

u p d a t i n g  e x a c t l y  k -  n v e c t o r  e l e m e n t s  ( n o t  n e c e s s a r i l y  a l l  

f r o m  t h e  s a m e  v e c t o r )  u p o n  e v e r y  a l l o c a t i o n  o f  a v e c t o r  

o f  l e n g t h  n g u a r a n t e e s  c o n v e r g e n c e .  

2 8 9  

% 

S t e e l e ' s  s c h e m e  h a s  t h e  f o l l o w i n g  p r o p e r t i e s :  t h e  t i m e  

f o r  r e f e r e n c i n g  a n  e l e m e n t  o f  a n y  ce l l  o r  v e c t o r  is 

b o u n d e d  b y  a c o n s t a n t  w h i l e  t h e  t i m e  to  a l l o c a t e  a n e w  

o b j e c t  o f  s i ze  n is  b o u n d e d  b y  C l k n  + c2, f o r  s o m e  

c o n s t a n t s  c~ a n d  c2. H e n c e ,  a s e q u e n c e  o f  l i s t  a n d  v e c t o r  

o p e r a t i o n s  c a n  b e  g i v e n  t i g h t  t i m e  b o u n d s .  
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7. Hash Tables and Hash Links 

Some recent artificial intelligence programs written 
in LISP have found it convenient to associate property 
lists with list cells as well as symbolic atoms. Since few 
cells actually have property lists, it is a waste of  storage 
to allocate to every cell a pointer which points to the 
cell's property list. Therefore, it has been suggested [9] 
that one bit be set aside in every cell to indicate whether 
the cell has a property list. I f  so, the property list can be 
found by looking in a hash table, using the address of  
the list cell as the key. 

Such a table requires special handling in systems 
having a relocating garbage collector. Our copying 
scheme gives each semispace its own hash table, and 
when a cell is copied over into tospace, its property list 
pointer is entered in the "to" table under the cell's new 
address. Then when the copied cell is encountered by the 
"scan" pointer, its property list pointer is updated along 
with its normal components. A "CDR-coding" system 
with two "scan" pointers should also keep a third for 
tracing property list pointers to prevent property lists 
from destroying chains of  "next"-type cells. 

8. Reference Counting 

In this section we consider whether reference count- 
ing can be used as a method of  storage reclamation to 
process lists in real time; i.e. we try to answer the question 
"is reference counting worth the effort in a real-time 
system, and if so, under what conditions?" 

A classical reference count system [13, 34] keeps for 
each cell a count of  the number of  pointers which point 
(refer) to that cell; i.e. its in-degree. This reference count 
(refcount) is continually updated as pointers to the cell 
are created and destroyed, and when it drops to zero, the 
cell is reclaimed. When reclaimed, the refcounts of  any 
daughter cells it points to are decremented, and are also 
reclaimed if zero, in a recursive manner. 

Reference counting appears to be unsuitable for real- 
time applications because a potentially unbounded 
amount of  work must be done when a cell is let go. 
However, if a free stack is used to keep track of  freed 
objects instead of  a free list [34], the newly freed cell is 
simply pushed onto the free stack. When a cell is needed, 
it is popped off  the stack, the refcounts of  its daughters 
are decremented, and if zero, the daughters are pushed 
back onto the stack. Then the cell which was popped is 
returned. In this way, only a bounded amount of  work 
needs to be done on each allocation. 

We now consider the storage requirements of  a ref- 
erence counting (RC) system. In adddition to the mem- 
ory for N cells, we also need room for N refcounts and 
a stack. Since the refcounts can go as high as N, they 
require approximately the same space as a pointer. So 
we have: 
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Maximum RC Space Required 
_< 1.5N + the size of  the "free stack" 

The worst case stack depth is N. However, whenever 
a cell is on the stack, its refcount is zero, so we can thread 
the stack through the unused refcounts! So we now have: 

Maximum RC Space Required ___ 1.5 N 
Reference count systems have the drawback that 

directed cycles of  pointers cannot be reclaimed. It has 
been suggested [15, 22] that refcounts be used as the 
"primary" method of  reclamation, using garbage collec- 
tion (GC) as a fallback method when that fails. Since 
RC will not have to reclaim everything and since the 
average refcount is often very small, it has also been 
suggested that a truncated refcount (a bounded counter 
which sticks at its highest value if it overflows) be used 
to save space. 

We say that garbage in a combination RC and GC 
system is ref-degradable if  and only if it can be reclaimed 
by refcounts alone. Cells whose truncated refcounts are 
struck are therefore non-ref-degradable. 

What is the effect of  a dual system in terms of  
performance? Whatever the RC system is able to recycle 
puts off  flipping that much longer. By the time a flip 
happens in such a two level system, there is no ref- 
degradable garbage left in tospace. Therefore, the turn- 
over of  the semispaces is slowed. 

How much memory does the dual system require? If  
truncated refcounts are used, the free stack cannot be 
threaded through a cell's refcount because it is not big 
enough to hold a pointer. Therefore, using this method 
and assuming only a few bits worth of  truncated refcount 
per cell, we have: 

Maximum S R T  + RC Space Required 
--< N(2 + 2m) + R C  free stack 

_< N(2.5 + 2m) 

So it appears that we have lost something by adding 
refcounts (even tiny ones), because we still need room 
for the free stack. 

Let us now examine more closely the average timing 
of  CONS under a pure RC versus a pure S R T  system. 
The average time for CONS under the RC system is the 
same as the maximum time since there is no freedom in 
the algorithm. The time for CONS in S R T  is c l k +  c2, 
where cl and c2 are constants. Now c2 is simply the time 
to allocate space from a contiguous block of  free storage. 
Certainly incrementing a pointer is much less complex 
than popping a cell from a stack, following its pointers, 
decrementing their refcounts, and if zero, pushing them 
onto the stack. Therefore, we can choose k small enough 7 
so that the average time to perform CONS with our S R T  
method is smaller than the average time to perform 
CONS in an RC system) This analysis does not even 

7 Section 3 deals with nonintegral k's. 
s We can discount the additional time occasionally required by 

CAR and CDR in our method because any relocation and pointer 
updating done by them is work that we have already charged to CONS, 
and does not have to be repeated. 
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count the additional time needed to keep the refcounts 
updated. Of  course, the storage required for our "pure" 
S R T  system may be many times the storage of  the RC 
system, but S R T w i l l  have a smaller average CONS time. 

Since this seems counterintuitive, or at least reaction- 
ary (given the current penchant for recycling), we give a 
rationale for why it is so. Reference counting traces the 
garbage cells, while normal garbage collection traces the 
accessible cells. Once the number of  garbage cells exceeds 
the number of  accessible cells in a region of  storage, it is 
faster to copy the accessible cells out of the region and 
recycle it whole. When m > 1, reference counting cannot 
compete timewise with garbage collection because RC 
must trace a cell for every cell allocated while GC traces 
on the average only a fraction ( l /m)  of  a cell for every 
cell allocated. 

On the other hand, if  we wish to minimize storage by 
making m < 1, a dual scheme with truncated refcounts 
should reduce the average CONS time over that in the 
pure scheme. However, CDR-coded lists and other var- 
iable sized objects cannot be easily managed with refer- 
ence counting because the object at the top of  the free 
stack is not necessarily the right size for the current 
allocation. Thus, CDR-coding can reduce the storage 
requirement of  a "pure" scheme below that of  a "dual" 
system with the same m. But even on a system with 
objects of  uniform size, we are skeptical whether the 
increased average efficiency of  CONS in the "dual" 
system will offset the increase in k needed to keep the 
storage requirements the same as the "pure" system. We 
conclude that, at least on a real memory computer, 
reference counting probably is not a good storage manage- 
ment technique unless one a) has uniformly sized objects; 
b ) uses ful l  counts; and c) guarantees no cycles. 

This is not to say that reference counts are not useful. 
If  the LISP language were extended with a function to 
return the current refcount of  an object, and suitably 
clean semantics were associated with this function, then 
one might be able to make use of  this information within 
the user program to speed up certain algorithms, such as 
structure tracing or backtracking, a la Bobrow and Weg- 
breit [8]. This author is not aware of  any language which 
makes this information available; if it were available, 
good programmers would certainly find a use for it. 

the efficiency of  the coding. Since e is near 0.5 [12], the 
requirement is about N( 1 + #), so that CDR-coding 
requires approximately the same space as DSW. Com- 
paring these expressions with those derived earlier for 
our real-time algorithms, we find that processing L I S P  
lists in real-time requires no more space than a non-real- 
time system using DSI'E. I f  larger non-uniformly-sized 
objects like arrays must be managed, real-time capability 
requires no more space than the MFYCA system, since 
a copying collector is already assumed. 

The average time requirement for CONS in our real- 
time system is virtually identical to that in a classical 
MFYCA system using the same cell representation and 
the same amount of  storage. This is because 1) a classical 
system can do #N CONSES after doing a garbage collec- 
tion which marks N nodes-- thus giving an average 
cons/mark ratio of  # and allowing us to identify # with 
m- -and  2) garbage collection in our real-time system is 
almost identical to that in the MFYCA system, except 
that it is done incrementally during calls to CONS. In 
other words, the user program pays for the cost of  a cell's 
reclamation at the time the cell is created by tracing 
some other cell. 

CAR and CDR are a bit slower, because they must 
test whether the value to be returned is in fromspace. 
However, as noted above, any cell movement done inside 
CAR or CDR should not be charged to CAR or CDR 
because it is work which the collector would otherwise 
have to do and therefore has already been accounted for 
in our analysis of  CONS. Therefore, CAR and CDR are 
only slower by the time required for the semispace test)  

Since RPLACA, RPLACD, EQ, and ATOM are 
unchanged from their classical versions, their timings are 
also unchanged. 

The overhead calculated for our serial system can be 
compared to that in the parallel system of  [33]. According 
to these calculations, a parallel garbage collector requires 
significantly more total time than a nonparallel collector. 
But this contradiction disappears when it is realized that 
the author's parallel collector continues tracing even in 
the absence of  any cell creation activity. Since our system 
keys collector activity to cell creation, the collector effort 
is about the same as on a non-real-time system. 

9. The Costs of Real-Time List Processing 

The amount of  storage and time used by a real-time 
list processing system can be compared with that used 
by a classical list processing system using garbage collec- 
tion on tasks not requiring bounded response times. The 
storage required by a classical noncompacting garbage 
collector is iV( 1 + #), if the system uses the Deutsch- 
Schorr-Waite (DSW) [22, p. 417-418] marking algo- 
rithm, and N( 1.5 + #) if it uses a normal stack, for some 
positive #. If  CDR-coding is used, copying must be done; 
the storage requirement is then Ne(2 + 2#), where e is 
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10. Applications 

1) A Fixed Size, Real Memory Computer. 
This application covers the classical 7090 LISP [25] 

as well as a LISP for a microcomputer. We conceive of  
even 16-bit microcomputers utilizing this algorithm for 
real-time process control or simulation tasks. Each of  the 
list processing primitives is intended to run with inter- 
rupts inhibited, so that all interrupt processing can make 
use of  list storage for its buffers and other needs. Multiple 

9 In Greenblatt 's  LISP machine [19], the virtual memory  map  
performs the semispace test as an  intergal part o f  address translation. 
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processes may also use these primitives so long as CONS, 
CAR, and CDR are used by one process at a time; i.e. 
they are protected by one system-wide lock. Of course, 
the system must be aware of the registers of every 
process. 

For these real memory applications, we want to put 
as much of  the available storage under the management 
of the algorithm as possible. Thus, both atoms (here we 
mean the whole LISP atom-complex, not just the print- 
name) and list nodes are stored in the semispaces. CDR- 
coding is usually a good idea to save memory, but unless 
the bit testing is done in microcode, it may be faster to 
use normal cells and increase the parameter k to keep 
the storage size small. 

The average CONS time is reduced by putting off  
flipping until all of the free space in tospace is exhausted, 
i.e. B = T. Thus, after all moving and tracing is done, i.e. 
S = B, allocation is trivial until B = T. As a result, the 
average CONS time in our real-time system is approxi- 
mately the same as that in a classical system. Of course, 
with a memory size of  2M, the maximum number of  
cells that can be safely managed is still M k / ( k  + 1 ). 

2) A Virtual Memory Computer. 
The current epitome of this application is Multics 

LISP with an address space of 2 ~ (=10 n) 36-bit words, 
room for billions of  list cells. The problem here is not in 
reclaiming cells that are let go, but keeping accessible 
cells compact so that they occupy as few pages of real 
memory as possible. The MFYCA algorithm does this 
admirably and ours does almost as well. 

Our scheme is still real-time on a virtual memory 
computer, but the bounds on the elementary list opera- 
tions now have the order of magnitude of  secondary 
storage operations. 

There are some problems, however. Unlike MFYCA, 
wherein both semispaces were used only during garbage 
collection, our method requires that they both be active 
(i.e. partially in real memory) at all times. This may 
increase the average working set size. A careful analysis 
needs to be made of our algorithm in order to estimate 
the additional cost of  incremental garbage collection. 
Brief consideration tells us that the active address space 
varies from a minimum of N( 1 + m) just before a flip to 
IV(2 + 2m) just after. Since at a flip the user program 
registers are updated in numerical order, relatively con- 
stant pointers should be placed in the lower numbered 
registers to keep the trace order of constant list structure 
similar between flips. If  the average size of an object is 
much larger than the size of a pointer, the working set 
may also be reduced by storing the forwarding addresses 
in a separate table instead of in the old objects in 
fromspace [7]. 

In a virtual memory environment, the active address 
space will automatically expand and contract in response 
to changes in the number of accessible cells if 1) FLIP 
re-adjusts the size of fromspace to (1 + m)[cells in 
tospace] just before interchanging the semispaces; and 2) 
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flipping occurs when tracing finishes rather than when 
B meets T. This policy, plus a smaller k than a real 
memory computer would use, should give both a fast 
CONS and a tolerable working set size. The parameter 
k can also be dynamically adjusted to optimize either 
running time (including paging) or cost according to 
some pricing policy by following an analysis similar to 
that of  Hoare and others [2, 10, 21]. 

3) A Database Management System. 
We conceive of a huge database having millions of 

records, which may contain pointers to other records, 
being managed by our algorithm. Examples of  such 
databases are a bill of materials database for the Apollo 
Project, or a complete semantic dictionary and thesaurus 
of English for a language understanding program. Per- 
forming a classical garbage collection on such a databank 
would be out of the question, since it might require days 
or weeks to complete, given current disk technology. 

Some of  these large database systems currently de- 
pend on reference counts for storage reclamation, and so 
do not allow directed cycles of  pointers. Since our 
method performs general garbage collection, this restric- 
tion could be dropped. Moreover, given enough space, 
our algorithm can take even less time than a reference 
count system. When compared with a classical garbage 
collection system, our method would not save any total 
time in processing transactions against such a database, 
but it would avoid the catastrophic consequences of a 
garbage collection during a period of  heavy demand. 

This case is very much like case 1, the real memory 
computer, because we assume that the database is orders 
of magnitude too big to fit into primary memory and 
thus that there is little hope for a speedup from the 
locality of  reference effect. "Read memory" and "store 
memory" instructions here apply to secondary storage; 
the constant bounds for the elementary operations are 
now on the order of milliseconds rather than microsec- 
onds. Therefore, almost everything that we say about 
real memory implementations also applies to large da- 
tabase implementations, except that space is cheaper and 
time is more dear. 

4) A Totally New Computer Architecture. 
We conceive of  an architecture in which a CPU is 

connected to a list memory instead of a random access 
memory. Machines of this architecture are similar to 
"linking automata" [22, p. 462-463] and "storage modi- 
fication machines" [29]. At the interface between the 
CPU and the memory sits a bank of pointer registers, 
which point at particular cells in the list memory. Instead 
of  a bus which communicates both addresses and values, 
with read and write commands, the memory would have 
only a data bus and commands like CAR, CDR, CONS, 
RPLACA, RPLACD, EQ, and ATOM, whose argu- 
ments and returned values would be in the pointer 
registers. The CPU would not have access to the bit 
strings stored in the pointer registers, except those which 
pointed to atoms (objects outside both fromspace and 
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tospace). This restriction is necessary to keep the CPU 
from depending upon memory addressses which might 
be changed by the management algorithm without the 
CPU's knowledge. 

An advantage of such a system 1° over random access 
memory is the elimination of the huge address bus that 
is normally needed between the CPU and the memory, 
since addresses are not dealt with directly by the CPU. 
As the number of bits on a chip increases, the number of 
address lines and supporting logic becomes a critical 
factor. 

Our method of garbage collection can also be used 
with a random access write-once memory by appending 
an extra word to each cell which holds the forwarding 
address when that cell is eventually moved. Using such 
a system, the cells in tospace cannot be updated until 
they are moved to the new tospace after the next flip. In 
other words, three semispaces need to be active at all 
times. In addition to these changes, RPLACA and 
RPLACD must actually perform a CONS, just like 
RPLACD occasionally does in our CDR-coding system. 
Perhaps the write-once property can eliminate the need 
for transaction journals and backup tapes. 

11. Conclusions and Future Work 

We have exhibited a method for doing list processing 
on a serial computer in a real-time environment where 
the time required by all of the elementary list operations 
must be bounded by a constant which is independent of 
the number of list cells in use. This algorithm was made 
possible through: 1) a new proof of correctness of parallel 
garbage collection based on the assertion that the user 
program sees only marked cells; 2) the realization that 
the collection effort must be proportional to new cell 
creation; and 3) the belief that the complex interaction 
required by these policies makes parallel collection un- 
wieldy. We have also exhibited extensions of this algo- 
rithm to handle a user program stack, "CDR-coding," 
vectors of contiguous words, and hash linking. Therefore, 
we consider our system to be an attractive alternative to 
reference counting for real-time storage management 
and have shown that, given enough storage, our method 
will outperform a reference count system, without re- 
quiting the topological restrictions of that system. 

Our real-time scheme is strikingly similar to the 
incremental garbage collector proposed independently 
by Barbacci for a microcoded LISP machine [3]. How- 
ever, his non-real-time proposal differs in the key points 
listed above. Our system will itself appear in microcoded 
form in Greenblatt's LISP machine [19]. 

There is still some freedom in our algorithm which 
has not been explored. The order in which the cells are 
traced is not important for the algorithm's correctness or 
real-time properties. The average properties of the algo- 

to A patent is currently being approved. 

rithm when run on a virtual memory machine need to 
be extensively investigated. 

The space required by our algorithm may be exces- 
sive for some applications. Perhaps a synthesis of  the 
area concept [6, 7] with our method could reduce the 
memory requirements of a list processing system while 
preserving the bounded-time properties of the elemen- 
tary operations. 

A garbage collection algorithm can be viewed as a 
means for converting a Von Neumann-style random 
access memory (with "side-effects" [25]) into a list mem- 
ory (without "side-effects"). Perhaps a list memory can 
be implemented directly in hardware which uses consid- 
erably less energy by taking advantage of the lack of 
side-effects in list operations [4]. 
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cryptographic security, it is necessary to transmit a 
key, by secret means, before encrypted messages can 
be sent securely. This paper shows that it is possible to 
select a key over open communications channels in 
such a fashion that communications security can be 
maintained. A method is described which forces any 
enemy to expend an amount of work which increases as 
the square of the work required of the two 
communicants to select the key. The method provides a 
logically new kind of protection against the passive 
eavesdropper. It suggests that further research on this 
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a practical sense. 
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