
Programming
Techniques

S. L. Graham, R. L. Rivest
Editors

List Processing in Real Time
on a Serial Computer
H e n r y G . B a k e r , J r .
M a s s a c h u s e t t s I n s t i t u t e o f T e c h n o l o g y

A real-time list processing system is one in which
the time required by the elementary list operations (e.g.
CONS, CAR, CDR, RPLACA, RPLACD, EQ, and
ATOM in LISP) is bounded by a (small) constant.
Classical implementations of list processing systems
lack this property because allocating a list cell from the
heap may cause a garbage collection, which process
requires time proportional to the heap size to finish. A
real-time list processing system is presented which
continuously reclaims garbage, including directed
cycles, while linearizing and compacting the accessible
cells into contiguous locations to avoid fragmenting the
free storage pool. The program is small and requires no
time-sharing interrupts, making it suitable for
microcode. Finally, the system requires the same
average time, and not more than twice the space, of a
classical implementation, and those space requirements
can be reduced to approximately classical proportions
by compact list representation. Arrays of different
sizes, a program stack, and hash linking are simple
extensions to our system, and reference counting is
found to be inferior for many applications.

Key Words and Phrases: real-time, compacting,
garbage collection, list processing, virtual memory, file
or database management, storage management, storage
allocation, LISP, CDR-coding, reference counting.

CR Categories: 3.50, 3.60, 3.73, 3.80, 4.13, 4.22,
4.32, 4.33, 4.35, 4.49

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and was monitored by the Office
of Naval Research under contract number N00014-75-C-0522. Au-
thor's address: Computer Science Department, University of Rochester,
Rochester, NY 14627.
© 1978 ACM 0001-0782/78/0400-0280 $00.75

280

1. Introduction and Previous Work

List processing systems such as LISP [25] have slowly
gained popularity over the years in spite of some rather
severe handicaps. First, they usually interpreted their
programs instead of compiling them, thus increasing
their running time by several orders of magnitude. Sec-
ond, the storage structures used in such systems were
inefficient in the use of storage; for example, compiling
a program sometimes halved the amount of storage it
occupied. Third, processing had to be halted periodically
to reclaim storage by a long process known as garbage
collection, which laboriously traced and marked every
accessible cell so that those inaccessible cells could be
recycled.

That such inefficiencies were tolerated for so long is
a tribute to the elegance and productivity gained by
programming in these languages. These languages freed
the programmer from a pr imary concern: storage man-
agement. The programmer had only to call CONS (or its
equivalent) to obtain a pointer to a fresh storage block;
even better, the programmer had only to relinquish all
copies of the pointer and the storage block would auto-
matically be reclaimed by the tireless garbage collector.
The programmer no longer had to worry about prema-
turely freeing a block of storage which was still in use by
another part o f the system.

The first problem was solved with the advent of good
compilers [27, 32] and new languages such as S IMULA
especially designed for efficient compilation [1, 5, 14].
The second was also solved to some extent by those same
compilers because the user programs could be removed
from the list storage area and freed from its inefficient
constraints on representation. 1 Other techniques such as
compact list representation ("CDR-coding") [12, 19]
have been proposed which also offer partial solutions to
this problem.

This paper presents a solution to the third problem
of classical list processing techniques and removes that
roadblock to their more general use. Using the method
given here, a computer could have list processing prim-
itives built in as machine instructions and the program-
mer would still be assured that each instruction would
finish in a reasonable amount of time. For example, the
interrupt handler for a keyboard could store its charac-
ters on the same kinds of l is ts--and in the same storage
a r ea - - a s the lists of the main program. Since there would
be no long wait for a garbage collection, response time
could be guaranteed to be small. Even an operating
system could use these primitives to manipulate its bur-
geoning databases. Business database designers no longer
need shy away from pointer-based systems for fear that
their systems will be impacted by a week-long garbage
collection! As memory is becoming cheaper, 2 even mi-
crocomputers could be built having these primitives, so

In many cases, a rarely used program is compiled not to save
time in its execution, but to save garbage-collected storage space.

2 Work is progressing on 106 bit chips.

Communications April 1978
of Volume 21
the ACM Number 4

that the prospect of controlling one's kitchen stove with
LISP is not so far-fetched.

A real-time list processing system has the property
that the time required by each of the elementary opera-
tions is bounded by a constant independent of the num-
ber of ceils in use. This property does not guarantee that
the constant will be small enough for a particular appli-
cation on a particular computer, and hence has been
called "pseudo-real-time" by some. However, since we
are presenting the system independent of a particular
computer and application, it is the most that can be said.
In all but the most demanding applications, the proper
choice of hardware can reduce the constants to accepta-
ble values.

Except where explicitly stated, we will assume the
classical Von Neumann serial computer architecture with
real memory in this paper. This model consists of a
memory, i.e., a one-dimensional array of words, each of
which is large enough to hold (at least) the representation
of a nonnegative integer which is an index into that
array; and a central processing unit, or CPU, which has
a small fixed number of registers the size of a word. The
CPU can perform most operations on a word in a fixed,
bounded amount of time. The only operations we require
are load, store, add, subtract, test if zero, and perhaps
some bit-testing. It is hard to find a computer today
without these operations.

As simple as these requirements are, they do exclude
virtual memory computers. These machines are interest-
ing because they take advantage of the locality of refer-
ence effect, i.e. the nonzero serial correlation of accesses
to memory, to reduce the amount of fast memory in a
system without greatly increasing the average access
time. However, the time required to load a particular
word from virtual memory into a CPU register is not
bounded because the primary memory may have to fetch
it from a lower level memory. Since we are more inter-
ested in tight upper bounds, rather than average perform-
ance, this class of machines is excluded.

Since the primary list processing language in use
today is LISP, and since most of the literature uses the
LISP paradigm when discussing these problems, we will
continue this tradition and center our discussion around
it. Due to its small cells, which consist of 2 pointers
apiece, LISP is also a kind of worst case for garbage
collection overhead.

There are two fundamental kinds of data in LISP:
list cells and atoms. List cells are ordered pairs consisting
of a car and a cdr, while atoms are indecomposable.
ATOM(x) is a predicate which is true if and only if x is
an atom (i.e. if and only if x is not a list cell); EQ(x, y)
is a predicate which is true if and only if x and y are
the same object; CAR(x) and CDR(x) return the car
and cdr components of the list cell x, respectively;
CONS(x, y) returns a new list cell (not EQ to any other
accessible list cell) whose car is initially x and whose cdr
is initially y; RPLACA(x, y) and RPLACD(x, y) store
y into the car and cdr of x, respectively. We assume here

2 8 1

that these seven primitives are the only ones which can
access or change the representation of a list cell.

There have been several attempts to tackle the prob-
lem of real time list processing. Knuth [22, p. 422] credits
Minsky as the first to consider the problem, and sketches
a multiprogramming solution in which the garbage col-
lector shares time with the main list processing program.
Steele's paper [30] was the first in a flurry of papers
about multiprocessing garbage collection which included
contributions by [16, 17] and [23, 24]. [28] independently
detailed the Minsky-Knuth-Steele method, and both [28]
and [33] analyzed the time and storage required to make
it work.

The Minsky - K n u t h - Steele - Mul le r - Wad le r
(MKSMW) method for real-time garbage collection has
two processes running in parallel. The list processor
process is called the mutator while the garbage collector
is called the collector (these terms are due to [16]). The
mutator executes the user's program while the collector
performs garbage collection over and over again. The
collector has three phases: mark, sweep, and relocate.
During the mark phase, all accessible storage is marked
as such, and any inaccessible storage is picked up during
the sweep phase. The relocate phase relocates accessible
cells in such a way as to minimize the address space
required. Since the mutator continues running while the
mark and relocate phases proceed, the free list must be
long enough to keep the mutator from starvation. During
the sweep phase, cells must be added to the free list faster
than they can be taken off, on the average, lest the net
gain in cells from that garbage collection cycle be nega-
tive.

The behavior of this algorithm under equilibrium
conditions (which is when a cell is let go for every cell
CONSED, and when the rates of cell use by the mutator,
and of marking, sweeping, and relocating by the collec-
tor, are all constant) was studied in [28] and [33]. If we
let m be the ratio of the rate of CONSING to that of
marking, s be the ratio of the rate of CONSlNG to that of
sweeping, and r be the ratio of the rate of CONSING to
that of relocating, then we can derive estimates of the
size of storage needed to support an accessible population
of N cells under equilibrium conditions? Using these
assumptions, we derive:

Maximum MKSMW Storage Required
m + (m + 1) (r + 1)

<--. N + size of collector stack
1 - s (r + 1)

We note that r = 0 if there is no relocation (i.e. it
happens instantaneously), in which case we have the
simpler expression:

Maximum MKSMW Storage Required
1 + 2 m

----- N - - + size of collector stack
l - - s

The collector stack seems to require depth N to
handle the worst case lists that can arise, but each

a Of course s < 1, or else the storage required is infinite.

Communications April 1978
of Volume 21
the ACM Number 4

position on the stack need only hold one pointer. Since
a LISP cell is two pointers, the collector stack space
requirement is 0.5N. Thus, we arrive at the inequality:

Maximum MKSMW Storage Required
1 . 5 + 2 m - . 5 s

--<N-
1 - - s

These estimates become bounds for nonequilibrium
situations so long as the ratios of the rate of CONSING to
the rates of marking, sweeping, and relocating are con-
stant. In other words, we relativize the rates of marking,
sweeping, and relocating with respect to a CONS counter
rather than a clock.

The Dijkstra-Lamport (DL) method [16, 17, 23, 24]
also has the mutator and collector running in parallel,
but the collector uses no stack. It marks by scanning all
of storage for a mark bit it can propagate to the marked
cell's offspring. This simple method of garbage collection
was considered because their main concern was proving
that the collector actually collected only and all garbage.
Due to its inefficiency, we will not consider the storage
requirements of this method.

Both the MKSMW and the DL methods have the
drawback that they are parallel algorithms and as a
result are incredibly hard to analyze and prove correct.
By contrast, the method we present is serial, making
analyses and proofs easy.

2. The Method

Our method is based on the Minsky garbage collec-
tion algorithm [26], used by Fenichel and Yochelson in
an early Multics LISP [18], elegantly refined in [11], and
applied by Arnborg to SIMULA [1]. This method divides
the list space into two semispaces. During the execution
of the user program, all list cells are located in one of the
semispaces. When garbage collection is invoked, all ac-
cessible cells are traced, and instead of simply being
marked, they are moved to the other semispace. A for-
warding address is left at the old location, and whenever
an edge is traced which points to a cell containing a
forwarding address, the edge is updated to reflect the
move. The end of tracing occurs when all accessible cells
have been moved into the "to" semispace (tospace) and
all edges have been updated. Since the tospace now
contains all accessible cells and the "from" semispace
(fromspace) contains only garbage, the collection is done
and the computation can proceed with CONS now al-
locating cells in the former fromspace.

This method is simple and elegant because 1) it
requires only one pass instead of three to both collect
and compact, and 2) it requires no collector stack. The
stack is avoided through the use of two pointers, B and
S. B points to the first free word (the bottom) of the free
area, which is always in the tospace. B is incremented by
COPY, which transfers old cells from the fromspace to
the bottom of the free area, and by CONS, which

282

allocates new cells. S scans the cells in tospace which
have been moved, and updates them by moving the cells
they point to. S is initialized to point to the beginning of
tospace at every flip of the semispaces and is incremented
when the cell it points to has been updated. At all times,
then, the cells between S and B have been moved, but
their cars and cdrs have not been updated. Thus when
S = B all accessible ceils have been moved into tospace
and their outgoing pointers have been updated. This
method of pointer updating is equivalent to using a
queue instead of a stack for marking, and therefore
traces a spanning tree of the accessible cells in breadth-
first order.

Besides solving the compaction problem for classical
LISP, the Minsky-Fenichel-Yochelson-Cheney-Arnborg
(MFYCA) method allows simple extensions to handle
nonuniformly sized arrays and CDR-coding because free
storage is kept in one large block. Allocation is therefore
trivial; one simply adds n to the "free space pointer" to
allocate a block of size n.

Copying garbage collectors have been dismissed by
many as requiring too much storage for practical use
(because they appear to use twice as much as classical
LISP), but we shall see that this judgement was, perhaps,
premature.

We present the MFYCA algorithm here in pseudo-
Algol-BCPL notation. The notation "a[fl]" means the
contents of the word whose address is the value of a plus
the value offl , i.e. the contents of a + B. I f it appears on
the left hand side of ":=", those contents are to be
changed. Thus, p[/] refers to the ith component of the
vector pointed to by p. The function size(p) returns the
size of the array pointed to by p. The notation "a & fl"
is similar to the notation "a; fl" in that a and fl are
executed in order; however, "a & fl" returns the value of
a rather than the value of ft. Thus, ";" and "&" are the
duals of one another: "al; a2; ..., an" returns the last
value (that of an) whereas "'al & a2 & ... & an" returns
thefirst value (that of al).

Our conventions are these: the user program has a
bank of NR registers R[1] R[NR]. The user program
may not "'squirrel away" pointers outside o f the bank R
during a call to CONS because such pointers would
become obsolete if garbage collection were to occur. (We
will show later how to deal with a user program stack in
such a way that the real-time properties of our system
are not violated.) Pointers either are atoms or refer to
cons cells in fromspace or tospace. A cons cell c is
represented by a 2-vector of pointers: car(c) = c[0],
cdr(c) = c[1]. FLIP, F R O M S P A C E and TOSPACE are
implementation-dependent routines. FLIP interchanges
the roles of fromspace and tospace by causing CONS
and C O P Y to allocate in the other semispace and the
predicates F R O M S P A C E and TOSPACE to exchange
roles. FLIP also has the responsibility of determining
when the new tospace is too small to hold everything
from the fromspace plus the newly consed cells. Before
flipping, it checks if size(fromspace) is less than

Communications April 1978
of Volume 21
the ACM Number 4

% The Minsky-Fenichel-Yoehelson-Chaeney-Arnborg [26, 18, 11, 1] Garbage Collector
pointer B; % Bottom; points to bottom of free area. %
pointer S; % Scan; points to first untraced cell. %
pointer/~, % Top; points to top of tospace. %

% Assertions: S <-- B < T and T - B is even. %
pointer procedure CONS(x, y) --- % Allocate the list cell (x.y). %

begin
if B = T

then
begin

flip();
for i = 1 to NR

do R[i]:= move (R[i]);
x := move(x); y := move(y);
while S < B

do begin
S[~] := move(S[~);
S[I] := move(S[l]);
S : = S + 2

end
end;

if B --> T then error;
B[IJ] := x; B[1] :=y;
B&(B. - - -B+2)

end;
pointer procedure CAR(x) --- x[J~];
pointer procedure CDR(x) =- x[l];
procedure RPLACA(x, y) --- x [~ := y;
procedure RPLACD(x, y) ---- x[l] := y;
boolean procedure EQ(x, y) m x = y;
boolean procedure ATOM(x) -=

not tospace(x);
pointer procedure MOVE(p) ---

if not fromspace(p)
then p
else begin

if not tospace(p[~l])
then p[ff] := copy(p);

t,[0~
end;

pointer procedure COPY(p) -~
begin

if B --> T then error;
B[IJ] :=p[J~]; B[I] ~p[l];
B&(B. - - -B+2)

end;
%

% If there is no more free space, %
% collect all the garbage. %
% This block is the "garbage collector". %
% Interchange semispaces. %
% Update all user registers. %

% Update our arguments. %
% Trace all accessible cells. %

% Update the car and cdr. %

% Point to next untraced cell. %

% Memory is full. %
% Create new cell at bottom of free area. %
% Return the current value of B %
% after stepping it to next cell. %
% A cell consists of 2 words; %
% car is lst; cdr is 2nd. %
% car(x) := y %
% cdr(x) := y %
% Are x, y are the same object? %
% Is x an atom? %

% Move p if not yet moved; return new address. %
% We only need to move old ones. %
% This happens a lot. %

% We must move p. %
% Copy it into the bottom of free area. %
% Leave and return forwarding address. %

% Create a copy of a cell. %
% Allocate space at bottom of free area. %
% Memory full? %
% Each cell requires 2 words.
% Return the current value of B %
% after moving it to next cell. %

TOSPACE, FROMSPACE test whether a pointer is in that semispace.

(1 + m)[size(tospace) - (T - B)] , w h e r e T i s t he t op o f

tospace , a n d i f f r o m s p a c e (the n e w tospace) is too smal l ,

e i t he r it m u s t be e x t e n d e d , o r t he sys tem m a y l a t e r s top

w i t h a " m e m o r y o v e r f l o w " ind ica t ion .
I n o r d e r to c o n v e r t M F Y C A in to a r e a l - t i m e a lgo-

r i thm, we force t he m a r k ra t io m to be c o n s t a n t by

c h a n g i n g C O N S so tha t it does k i t e ra t ions o f t he g a r b a g e

co l l ec t i on l o o p b e f o r e p e r f o r m i n g e a c h a l loca t ion . Bu t

this m e a n s tha t b o t h semispaces c o n t a i n access ib le cel ls
at a l m o s t a l l t imes. I n o r d e r to s impl i fy the a l g o r i t h m

a n d the proof , we trick the user program into believing
that garbage collection ran and f inished at the time o f the
lastflip; i.e. we assert that , as before , the use r p r o g r a m

sees addresses o n l y in tospace .

S o m e s l ight e f fo r t m u s t be m a d e to k e e p up this
a p p e a r a n c e . W h e n the semispaces are i n t e r c h a n g e d , a l l

the use r p r o g r a m regis ters m u s t be u p d a t e d i m m e d i a t e l y

to p o i n t to tospace . T h i s g ives t he co l l ec to r a h e a d start

283

%

%

o n the m u t a t o r . S ince the o n l y o p e r a t i o n s tha t m i g h t

v io l a t e o u r asser t ion a re C A R a n d C D R , we m a k e sure

tha t C A R a n d C D R cause f o r w a r d i n g addresses to be

fo l lowed , a n d cells to be m o v e d , w h e n necessary . T h i s

ensu re s tha t t he m u t a t o r c a n n o t pass the col lector . It

t u rns ou t tha t p r e s e r v i n g o u r asse r t ion is m u c h s i m p l e r

t h a n p r e s e r v i n g the c o r r e s p o n d i n g asser t ions o f D L [16,

17, 23, 24]. In pa r t i cu la r , R P L A C A a n d R P L A C D can-

n o t cause a n y t r oub l e at all!
T h e r e is a n o t h e r p r o b l e m caused by i n t e r l e a v i n g

g a r b a g e co l l ec t i on w i t h n o r m a l list p rocess ing : the n e w

cells tha t C O N S crea tes wi l l be i n t e r l e a v e d w i t h those

m o v e d , t h e r e b y d i lu t ing the m o v e d cel ls w h i c h m u s t be

t r a c e d by C O N S . O f course , n e w cel ls h a v e the i r cars

a n d cdrs a l r e a d y in t o space a n d the re fo re do n o t n e e d

to be t raced. W e a v o i d this was te o f t race e f fo r t t h r o u g h
the use o f the p o i n t e r T, w h i c h po in t s to the top o f the

f ree area , a n d by a l l oca t i ng al l new cells there .

Communications April 1978
of Volume 21
the ACM Number 4

%

integer k;

pointer/~,
pointer procedure CONS(x, y)

begin
if B = T

then begin
if S < B then error;
flip();
f o r / = 1 t o N R

do R[i] ~ move(R[i]);
x .= m o v e (x) ; y .= move(y)

end;
f o r i = 1 t o k w h i l e S < B

do begin
S [~ ~ m ove (S [~) ;
S[1] .--- move (S[I]) ;
S : = S + 2

end;
if B = T then error;
T ~ T - 2 ;
T[I~] .'= x; T[I] ~ y ;
T

end;
pointer procedure C A R (x) m x[JSq ~ move(x[ff]);
pointer procedure C D R (x) =- x[1] ~ move(x[l]) ;
%

Serial Real-Time System (SRT)

% Global trace ratio parameter:
the number of cells to trace per cons. %

% Top; Points to top o f free area. %
% Do some collection,

then allocate (x . y). %

% Check if free area is empty. %
% Switch semispaces. Memory is full %
% if tracing is not finished. %
% Flip semispaces. %

% Update user registers %
% and our arguments. %

% Do k iterations of gc. %

% Update car and cdr. %

% Go on to next untraced cell. %

% Actually create the cell. %
% Move in car and cxlr. %
% Return address of new cell. %

% Move, update and return x[ff]. %
% Move, update and return x[1]. %

Procedures not redefined here are as before.

%

%

The time required by all of the elementary list oper-
ations in this algorithm, with the exception of CONS,
can easily be seen to be bounded by a constant because
they are straight-line programs composed from primi-
tives which are bounded by constants. CONS is also
bounded by a constant because the number of mutator
registers is a (small) fixed number (e.g. 16), and the
parameter k is fixed. In principle, given the number of
registers and the parameter k, the two loops in CONS
could be expanded into straight-line code; hence the time
it requires is also bounded by a constant.

The proof that the incremental collector eventually
moves all accessible cells to tospace is an easy induction.
Upon system initialization there are no accessible cells,
hence none in tospace, and so we have a correct basis.
Suppose that at some point in the computation we have
just switched semispaces so that tospace is empty. Sup-
pose further that there are N accessible cells in fromspace
which must be moved to tospace. Now, every cell which
was accessible at the time of flipping eventually gets
moved when it is traced, unless lost through RPLACA
and RPLACD, and as a result appears between S and B.
Furthermore, a cell is moved only once, because when it
is moved it leaves behind a forwarding address which
prevents it from being moved again. When the pointer
S reaches a cell, its edges are traced--i.e., the cells they
point to are moved, if necessary. Finally, only cells which
have been moved appear between S and B. Therefore,
the number of those accessible, unmoved cells in from-
space decreases monotonically, eventually resulting in
no accessible, unmoved cells in fromspace. At this point,
the collector is done and can interchange the two sem-
ispaces.

284

It should be easy to see why the other list operations
cannot adversely affect the progress of the collector. A
CAR or CDR can move a cell before the collector has
traced it. But since moving it increases B but not S, it
will be traced later. RPLACA and RPLACD can affect
connectivity, but since all of their arguments are already
in tospace, they have already been moved and may or
may not have been traced. Consider RPLACA(p, q).
Suppose that p has been traced and q has not. But since
q has been moved but not traced, it must be between S
and B and will not be missed. Suppose, on the other
hand, that q has been traced and p has not. Then when
p is traced, the old CAR o f p will not be traced. But this
is all right, because it may no longer be accessible. I f it
still is the target of an edge from some accessible cell,
then it either already has, or will be, traced through that
edge. Finally, if either both p and q have been traced or
both have not been, there is obviously no problem.

This algorithm can also be proved correct by the
methods of DL [16, 17, 23, 24], because this particular
sequence of interleaving collection with mutation is only
one of the legal execution sequences of the DL algorithm
on a serial machine. Therefore, if the DL algorithm is
correct, then so is this one. The correspondence is this:
white nodes are those which reside in fromspace, i.e.
those which have not yet been moved; grey nodes are
those which have been moved but have not yet been
traced, i.e. those between S and B; and black nodes are
those which have been moved and traced, and those
which have been allocated directly in tospace (cells below
S or above T). Then the assertions are:

A) each node will only darken monotonically;

Communica t ions April 1978
of Volume 21
the ACM Number 4

B) no edge will ever point from a black node to a white
one; and

C) the user program sees only grey or black nodes.

We can now see why the burden is on CAR and
C D R rather than RPLACA and R P L A C D - - t h e latter
will not violate B so long as the former does not violate
C. Using these assertions, we see that the mutator and
the mark phase of the collector are essentially doing the
same thing: tracing accessible cells. The difference is that
the collector goes about it systematically whereas the
mutator wanders. Thus, only the collector knows for sure
when all the cells in fromspace have been traced so that
the two semispaces can be interchanged. Assertion C
also allows CAR and C D R to update a cell in which a
pointer to fromspace is found, thus reducing pointer-
chasing for cells which are accessed more than once.

We must now analyze the storage required by this
algorithm. Suppose that at some flip of the semispaces
there are N accessible nodes. Then the collector will not
have to move or trace any more than N cells. I f it traces
(makes black) exactly k cells per CONS, then when the
collector has finished, the new semispace will contain _<
N + N / k = N(1 + m) cells, letting m = 1 / k . I f only N o f
these are accessible, as in equilibrium conditions, then
the next cycle of the collector will copy those N cells
back to the first semispace, while performing N m CON-
SES. Hence, we have the inequality:

Maximum SRT Storage Required _< N(2 + 2m)
= N(2 + 2 / k)

Therefore, for a program which has a maximum cell
requirement of N cells operating on a fLxed-size real
memory of 2 M cells, the parameter k must be greater
than N / (M - N) to guarantee that tracing is finished
before every flip.

I f we compare the bound for our algorithm with the
bound for MKSMW, using the unlikely assumption that
sweeping and relocation take no time (s = r = 0), we
find that they are quite similar in storage requirements.

Maximum M K S M W Storage Required < N(1.5 + 2m)
Maximum SRT Storage Required ___ N{ 2 + 2m)

I f m = 1 (which corresponds to one collector iteration
per CONS), the two algorithms differ by only 1 part in
8, which is insignificant given the gross assumptions we
have made about MKSMW's sweeping and relocation
speeds. It is not likely that the storage requirements of a
MKSMW-type algorithm can be significantly improved
because it cannot take advantage of techniques such as
stack threading or CDR-coding. Stack threading cannot
be done, because accessible cells have both their car and
cdr in use? CDR-coding using M K S M W is very awk-
ward because CONS must search for a free cell of the
proper size and location before allocating a cell, since
the free space is fragmented. On the other hand, our

4 The Deutsch-Schorr-Waite collector [22, p. 417-418] "threads"
the stack but temporarily reverses the list structure, thus locking out
the mutator for the duration.

285

algorithm can be easily modified to use CDR-coding and
thereby reduce storage requirements to approximately
N(1 + m).

3. The Parameter m(= l /k)

I f k is a positive integer, then the parameter
m (= 1 / k) will lie in the interval 0 < m --< I. Therefore,
the factor of 1 + m in our bounds must lie between l
and 2. This means that the storage requirements for our
method can be adjusted by varying k, but they will not
vary by more than a factor of 2 as long as k is integral.
Now, the time to execute CONS is proportional to
k + c, for some suitable constant c. Therefore, one can
trade off storage for CONS speed, but only within this
limited range. Furthermore, as k rises above 4 the storage
savings become insignificant; e.g. doubling k to 8 yields
a storage savings of only 10%, yet almost doubles CONS
time. Of course, if storage is limited and response time
need not be fast, larger k's might be acceptable.

I f the method is used for the management of a large
database residing on secondary storage, k could be made
a positive rational number less than 1, on the average.
For example, to achieve an average k = l (m = 3), one
could have CONS perform an iteration of the collector
only every t h i rd time it was called. The result of this
would double the storage required (m + 1 = 4), but
would reduce the average CONS time by almost ~-. Of
course, the wors t case time performance for CONS would
still be the same as though k were 1.

This improvement is significant because each itera-
tion of the collector traces all the pointers of one record.
This requires retrieving that record, updating all of its
pointers by moving records if necessary, and then re-
writing the record. I f there are t pointers to be updated,
then t + 1 records must be read and written. This sounds
like a lot of work, but this much work is done only when
a record is created; if there are no record creations, then
with the exception of the first access of a record via a
pointer stored in another record, the accessing and up-
dating functions will be as fast as on any other file
management scheme. Therefore, since secondary storage
is usually cheap but slow, choosing k < 1 in a file
management system allows us to trade off storage space
against average record creation time.

With a little more effort, k can even be made var iab le

in our method, thus allowing a program to dynamically
optimize its space-time tradeoff. For example, in a da-
tabase management system a program might set k = 0
during an initial l o a d of the database because it knows
that, even though there are many records being created,
none are being let go, and therefore the continual copy-
ing of the collector will achieve no compaction. The
function READ in LISP might want to exercise the same
prerogative and for the same reason. Of course, any
reduction of k should not take effect until the next flip
to avoid running out of storage before then.

Communications April 1978
of Volume 2 l
the ACM Number 4

% Serial Real-Time System with User Stack %
% The user stack resides in the array "ustk" and grows upward from "ustk[~". The global variable "SP" is the user stack pointer and points to

the current top of the user stack. The global variable "SS" scans the user stack and points to the highest stack level which has not yet been
traced by the collector. %

integer S P init(~);
integer S S init(£1);
procedure USER__PUSH(x) ----

begin
SP.--- S P + 1;
ustk[SP] .--- x

end;
pointer procedure USER___POP() ---

move(ustk[SP]) &
begin

S P := S P - I;
S S .= min(SS, S P)

end;
pointer procedure USER__GET(n) ---

u s t k [S P - n] .~ m o v e (u s t k [S P - n]);
pointer procedure CONS(x, y) ---

begin
i f B = T

then begin
if SS >£1or S < B

then error;
N ~ flip();
S S .--- SP;

k ' ~ c e l l (k , S S / N) ;

f o r / = I t o N R

do R[i] .--- move(R[O);
x := m o v e (x) ; y ~ move(y)

end;
for i = 1 to k ' while S S > SJ

do begin
ustk[SS] .---- move(ustk[SS]);
S S .--- S S -- 1

end;
f o r i = l t o k w h i l e S < B

do begin
S[fl] .--- move(S[it]);
S[I] .--- move(S[1]);
S . - - - S + 2

end;
if B = T then error;
T.--- T - 2 ;
T[O] .'= x; T[1] .---- y;
T

end;

4. A User Program Stack

If the user program utilizes its own stack as well as a
bank of registers, the stack may (in theory) grow to an
unbounded size and therefore cannot be wholly updated
when the semispaces are flipped and still preserve a
constant bound on the time for CONS. This problem
may be trivially solved by simulating the stack in the
heap (i.e. PUSH(x) = CONS(x , stack) and POP;() ---
CDR(stack)); this simulation will satisfy the bounded-
time constraints of classical stack manipulation. How-
ever, this simulation has the unfortunate property that
accessing items on the stack requires time proportional
to their distance from the top.

In order to maintain constant access time to elements
deep in the stack, we keep stack-like allocation and
deallocation strategies but perform the tracing of the
stack in an incremental manner. We first fix the stack

286

% User stack pointer. %
% User stack scanner. %
% Push x onto user stack. %
% Note: x will not be in fromspace. %

% Pop top value from user stack. %
% Move value if necessary; %

% then update stack pointer. %
% Keep stack scanner current. %

% Get nth element from top of stack. %
% Move and update if necessary. %
% Collect some, then allocate (x .y). %

% Check if free area is empty. %
% Interchange semispaces. %
% Check for memory overflow. %

% Set N to number of cells in use. %
% Start stack scan at op of stack. %
% Calculate stack trace effort. %

% Update user registers %
% and our arguments. %

% Move k ' user stack elements and %
% update scan pointer. %

% Do k iterations of gc. %

% Trace and update car, cdr. %

% Actually create the cell. %
% Install car and cdr. %
% Return address of copied cell. %

accessing routines so that the user program never sees
pointers in fromspace. This change requires that the
MOVE routine must be applied to any pointers which
are picked up from the user stack. We must then change
CONS to save the user stack pointer when the semispaces
are flipped so that it knows which stack locations must
be traced. Finally, the user stack POP routine must keep
this saved pointer current to avoid tracing locations
which are no longer on the user stack [28].

The only remaining question is how many stack
locations are to be traced at every CONS. To guarantee
that stack tracing will be finished before the next flip, we
must choose the stack tracing ratio k' (the number of
stack locations traced per CONS) so that the ratio k'/k
is the same as the ratio of stack locations in use to cons
cells in use. We recompute k' at each flip, because the
"in use" statistics are available then. Due to this com-
putation, a constant bound on the time for CONS exists

Communications April 1978
of Volume 21
the ACM Number 4

only if the ratio of stack size to heap size is bounded,
and it is proportional to that ratio.

The preceding code exhibits these changes.
The complexity involved in this conversion is essen-

tially that necessary to make the serial real-time method
work for several different spaces [27]. In such a system,
each space is a contiguous area in the address space
disjoint from the other spaces, and has its own represen-
tation conventions and allocation (and deallocation)
strategies. The system of this section thus has two spaces,
the heap and the user stack, which must be managed by
cooperating routines.

5. CDR-Coding (Compact List Representation)

In this section, we discuss the interaction of our
algorithm with a partial solution to the second big prob-
lem with list structures: their inefficient use of storage.
Whereas a list of 5 elements in a language like Fortran
or APL would require only a 5 element array, such a list
in LISP requires 5 cells having two pointers apiece. So-
called "CDR-coding" [12, 19] can reduce the storage cost
of LISP lists by as much as 50%. The idea is simple:
memory is divided up into equal-sized chunks called Q's.
Each Q is big enough to hold 2 bits plus a pointer/7 to
another Q. The 2 bits are decoded via the table:

00--NORMAL; CAR of this node is/7; CDR
is in the following Q.

01--NIL; CAR of this rode is/7; CDR
is NIL.

10--NEXT; CAR of this node is/7; CDR
is the following Q.

11--EXTENDED; The cell extension located at
p holds the car and cdr for
this node. 5

CDR-c0ding can reduce by 50% the storage require-
ments of a group of cells for which CDR is a 1 - 1
function whose range excludes non-nil atoms. This is a
non-trivial saving, as all "dotless" s-expressions read in
by the LISP reader have these properties. In fact, it has
been found [12] that, after linearization, 98% of the non-
NIL cdrs in several large LISP programs referred to the
following cell. These savings are due to the fact that
CDR-coding takes advantage of the implicit linear or-
dering of addresses in address space.

What implications does this coding scheme have for
the elementary list operations of LISP?. Most operations
must dispatch on the CDR code to compute their results,
and RPLACD needs special handling. Consider
RPLACD(/7, q). If/7 has a CDR code of NIL or NEXT,
then it must be changed to EXTENDED, and the result
of CONS(CAR(/7), q) placed in p.6

5 These conventions are slightly different from those of [19].
s We note in this context that if RPLACD is commonly used to

destructively reverse a list--e.g, by LISP's "NREVERSE"-- the system
could also have a "PREVIOUS" CDR-code so that RPLACD need
not call CONS so often.

2 8 7

The number of memory references in the elementary
operations has been minimized by making the following
policies [20]: 1) every EXTENDED cell has a NORMAL
extension; 2) the user program will never see a pointer to
the extension of an EXTENDED cell; and 3) when
COPY copies an EXTENDED cell, it reconstitutes it
without an extension.

CONS, CAR, CDR, RPLACA, and RPLACD must
be changed to preserve these assertions, but EQ and
ATOM require no changes from their non-CDR-coded
versions. Since an EXTENDED cell cannot point to
another EXTENDED cell, the forwarding of EX-
TENDED pointers need not be iterated. These policies
seem to minimize memory references because each cell
has a constant (between flips) canonical address, thereby
avoiding normalization [30] by every primitive list op-
eration.

CDR-coding requires a compacting, linearizing gar-
bage collector if it is to keep allocation simple (because
it uses two different cell sizes) and take full advantage of
the sequential coding efficiency. The MFYCA algorithm
presented above compacts, but does not linearize cdrs
due to its breadth-first trace order. However, the trace
order of an MFYCA collector can easily be modified at
the cost of an additional pointer, PB. PB keeps track of
the previous value of B (i.e. PB points to the last cell
copied), so that tracing the cdr of the cell at PB will copy
its successor into the next consecutive location (B), thus
copying whole lists into successive contiguous locations.

The meaning of the scan pointer S is then changed
slightly so that it points to the next word which must be
updated rather than the next cell. Finally, the trace
routine is modified so that tracing the cdr of PB has
priority over tracing the edge at S and the condition on
the trace loop is modified to amortize both the copying
effort (measured by movements of B) and the tracing
effort (measured by movements of S) over all the CON-
SES. These modifications do not result in a depth-first
trace order, but they do result in cdr-chains being traced
to the end, with few interruptions. Thus an MFYCA
collector can minimize the amount of memory needed
by CDR-coded lists.

The size of the tospace needed for CDR-coding is
(1 + m) times the amount of space actually used in
fromspace. With a coding efficiency improvement of e
over the classical storage of LISP cells, and under equi-
librium conditions, we have the inequality:

Maximum SRTC Storage Required --< Ne(2 + 2m)

Since we have claimed that e = . .5 , we get the
following estimate:

SRTC Storage Required = N(1 + m) (!)

But this latter expression is less than the bound
computed for MKSMW. Thus, CDR-coding has given
us back the factor of 2 that the copying garbage collector
took away.

The real-time properties of our algorithm have not

Communications April 1978
of Volume 21
the ACM Number 4

%

pointer S;
pointer PB;

pointer L, H;

pointer procedure CONS(x,),) ----
begin

if T - B < 2
then begin

if S < B then error;
flip();

for i = 1 to N R
do R[i] := move (R[i]);
x .--- move(x) ;) , .--- move()'}

end;
while (S + B } / 2 - L < k * (H - T) and S < B
do if P B < B

then P B := (B & CDR(PB)) ;
else begin

Sift] .--- move (S [~) ;
S . - = - S + I

end;
if B = T then error;
T ~ T - i

if) , = nil
then code(T) .--- "NIL"
else if3, = T + I

then code(T) .'= "NEXT"
else begin

if B = T then error;
T . - - - T - 1 ;
code(T) .--- "NOR M AL " ;

T[I] ~ f l
end;

T[£1] .--- x;
T

end;

been affected in the least by CDR-coding; in fact, good
microcode might be able to process CDR-coded lists
faster than normal lists since fewer references to main
memory are needed.

CDR-coding is not the final answer to the coding
efficiency problems of list storage, because far more
compact codes can be devised to store LISP's s-expres-
sions. For example, both the car and cdr of a cell could
be coded by relative offsets rather than full pointers
[12]. However, a more compact code would represent
some cells in so few bits that the pointer we need for a
forwarding address would not fit, rendering our scheme
unworkable. Part of the problem is inherent in LISP's
small cell size; small arrays can perform much better.

6. Vectors and Arrays

Arrays can be included quite easily into our frame-
work of incremental garbage collection by simply en-
closing certain parts of the collector program in loops
which iterate through all the pointers in the array, not
just the first and second. The convergence of the method
with regard to storage space can also be proved and
bounds derived. However, the method can no longer
claim to be real-time because neither the time taken by

2 8 8

Serial Real-Time System with CDR-Coding
% Next cell whose car needs tracing. %
% Pointer to previous value of B. %
% Low and high limits of tospace. %
% Assertion: L <-- S <- P B <- B <-- T <-- H. %
% Create a new cell in tospace with %
% cdr o f x and cdr ofy. %
% Flip when free area is exhausted. %
% This part is the same as usual. %
% Copying is not done; memory overflow! %
% Interchange semispaces. %

%

% Update user registers. %
% Update our arguments. %

% Trace and copy a measured amount . %
% Extend current list, if possible. %
% C D R will trace this edge for us. %

% Update this edge. %
% Step S over this word. %

% Check for memory overflow. %
% Create new cell at top o f free area. %

% l f y is special case, %
% then create a short cell %
% with appropriate cdr-code, %
% Otherwise, create a normal cell. %
% Need more space for the cdr. %

% Set in " N O R M A L " cdr-code. %
% Set in the edr. %

% Set the car in the new cell. %
% Return the new cell. %

the array allocation function (ARRAY-CONS) nor the
time taken by the array element accessing function is
bounded by a constant. This unbounded behavior has
two sources: copying an array and tracing all its pointers
both require time proportional to the length of the array.
Therefore, if these operations are included in a computer
as noninterruptable primitive instructions, hard interrupt
response time bounds for that computer will not exist.
However, an arbitrary bound (say 10), placed on the size
of all arrays by either the system or the programmer,
allows such bounds to be derived.

A scheme which overcomes some of these problems
has been devised [31]. In it, each vector is given a special
link word which holds either a forwarding pointer (for
vectors in fromspace which have been partially moved),
a backward link (for incomplete vectors in tospace), or
NIL (for complete vectors). MOVE no longer copies the
whole array, but only allocates space and installs the
forward and backward links. Any reference to an ele-
ment of a moved but incompletely updated vector will
follow the backward link to the fromspace and access
the corresponding element there. When the scan pointer
in the tospace encounters such a vector, its elements are
incrementally updated by applying MOVE to the cor-
responding elements of its old self; after the new one is
complete, its link is set to NIL. Element accesses to

Communicat ions April 1978
of Volume 21
the ACM Number 4

pointer procedure CAR(x)
brplaca(x, move(bcar(x)));

procedure RPLACA(x,),)
brplaca(x,),);

pointer procedure BCAR(x)
if code(x) = "EXTENDED"

then (x[ff])[ff]
else x[ff];

pointer procedure BRPLACA(p, q) =-
if code(p) = "EXTENDED"

then (p[~)[if] ~ q
else p [~ .--- q;

pointer procedure CDR(x)
brplacd(x, move(bcdr(x)));

procedure RPLACD(x, y) ---
begin

if code (x) = "NIL" or
code(x) = "NEXT"
then

begin pointer p;
p := CONS(CAR(x) , "DUMMY");
x ~ move(x);) , ~ move()');
x [~ .--- p;
code(x) ~ "EXTENDED"

end;
brplacd(x,),)

end;
pointer procedure BCDR(x) ~-

if code(x) = "NORMAL" then x[1]
else if code(x) = "NIL" then nil
else if code(x) = "NEXT" then x + 1
else (x[ff])[l] ;

pointer procedure BRPLACD(p, q)
if code(p) = "EXTENDED"

then (p[fl])[1] .-=- q
else if code (p) = "NORMAL"

the np [l] ~ q
else q;

integer procedure SIZE(p) ~-
if code(p) = "NORMAL"

then 2 else 1;
pointer procedure COPY(p) =-

begin
if PB = B - 2 and bcdr(PB) = p

then begin
code(PB) ~ "NEXT";
B ~ B - 1

end;
if bcdr(p) = nil

then code(B) ~ "NIL";
else code(B) ~ "NORMAL";

B[fl] .--- bcar(p);
brplacd(B, bcdr(p));
PB ~ B;
B ~ B + size(B);
if B > T then error;
PB

end;
%

~ertal It, eat- 11me ~ystem wltll ~r~rt-~oomg (contmuea)

% CAR must move cell it uncovered. %
% Update this edge. %
% x[Jff] ~),. May require subtlety. %

% Basic car; dispatch on CDR-code. %
% Type "EXTENDED" means %
% indirect car. %
% All other types have normal cars. %
% Basic rplaca; dispatch on CDR-code. %
% If extended cell, clobber indirectly. %

% All others have normal car. %
% CDR moves uncovered cell, but updates %
% only if still possible after move. %
% x[1] ~) , . May require brute force. %

% Test for screw cases. %
% EXTENDED case will fall through. %

% Extend the cell x. %
% Construct guaranteed NORMAL cell. %
% Update arguments in case CONS flipped. %
% Leave forwarding address in old cell. %
% The old cell has now been extended. %

% Finally replace the cdr. %

% Basic cdr; dispatch on CDR-code. %
% NORMAL cells have a second word. %
% Interpret NIL CDR-code. %
% Interpret NEXT CDR-code. %
% EXTENDED cells point to NORMAL cells. %
% Handle easy cases of RPLACD. %
% We have extended cell; %
% clobber the NORMAL indirect. %
% The easiest case of all. %

% In all cases, return q as value. %
% Find the size o f p from its CDR-code. %
% "NIL", "NEXT", and "EXTENDED" all have %
% size(p) = 1. %
% Copy the cell p; append to current %
% train if possible. %
% See if we can hop this NEXT train. %

% Convert NORMAL cell to NEXT cell. %
% Reuse extra space now available. %

% Create a NIL cell, if appropriate. %

% Otherwise, all cells are NORMAL. %
% Copy over car; %
% and cdr too, if necessary. %
% PB is end of current NEXT train. %
% Step B over newly copied cell, %
% check for memory overflow, %
% and return pointer to new copy. %

Procedures not redefined here are as before.

i n c o m p l e t e v e c t o r s c o m p a r e t h e s c a n p o i n t e r t o t h e e l e -

m e n t a d d r e s s ; a c c e s s is m a d e to t h e o l d (n e w) v e c t o r i f

t h e s c a n p o i n t e r is l e ss (g r e a t e r o r e q u a l) . T r a c i n g a n d

u p d a t i n g e x a c t l y k - n v e c t o r e l e m e n t s (n o t n e c e s s a r i l y a l l

f r o m t h e s a m e v e c t o r) u p o n e v e r y a l l o c a t i o n o f a v e c t o r

o f l e n g t h n g u a r a n t e e s c o n v e r g e n c e .

2 8 9

%

S t e e l e ' s s c h e m e h a s t h e f o l l o w i n g p r o p e r t i e s : t h e t i m e

f o r r e f e r e n c i n g a n e l e m e n t o f a n y ce l l o r v e c t o r is

b o u n d e d b y a c o n s t a n t w h i l e t h e t i m e to a l l o c a t e a n e w

o b j e c t o f s i ze n is b o u n d e d b y C l k n + c2, f o r s o m e

c o n s t a n t s c~ a n d c2. H e n c e , a s e q u e n c e o f l i s t a n d v e c t o r

o p e r a t i o n s c a n b e g i v e n t i g h t t i m e b o u n d s .

Communications April 1978
of Volume 21
the ACM Number 4

7. Hash Tables and Hash Links

Some recent artificial intelligence programs written
in LISP have found it convenient to associate property
lists with list cells as well as symbolic atoms. Since few
cells actually have property lists, it is a waste of storage
to allocate to every cell a pointer which points to the
cell's property list. Therefore, it has been suggested [9]
that one bit be set aside in every cell to indicate whether
the cell has a property list. I f so, the property list can be
found by looking in a hash table, using the address of
the list cell as the key.

Such a table requires special handling in systems
having a relocating garbage collector. Our copying
scheme gives each semispace its own hash table, and
when a cell is copied over into tospace, its property list
pointer is entered in the "to" table under the cell's new
address. Then when the copied cell is encountered by the
"scan" pointer, its property list pointer is updated along
with its normal components. A "CDR-coding" system
with two "scan" pointers should also keep a third for
tracing property list pointers to prevent property lists
from destroying chains of "next"-type cells.

8. Reference Counting

In this section we consider whether reference count-
ing can be used as a method of storage reclamation to
process lists in real time; i.e. we try to answer the question
"is reference counting worth the effort in a real-time
system, and if so, under what conditions?"

A classical reference count system [13, 34] keeps for
each cell a count of the number of pointers which point
(refer) to that cell; i.e. its in-degree. This reference count
(refcount) is continually updated as pointers to the cell
are created and destroyed, and when it drops to zero, the
cell is reclaimed. When reclaimed, the refcounts of any
daughter cells it points to are decremented, and are also
reclaimed if zero, in a recursive manner.

Reference counting appears to be unsuitable for real-
time applications because a potentially unbounded
amount of work must be done when a cell is let go.
However, if a free stack is used to keep track of freed
objects instead of a free list [34], the newly freed cell is
simply pushed onto the free stack. When a cell is needed,
it is popped off the stack, the refcounts of its daughters
are decremented, and if zero, the daughters are pushed
back onto the stack. Then the cell which was popped is
returned. In this way, only a bounded amount of work
needs to be done on each allocation.

We now consider the storage requirements of a ref-
erence counting (RC) system. In adddition to the mem-
ory for N cells, we also need room for N refcounts and
a stack. Since the refcounts can go as high as N, they
require approximately the same space as a pointer. So
we have:

290

Maximum RC Space Required
_< 1.5N + the size of the "free stack"

The worst case stack depth is N. However, whenever
a cell is on the stack, its refcount is zero, so we can thread
the stack through the unused refcounts! So we now have:

Maximum RC Space Required ___ 1.5 N
Reference count systems have the drawback that

directed cycles of pointers cannot be reclaimed. It has
been suggested [15, 22] that refcounts be used as the
"primary" method of reclamation, using garbage collec-
tion (GC) as a fallback method when that fails. Since
RC will not have to reclaim everything and since the
average refcount is often very small, it has also been
suggested that a truncated refcount (a bounded counter
which sticks at its highest value if it overflows) be used
to save space.

We say that garbage in a combination RC and GC
system is ref-degradable if and only if it can be reclaimed
by refcounts alone. Cells whose truncated refcounts are
struck are therefore non-ref-degradable.

What is the effect of a dual system in terms of
performance? Whatever the RC system is able to recycle
puts off flipping that much longer. By the time a flip
happens in such a two level system, there is no ref-
degradable garbage left in tospace. Therefore, the turn-
over of the semispaces is slowed.

How much memory does the dual system require? If
truncated refcounts are used, the free stack cannot be
threaded through a cell's refcount because it is not big
enough to hold a pointer. Therefore, using this method
and assuming only a few bits worth of truncated refcount
per cell, we have:

Maximum S R T + RC Space Required
--< N(2 + 2m) + R C free stack

_< N(2.5 + 2m)

So it appears that we have lost something by adding
refcounts (even tiny ones), because we still need room
for the free stack.

Let us now examine more closely the average timing
of CONS under a pure RC versus a pure S R T system.
The average time for CONS under the RC system is the
same as the maximum time since there is no freedom in
the algorithm. The time for CONS in S R T is c l k + c2,
where cl and c2 are constants. Now c2 is simply the time
to allocate space from a contiguous block of free storage.
Certainly incrementing a pointer is much less complex
than popping a cell from a stack, following its pointers,
decrementing their refcounts, and if zero, pushing them
onto the stack. Therefore, we can choose k small enough 7
so that the average time to perform CONS with our S R T
method is smaller than the average time to perform
CONS in an RC system) This analysis does not even

7 Section 3 deals with nonintegral k's.
s We can discount the additional time occasionally required by

CAR and CDR in our method because any relocation and pointer
updating done by them is work that we have already charged to CONS,
and does not have to be repeated.

Communications April 1978
of Volume 21
the ACM Number 4

count the additional time needed to keep the refcounts
updated. Of course, the storage required for our "pure"
S R T system may be many times the storage of the RC
system, but S R T w i l l have a smaller average CONS time.

Since this seems counterintuitive, or at least reaction-
ary (given the current penchant for recycling), we give a
rationale for why it is so. Reference counting traces the
garbage cells, while normal garbage collection traces the
accessible cells. Once the number of garbage cells exceeds
the number of accessible cells in a region of storage, it is
faster to copy the accessible cells out of the region and
recycle it whole. When m > 1, reference counting cannot
compete timewise with garbage collection because RC
must trace a cell for every cell allocated while GC traces
on the average only a fraction (l /m) of a cell for every
cell allocated.

On the other hand, if we wish to minimize storage by
making m < 1, a dual scheme with truncated refcounts
should reduce the average CONS time over that in the
pure scheme. However, CDR-coded lists and other var-
iable sized objects cannot be easily managed with refer-
ence counting because the object at the top of the free
stack is not necessarily the right size for the current
allocation. Thus, CDR-coding can reduce the storage
requirement of a "pure" scheme below that of a "dual"
system with the same m. But even on a system with
objects of uniform size, we are skeptical whether the
increased average efficiency of CONS in the "dual"
system will offset the increase in k needed to keep the
storage requirements the same as the "pure" system. We
conclude that, at least on a real memory computer,
reference counting probably is not a good storage manage-
ment technique unless one a) has uniformly sized objects;
b) uses ful l counts; and c) guarantees no cycles.

This is not to say that reference counts are not useful.
If the LISP language were extended with a function to
return the current refcount of an object, and suitably
clean semantics were associated with this function, then
one might be able to make use of this information within
the user program to speed up certain algorithms, such as
structure tracing or backtracking, a la Bobrow and Weg-
breit [8]. This author is not aware of any language which
makes this information available; if it were available,
good programmers would certainly find a use for it.

the efficiency of the coding. Since e is near 0.5 [12], the
requirement is about N(1 + #), so that CDR-coding
requires approximately the same space as DSW. Com-
paring these expressions with those derived earlier for
our real-time algorithms, we find that processing L I S P
lists in real-time requires no more space than a non-real-
time system using DSI'E. I f larger non-uniformly-sized
objects like arrays must be managed, real-time capability
requires no more space than the MFYCA system, since
a copying collector is already assumed.

The average time requirement for CONS in our real-
time system is virtually identical to that in a classical
MFYCA system using the same cell representation and
the same amount of storage. This is because 1) a classical
system can do #N CONSES after doing a garbage collec-
tion which marks N nodes-- thus giving an average
cons/mark ratio of # and allowing us to identify # with
m- -and 2) garbage collection in our real-time system is
almost identical to that in the MFYCA system, except
that it is done incrementally during calls to CONS. In
other words, the user program pays for the cost of a cell's
reclamation at the time the cell is created by tracing
some other cell.

CAR and CDR are a bit slower, because they must
test whether the value to be returned is in fromspace.
However, as noted above, any cell movement done inside
CAR or CDR should not be charged to CAR or CDR
because it is work which the collector would otherwise
have to do and therefore has already been accounted for
in our analysis of CONS. Therefore, CAR and CDR are
only slower by the time required for the semispace test)

Since RPLACA, RPLACD, EQ, and ATOM are
unchanged from their classical versions, their timings are
also unchanged.

The overhead calculated for our serial system can be
compared to that in the parallel system of [33]. According
to these calculations, a parallel garbage collector requires
significantly more total time than a nonparallel collector.
But this contradiction disappears when it is realized that
the author's parallel collector continues tracing even in
the absence of any cell creation activity. Since our system
keys collector activity to cell creation, the collector effort
is about the same as on a non-real-time system.

9. The Costs of Real-Time List Processing

The amount of storage and time used by a real-time
list processing system can be compared with that used
by a classical list processing system using garbage collec-
tion on tasks not requiring bounded response times. The
storage required by a classical noncompacting garbage
collector is iV(1 + #), if the system uses the Deutsch-
Schorr-Waite (DSW) [22, p. 417-418] marking algo-
rithm, and N(1.5 + #) if it uses a normal stack, for some
positive #. If CDR-coding is used, copying must be done;
the storage requirement is then Ne(2 + 2#), where e is

291

10. Applications

1) A Fixed Size, Real Memory Computer.
This application covers the classical 7090 LISP [25]

as well as a LISP for a microcomputer. We conceive of
even 16-bit microcomputers utilizing this algorithm for
real-time process control or simulation tasks. Each of the
list processing primitives is intended to run with inter-
rupts inhibited, so that all interrupt processing can make
use of list storage for its buffers and other needs. Multiple

9 In Greenblatt 's LISP machine [19], the virtual memory map
performs the semispace test as an intergal part o f address translation.

Communicat ions April 1978
of Volume 21
the ACM N u m b e r 4

processes may also use these primitives so long as CONS,
CAR, and CDR are used by one process at a time; i.e.
they are protected by one system-wide lock. Of course,
the system must be aware of the registers of every
process.

For these real memory applications, we want to put
as much of the available storage under the management
of the algorithm as possible. Thus, both atoms (here we
mean the whole LISP atom-complex, not just the print-
name) and list nodes are stored in the semispaces. CDR-
coding is usually a good idea to save memory, but unless
the bit testing is done in microcode, it may be faster to
use normal cells and increase the parameter k to keep
the storage size small.

The average CONS time is reduced by putting off
flipping until all of the free space in tospace is exhausted,
i.e. B = T. Thus, after all moving and tracing is done, i.e.
S = B, allocation is trivial until B = T. As a result, the
average CONS time in our real-time system is approxi-
mately the same as that in a classical system. Of course,
with a memory size of 2M, the maximum number of
cells that can be safely managed is still M k / (k + 1).

2) A Virtual Memory Computer.
The current epitome of this application is Multics

LISP with an address space of 2 ~ (=10 n) 36-bit words,
room for billions of list cells. The problem here is not in
reclaiming cells that are let go, but keeping accessible
cells compact so that they occupy as few pages of real
memory as possible. The MFYCA algorithm does this
admirably and ours does almost as well.

Our scheme is still real-time on a virtual memory
computer, but the bounds on the elementary list opera-
tions now have the order of magnitude of secondary
storage operations.

There are some problems, however. Unlike MFYCA,
wherein both semispaces were used only during garbage
collection, our method requires that they both be active
(i.e. partially in real memory) at all times. This may
increase the average working set size. A careful analysis
needs to be made of our algorithm in order to estimate
the additional cost of incremental garbage collection.
Brief consideration tells us that the active address space
varies from a minimum of N(1 + m) just before a flip to
IV(2 + 2m) just after. Since at a flip the user program
registers are updated in numerical order, relatively con-
stant pointers should be placed in the lower numbered
registers to keep the trace order of constant list structure
similar between flips. If the average size of an object is
much larger than the size of a pointer, the working set
may also be reduced by storing the forwarding addresses
in a separate table instead of in the old objects in
fromspace [7].

In a virtual memory environment, the active address
space will automatically expand and contract in response
to changes in the number of accessible cells if 1) FLIP
re-adjusts the size of fromspace to (1 + m)[cells in
tospace] just before interchanging the semispaces; and 2)

292

flipping occurs when tracing finishes rather than when
B meets T. This policy, plus a smaller k than a real
memory computer would use, should give both a fast
CONS and a tolerable working set size. The parameter
k can also be dynamically adjusted to optimize either
running time (including paging) or cost according to
some pricing policy by following an analysis similar to
that of Hoare and others [2, 10, 21].

3) A Database Management System.
We conceive of a huge database having millions of

records, which may contain pointers to other records,
being managed by our algorithm. Examples of such
databases are a bill of materials database for the Apollo
Project, or a complete semantic dictionary and thesaurus
of English for a language understanding program. Per-
forming a classical garbage collection on such a databank
would be out of the question, since it might require days
or weeks to complete, given current disk technology.

Some of these large database systems currently de-
pend on reference counts for storage reclamation, and so
do not allow directed cycles of pointers. Since our
method performs general garbage collection, this restric-
tion could be dropped. Moreover, given enough space,
our algorithm can take even less time than a reference
count system. When compared with a classical garbage
collection system, our method would not save any total
time in processing transactions against such a database,
but it would avoid the catastrophic consequences of a
garbage collection during a period of heavy demand.

This case is very much like case 1, the real memory
computer, because we assume that the database is orders
of magnitude too big to fit into primary memory and
thus that there is little hope for a speedup from the
locality of reference effect. "Read memory" and "store
memory" instructions here apply to secondary storage;
the constant bounds for the elementary operations are
now on the order of milliseconds rather than microsec-
onds. Therefore, almost everything that we say about
real memory implementations also applies to large da-
tabase implementations, except that space is cheaper and
time is more dear.

4) A Totally New Computer Architecture.
We conceive of an architecture in which a CPU is

connected to a list memory instead of a random access
memory. Machines of this architecture are similar to
"linking automata" [22, p. 462-463] and "storage modi-
fication machines" [29]. At the interface between the
CPU and the memory sits a bank of pointer registers,
which point at particular cells in the list memory. Instead
of a bus which communicates both addresses and values,
with read and write commands, the memory would have
only a data bus and commands like CAR, CDR, CONS,
RPLACA, RPLACD, EQ, and ATOM, whose argu-
ments and returned values would be in the pointer
registers. The CPU would not have access to the bit
strings stored in the pointer registers, except those which
pointed to atoms (objects outside both fromspace and

Communications April 1978
of Volume 21
the ACM Number 4

tospace). This restriction is necessary to keep the CPU
from depending upon memory addressses which might
be changed by the management algorithm without the
CPU's knowledge.

An advantage of such a system 1° over random access
memory is the elimination of the huge address bus that
is normally needed between the CPU and the memory,
since addresses are not dealt with directly by the CPU.
As the number of bits on a chip increases, the number of
address lines and supporting logic becomes a critical
factor.

Our method of garbage collection can also be used
with a random access write-once memory by appending
an extra word to each cell which holds the forwarding
address when that cell is eventually moved. Using such
a system, the cells in tospace cannot be updated until
they are moved to the new tospace after the next flip. In
other words, three semispaces need to be active at all
times. In addition to these changes, RPLACA and
RPLACD must actually perform a CONS, just like
RPLACD occasionally does in our CDR-coding system.
Perhaps the write-once property can eliminate the need
for transaction journals and backup tapes.

11. Conclusions and Future Work

We have exhibited a method for doing list processing
on a serial computer in a real-time environment where
the time required by all of the elementary list operations
must be bounded by a constant which is independent of
the number of list cells in use. This algorithm was made
possible through: 1) a new proof of correctness of parallel
garbage collection based on the assertion that the user
program sees only marked cells; 2) the realization that
the collection effort must be proportional to new cell
creation; and 3) the belief that the complex interaction
required by these policies makes parallel collection un-
wieldy. We have also exhibited extensions of this algo-
rithm to handle a user program stack, "CDR-coding,"
vectors of contiguous words, and hash linking. Therefore,
we consider our system to be an attractive alternative to
reference counting for real-time storage management
and have shown that, given enough storage, our method
will outperform a reference count system, without re-
quiting the topological restrictions of that system.

Our real-time scheme is strikingly similar to the
incremental garbage collector proposed independently
by Barbacci for a microcoded LISP machine [3]. How-
ever, his non-real-time proposal differs in the key points
listed above. Our system will itself appear in microcoded
form in Greenblatt's LISP machine [19].

There is still some freedom in our algorithm which
has not been explored. The order in which the cells are
traced is not important for the algorithm's correctness or
real-time properties. The average properties of the algo-

to A patent is currently being approved.

rithm when run on a virtual memory machine need to
be extensively investigated.

The space required by our algorithm may be exces-
sive for some applications. Perhaps a synthesis of the
area concept [6, 7] with our method could reduce the
memory requirements of a list processing system while
preserving the bounded-time properties of the elemen-
tary operations.

A garbage collection algorithm can be viewed as a
means for converting a Von Neumann-style random
access memory (with "side-effects" [25]) into a list mem-
ory (without "side-effects"). Perhaps a list memory can
be implemented directly in hardware which uses consid-
erably less energy by taking advantage of the lack of
side-effects in list operations [4].

Acknowledgments. I wish to thank the people at
M.I.T.'s Artificial Intelligence Laboratory and Labora-
tory for Computer Science (formerly Project MAC) for
their time discussing these ideas, and especially Peter
Bishop, John DeTreville, Richard Greenblatt, Carl Hew-
itt, A1 Mok, Guy Steele, and the referees for their copious
comments and helpful suggestions after reading early
versions of this paper. I also wish to thank John Mc-
Carthy for ignoring David Hilbert's advice about "leav-
ing elegance to the tailors" when he created the LISP
language.

Received September 1976; revised May 1977

References
I. Arnborg, S. Storage administration in a virtual memory
SIMULA system. B I T 12 (1972), 125-141.
2. Arnborg, S. Optimal memory management in a system with
garbage collection. B I T 14 (1974), 375-381.
3. Barbacci, M. A LISP Processor for C.ai. Memo CMU-CS-71-103,
Comptr. Sci. Dept., Carnegie-Mellon. Pittsburgh, Pa., 1971.
4. Bennett, C.H. Logical reversibility of computation. I B M J. Res.
Develop. 17 (1973), 525.
5. Birtwistle, G.M., Dahl, O.-J., Myhrhaug, B, and Nygaard, K.
Simula Begin. Auerbach, Philadelphia, Pa., 1973.
6. Bishop, P.B. Garbage collection in a very large address space.
Working Paper l 11, M.I.T.A.I. Lab., M.I.T., Sept. 1975.
7. Bishop, P.B. Computer systems with a very large address space
and garbage collection. Ph.D. Th., TR-178, MIT Lab. for Compter
Sci., Cambridge, Mass., May 1977. Forthcoming.
8. Bobrow, D.G. and Wegbreit, B. A model and stack
implementation of multiple environments. Comm. A CM 16, 10 (Oct.
1973), 591-603.
9. Bobrow, D.G. A note on hash linking. Comm. A C M 18, 7 (July
1975), 413--415.
10. Campbell, J.A. Optimal use of storage in a simple model of
garbage collection. Inform. Processing Letters 3, No. 2 (Nov., 1974),
37-38.
11. Cheney, C.J. A nonrecursive list compacting algorithm. Comm.
A C M 13, 11 (Nov. 1970), 677-678.
12. Clark, D.W., and Green, C.C. An empirical study of list structure
in LISP. Comm. A C M 20, 2 (Feb. 1977), 78-87.
13. Collins, G.E. A method for overlapping and erasure of lists.
Comm. A C M 3, 12 (Dec. 1960), 655--657.
14. Dalai, O.-J., and Nygaard, K. SIMULA--an ALGOL-based
simulation language. Comm. A C M 9, 9 (Sept. 1966), 671-678.
15. Deutsch, L.P., and Bobrow, D.G. An efficient, incremental,
automatic garbage collector. Comm. A C M 19, 9 (Sept. 1976),
522-526.
16. Dijkstra, E.W., Lamport, L., Martin, A.J., Scholten, C. S.,
Steffens, E.F.M. On-the-fly garbage collection: An exercise in
cooperation. E.W. Dijkstra note EWD496, June 1975.

293 Communications April 1978
of Volume 21
the ACM Number 4

17. Dijkstra, E.W. After many a sobering experience. E.W. Dijkstra
note EWD500.
18. Fenichel, R.R., and Yoehelson, J.C. A LISP garbage-coUector for
virtual-memory computer systems. Comm. ACM 12, 11 (Nov. 1969),
611-612.
19. Greenblatt, R. LISP Machine Progress Report memo 444, A.I.
Lab., M.I.T., Cambridge, Mass., Aug. 1977.
20. Greenblatt, R. Private communication, Feb. ! 977.
21. Hoare, C.A.R. Optimization of store size for garbage collection.
Inform. Processing Letters 2 (1974), 165-166.
22. Knuth, D.E. The Art of Computer Programming, Vol. 1:
FundamentalAlgorithms. Addison-Wesley, Reading, Mass. 1968.
23. Lamport, L. Garbage collection with multiple processes: An
exercise in parallelism. CA-7602-25 ! 1, Mass. Computer Associates,
Wakefield, Mass., Feb. 1976.
24. Lamport, L. On-the-fly garbage collection: Once more with rigor.
CA-7508-1611, Mass. Computer Associates, Wakefield, Mass., Aug.
1975.
25. McCarthy, J., et al. LISP 1.5 Programmer's Manual. M.I.T.
Press, Cambridge, Mass., 1965.
26. Minsky, M.L. A LISP garbage collector algorithm using serial
secondary storage. Memo 58, M.I.T.A.I. Lab., M.I.T., Cambridge,
Mass., Oct. 1963.
27. Moon, D.A. MACLISP Reference Manual. Project MAC, M.I.T.,
Cambridge, Mass., December 1975.
28. Muller, K.G. On the feasibility of concurrent garbage collection.
Ph.D. Th., Tech. Hogeschool Delft, The Netherlands, March 1976 (in
English).
29. Schonhage, A. Real-time simulation of multidimensional Turing
machines by storage modification machines. TM-37, Project MAC,
M.I.T., Cambridge, Mass., Dec. 1973.
30. Steele, G.L. Jr. Multiprocessing compactifying garbage collection.
Comm. ACM 18, 9 (Sept. 1975), 495-508.
31. Steele, G.L. Jr. Private communication, March 1977.
32. Teitelman, W., et al. INTERLISP Reference Manual. Xerox Palo
Alto Res. Ctr., Palo Alto, Calif., 1974.
33. Wadler, P.L. Analysis of an algorithm for real-time garbage
collection. Comm. ACM 19, 9 (Sept. 1976), 491-500.
34. Weizenbaum, J. Symmetric list processor. Comm. A CM 6, 9
(Sept. 1963), 524--544.

Programming
Techniques

S. L. Graham, R. L. Rivest
Editors

Secure Communications Over
Insecure Channels
Ralph C. Merkle
Department of Electrical Engineering and
Computer Sciences
University of California, Berkeley

According to traditional conceptions of
cryptographic security, it is necessary to transmit a
key, by secret means, before encrypted messages can
be sent securely. This paper shows that it is possible to
select a key over open communications channels in
such a fashion that communications security can be
maintained. A method is described which forces any
enemy to expend an amount of work which increases as
the square of the work required of the two
communicants to select the key. The method provides a
logically new kind of protection against the passive
eavesdropper. It suggests that further research on this
topic will be highly rewarding, both in a theoretical and
a practical sense.

Key Words and Phrases: security, cryptography,
cryptology, communications security, wiretap, computer
network security, passive eavesdropping, key
distribution, public key cryptosystem

CR Categories: 3.56, 3.81

294

General permission to make fair use in teaching or research of
all or part of this material is granted to individual readers and to
nonprofit libraries acting for them provided that ACM's copyright
notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery. To
otherwise reprint a figure, table, other substantial excerpt, or the
entire work requires specific permission as does republication, or
systematic or multiple reproduction.

Author's address: Dept. of Electrical Engineering, Stanford Uni-
versity, Stanford CA, 94305.
01978 ACM 0001-0782/78/0400-0294 $00.75

Communications April 1978
of Volume 21
the ACM Number 4

