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ABSTRACT
Now that the use of garbage collection in languages like Java is be-
coming widely accepted due to the safety and software engineering
benefits it provides, there is significant interest in applying garbage
collection to hard real-time systems. Past approaches have gener-
ally suffered from one of two major flaws: either they were not
provably real-time, or they imposed large space overheads to meet
the real-time bounds. We present a mostly non-moving, dynami-
cally defragmenting collector that overcomes both of these limita-
tions: by avoiding copying in most cases, space requirements are
kept low; and by fully incrementalizing the collector we are able to
meet real-time bounds. We implemented our algorithm in the Jikes
RVM and show that at real-time resolution we are able to obtain
mutator utilization rates of 45% with only 1.6–2.5 times the ac-
tual space required by the application, a factor of 4 improvement in
utilization over the best previously published results. Defragmen-
tation causes no more than 4% of the traced data to be copied.

General Terms
Algorithms, Languages, Measurement, Performance

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.3.2 [Programming Languages]:
Java; D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection)

Keywords
Read barrier, defragmentation, real-time scheduling, utilization

1. INTRODUCTION
Garbage collected languages like Java are making significant in-

roads into domains with hard real-time concerns, such as automo-
tive command-and-control systems. However, the engineering and
product life-cycle advantages consequent from the simplicity of
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programming with garbage collection remain unavailable for use in
the core functionality of such systems, where hard real-time con-
straints must be met. As a result, real-time programming requires
the use of multiple languages, or at least (in the case of the Real-
Time Specification for Java [9]) two programming models within
the same language. Therefore, there is a pressing practical need
for a system that can provide real-time guarantees for Java without
imposing major penalties in space or time.

We present a design for a real-time garbage collector for Java,
an analysis of its real-time properties, and implementation results
that show that we are able to run applications with high mutator
utilization and low variance in pause times.

The target is uniprocessor embedded systems. The collector is
therefore concurrent, but not parallel. This choice both complicates
and simplifies the design: the design is complicated by the fact that
the collector must be interleaved with the mutators, instead of being
able to run on a separate processor; the design is simplified since
the programming model is sequentially consistent.

Previous incremental collectors either attempt to avoid overhead
and complexity by using a non-copying approach (and are there-
fore subject to potentially unbounded fragmentation), or attempt
to prevent fragmentation by performing concurrent copying (and
therefore require a minimum of a factor of two overhead in space,
as well as requiring barriers on reads and/or writes, which are costly
and tend to make response time unpredictable).

Our collector is unique in that it occupies an under-explored por-
tion of the design space for real-time incremental collectors: it
is a mostly non-copying hybrid. As long as space is available, it
acts like a non-copying collector, with the consequent advantages.
When space becomes scarce, it performs defragmentation with lim-
ited copying of objects. We show experimentally that such a design
is able to achieve low space and time overhead, and high and con-
sistent mutator CPU utilization.

In order to achieve high performance with a copying collector,
we have developed optimization techniques for the Brooks-style
read barrier [10] using an “eager invariant” that keeps read barrier
overhead to 4%, an order of magnitude faster than previous soft-
ware read barriers.

Our collector can use either time- or work-based scheduling.
Most previous work on real-time garbage collection, starting with
Baker’s algorithm [5], has used work-based scheduling. We show
both analytically and experimentally that time-based scheduling is
superior, particularly at the short intervals that are typically of in-
terest in real-time systems. Work-based algorithms may achieve
short individual pause times, but are unable to achieve consistent
utilization.

The paper is organized as follows: Section 2 describes previ-
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ous approaches to real-time collection and some of the common
problems encountered. Section 3 presents an informal overview of
our collector. Section 4 analyzes the conditions under which real-
time bounds can be met. Section 5 analyzes the space requirements
of our collector and compares them to other real-time collectors.
Section 6 describes the implementation of the collector, and Sec-
tion 7 presents our experimental results. Section 8 discusses issues
in real-time garbage collection that are raised by our work. Finally,
we present our conclusions.

2. PROBLEMS WITH PREVIOUS WORK
Previous approaches to real-time garbage collection have gener-

ally suffered from a variety of problems. In this section we will
describe these problems.

2.1 Fragmentation
Early work, particularly for Lisp, often assumed that all memory

consisted of CONS cells and that fragmentation was therefore a non-
issue. Baker’s Treadmill [6] also only handles a single object size.

Johnstone [17] showed that fragmentation was often not a major
problem for a family of C and C++ benchmarks, and built a non-
moving “real-time” collector based on the assumption that frag-
mentation could be ignored. However, these measurements are
based on relatively short-running programs, and we believe they do
not apply to long-running systems like continuous-loop embedded
devices, PDAs, or web servers. Fundamentally, this is an average-
case rather than a worst-case assumption, and meeting real-time
bounds requires handling worst-case scenarios.

Furthermore, the use of dynamically allocated strings in Java
combined with the heavy use of strings in web-related processing
is likely to make object sizes less predictable.

Dimpsey et al. [14] describe the compaction avoidance tech-
niques in the IBM product JVM, which are based on Johnstone’s
work. They show that these techniques can work quite well in prac-
tice. However, when compaction does occur it is very expensive.

Siebert [23] suggests that a single block size can be used for
Java by allocating large objects as linked lists and large arrays as
trees. However, this approach has simply traded external fragmen-
tation for internal fragmentation. Siebert suggests a block size of
64 bytes; if there are a large number of 8-byte objects, internal frag-
mentation can cause a factor of 8 increase in memory requirements.

2.2 High Space Overhead
To avoid the problems resulting from fragmentation, many re-

searchers have used copying algorithms [5, 10] as the basis for
real-time collection. Such collectors typically have a high space
overhead. First of all, when a full collection is performed a com-
plete semi-space is required for the target data, so the minimum
space overhead is a factor of 2. Secondly, space is required so that
the mutator can continue to run (and allocate) while the collector
operates. In order to achieve good mutator utilization while the
collector is running, a space overhead of a factor of 3-5 is typical
[12].

For Johnstone’s non-copying collector [17], space overhead is
often a factor of 6–8.

2.3 Uneven Mutator Utilization
Much of the literature has focused on maximum pause times in-

duced by collection, but in fact an equally important metric is mu-
tator utilization (the fraction of the processor devoted to mutator
execution). If there is a period of low utilization, the mutator may
be unable to meet its real-time requirements even though all indi-
vidual pause times are short.

Uneven utilization is endemic to collectors that use a to-space in-
variant (that is, the mutator only sees objects in to-space). Such col-
lectors are implemented with a read-barrier that checks if an object
being accessed is in from-space, and if so, copies it into to-space
before returning the pointer to the mutator. There is therefore a tight
coupling between the operations of the mutator and the scheduling
of operations by the collector.

Examples are Baker’s copying algorithm [5] which uses an ex-
plicit read-barrier, and the Appel-Ellis-Li collector [2], which uses
virtual memory protection. Both of these collectors have the prop-
erty that mutator utilization is very poor right after the collector
starts, when the “fault rate” is high.

An alternative is to use a replicating collector which maintains
a from-space invariant, and to perform mutator updates on both
from-space and to-space, as in the ML collectors of Nettles and
O’Toole [21] and Cheng and Blelloch [12]. However, this requires
a fairly costly replication for all updates, rather than a simple write
barrier on pointer updates. As a result, the strategy is better suited
to mostly functional languages like ML, and less well-suited to im-
perative languages like Java.

2.4 Inability to Handle Large Data Structures
Some algorithms attempt to avoid the factor of 2 space overhead

in copying collectors by doing the work incrementally — collecting
only a portion of the heap at a time. The most notable example is
the Train algorithm [16]. Recently, Ben-Yitzhak et al. [7] have im-
plemented a parallel incremental collector that operates on a fixed
fraction of the heap at a time to minimize pause times for large
heaps.

The fundamental problem with all algorithms that attempt to col-
lect a subset of the heap at a time is that they can be defeated by
adversarial mutators. Large cyclic structures, objects with high in-
degree, and high mutation rates are ways to force such collectors to
perform work without fixed bound.

3. OVERVIEW
Our collector is an incremental uni-processor collector targeted

at embedded systems. It overcomes the problems of the previous
section by using a hybrid approach of non-copying mark-sweep
(in the common case) and copying collection (when fragmentation
occurs).

The collector is a snapshot-at-the-beginning algorithm that allo-
cates objects black (marked). While it has been argued that such a
collector can increase floating garbage, the worst-case performance
is no different from other approaches and the termination condition
is easier to enforce. Other real-time collectors have used a similar
approach.

3.1 Overview of Our Collector
Our collector is based on the following principles:

Segregated Free Lists. Allocation is performed using segregated
free lists. Memory is divided into fixed-sized pages, and each
page is divided into blocks of a particular size. Objects are
allocated from the smallest size class that can contain the
object.

Mostly Non-copying. Since fragmentation is rare, objects are usu-
ally not moved.

Defragmentation. If a page becomes fragmented due to garbage
collection, its objects are moved to another (mostly full) page.

Read Barrier. Relocation of objects is achieved by using a for-
warding pointer located in the header of each object [10]. A
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read barrier maintains a to-space invariant (mutators always
see objects in the to-space).

Incremental Mark-Sweep. Collection is a standard incremental
mark-sweep similar to Yuasa’s snapshot-at-the-beginning al-
gorithm [24] implemented with a weak tricolor invariant. We
extend traversal during marking so that it redirects any point-
ers pointing at from-space so they point at to-space. There-
fore, at the end of a marking phase, the relocated objects of
the previous collection can be freed.

Arraylets. Large arrays are broken into fixed-size pieces (which
we call arraylets) to bound the work of scanning or copying
an array and to avoid external fragmentation caused by large
objects.

Since our collector is not concurrent, we explicitly control the
interleaving of the mutator and the collector. We use the term col-
lection to refer to a complete mark/sweep/defragment cycle and the
term collector quantum to refer to a scheduler quantum in which the
collector runs.

3.2 Object Allocation and Fragmentation
Allocation is performed using a simple segregated free-list ap-

proach. When a free list is empty, a new page is chosen, broken
into equal-size blocks, and the resulting blocks are placed onto that
free list. Note that the allocator page size � is not necessarily the
same as the operating system page size. We use � � ��� � ��
KB.

Internal fragmentation is regulated by using a geometric progres-
sion of free list sizes, such that if there is a free list whose blocks
are of size �, the next larger size is ��� � ��. We generally choose
� � ���, resulting in worst-case fragmentation of 12.5%. How-
ever, the measured internal fragmentation in our collector has never
exceeded 2% at � � ���.

Most programs obey a “locality of size” property, that is, the ob-
ject sizes allocated frequently in the past will tend to have a high
correlation with object sizes allocated in the future. Therefore, we
expect that in the normal case, the garbage collector will find un-
used blocks in a particular size class that can simply be re-used.
Only in relatively rare cases will object allocation cause external
fragmentation.

Because our collector performs defragmentation, we can choose
a � that results in low internal fragmentation, but allows a relatively
large number of size classes. Most collectors based on segregated
lists must be concerned about external fragmentation, and therefore
keep the number of size classes small by choosing � � �, leading
to power-of-two size classes with high internal fragmentation.

The only overhead to decreasing � is that we may need to have
one under-utilized page per size class. Assuming a 4-byte word
size, the number of size classes � is bounded by

� �
	
����

	
�� � ��

The free lists are actually kept as chains of pages, rather than
chains of blocks. Each page has an associated mark array. The
allocation cursor is actually a pair pointing to a page and a block
within the page. This organization allows formatting of pages to be
performed lazily and therefore avoids a full sweep of the memory
on each collection.

3.3 Defragmentation
At the end of the sweep phase, we determine whether there is a

sufficient number of free pages to allow the mutator to continue to

execute for another collection cycle without running out of mem-
ory, assuming a worst-case selection of object sizes by the mutator
(that is, we assume that the mutator will act adversarially to maxi-
mize external fragmentation).

If the number of free pages drops below this threshold, we per-
form a defragmentation that will free at least that many pages. De-
fragmentation is performed as follows: for each page, we compute
the number of live objects. Then the pages within each size class
are sorted by occupancy. Finally, we move objects from the least
occupied to the most occupied pages within a list (note that this
never causes new pages to be allocated; it only transfers objects
between pages within a size class).

3.4 Read Barrier
We use a Brooks-style read barrier [10] to maintain a to-space

invariant in the mutator: each object contains a forwarding pointer
that normally points to itself, but when the object has been moved,
points to the moved object.

Our collector thus maintains a to-space invariant, but the sets
comprising from-space and to-space have a large intersection, rather
than being completely disjoint as in a pure copying collector.

Note that while we use a read barrier and a to-space invariant,
our collector does not suffer from variations in mutator utilization
because all of the work of finding and moving objects is performed
by the collector.

Read barriers, especially when implemented in software, are fre-
quently avoided because they are considered to be too costly. We
will show that this is not the case when they are implemented care-
fully in an optimizing compiler and the compiler is able to optimize
the barriers.

A fundamental design choice for the read barrier is whether it is
“lazy” or “eager”. A lazy barrier has the property that registers and
stack cells can point to either from-space or to-space objects, and
the forwarding operation is performed at the time of use.

An eager barrier, on the other hand, maintains the invariant that
registers and stack cells always point into to-space: the forwarding
operation is performed eagerly as soon as the quantity is loaded.
Eager barriers have a major performance advantage in that if a
quantity is loaded and then dereferenced many times (for instance,
a reference to an array of integers loaded and then used in a loop),
the eager barrier will only perform the forwarding operation once,
while the lazy barrier will perform the forwarding operation for ev-
ery array access.

Of course, there is a cost: because the eager invariant is more
strict, it is more complex to maintain. Whenever the collector
moves objects, it must find all outstanding register and stack cells
and re-execute the forwarding operation on them.

We apply a number of optimizations to reduce the cost of read
barriers, including well-known optimizations like common subex-
pression elimination, as well as special-purpose optimizations like
barrier-sinking, in which we sink the barrier down to its point of
use, which allows the null-check required by the Java object deref-
erence to be folded into the null-check required by the barrier (since
the pointer can be null, the barrier can not perform the forwarding
unconditionally).

This optimization works with whatever null-checking approach
is used by the run-time system, whether via explicit comparisons or
implicit traps on null dereferences. The important point is that we
avoid introducing extra explicit checks for null, and we guarantee
that any exception due to a null pointer occurs at the same place as
it would have in the original program.

The result of our optimizations is a mean cost of only 4% for the
read barriers, as is shown in Section 7.
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3.5 Arraylets
Large objects pose special problems for garbage collectors. In

copying collectors, if they are repeatedly copied, the performance
penalty can be very high. In non-copying collectors, external frag-
mentation can make it impossible to allocate a large object. For
instance, a single small object in the middle of the heap can make
it impossible to satisfy a request for an object slightly larger than
half the heap.

Furthermore, in incremental and real-time collectors, large ob-
jects pose an additional problem because they can not be moved in
a reasonably bounded amount of time.

Siebert [23] has suggested using fixed-size blocks of 32 or 64
bytes for all object allocations, and creating large arrays by using
a tree structure. Unfortunately, this requires rewriting every array
access as a loop, and can have a severe performance penalty for
array-intensive programs since common loop optimizations are de-
feated.

Our mostly non-copying collector allows a different approach:
we represent small arrays contiguously, and large arrays as two-
level structures consisting of a sequence of arraylets. Each arraylet
(except the last) is of a fixed size, which is chosen to be a power
of two so that the division operation required for indexing can be
implemented with a shift. In our case, arraylets are � � �� � �
KB.

We therefore have the advantage of never needing to allocate
large objects contiguously, and are therefore not subject to external
fragmentation. On the other hand, access to array elements is still
efficient, and when combined with strip-mining optimizations is
usually as efficient as contiguous layout.

The arraylet size must be chosen carefully and there are some
tradeoffs involved. With a sufficiently large size, one can assume
that all objects will be contiguous and smaller than the arraylet size,
simplifying the implementation. The maximum array size that can
be represented with a single root of size � is ����, or 1 MB in
our case. However, note that if necessary we can simply allocate
an entire block to be the root of the array, because the wasted space
at the end of the block will be negligible compared to the total size
of the array. Thus we can accommodate arrays of size up to ����
or 8 MB. For larger objects we can scan the free block list for the
necessary number of contiguous free blocks. If the system must be
able to return objects larger than 8 MB in real time, the maximum
size can be tuned by varying � and �.

All arrays are represented in a uniform manner: arraylet pointers
are laid out in reverse order to the left of the array header. If the
array is contiguous, there is only one arraylet pointer and it points
to the data field to the right of the header.

Arraylets are implemented in the system presented in this paper,
but not yet highly optimized. However, we can use Arnold’s thin
guards [3] to eliminate the indirection for array types that do not
exist as arraylets, so that most array accesses will operate at full
speed. For arraylets, we can strip-mine regular iterations to the ar-
raylet size. Thus arraylets should only suffer performance penalties
when they are used and when the access pattern is irregular.

3.6 Open Issues
The main issue we have not addressed in our collector is making

stack processing incremental. This is an issue in two parts of the
system: root scanning and maintenance of the eager invariant for
the read barrier.

Stacklets [13] break stacks into fixed-size chunks to quantize the
associated work. However, they only provide a partial solution: if
we only copy the top stacklet of the running thread and return to
the mutator, the mutator can then begin either pushing or popping

at a very high rate.
A high rate of popping is problematic because the collector must

halt the mutator while it copies each popped stacklet, and if many
stacklets are popped in a short interval the mutator utilization will
temporarily become very low. It can also force the memory con-
sumption of the stack to double (due to the snapshots).

A high rate of pushing is problematic because the collector may
have trouble keeping up with the mutator. In this case, the solution
is to model stack pushes that enter new stacklets to be modelled
as allocation, and to use the associated methods for measuring and
controlling allocation rates.

For the benchmarks available to us the stacks remained small,
and the limiting factor in pause time was the resolution of the oper-
ating system clock. Therefore the implementation presented in this
paper does not include stacklets. We intend to address the issue of
incrementalizing stack operations in future work, in particular by
exploring alternative write barriers and termination conditions.

4. REAL-TIME SCHEDULING
In this section we derive the equations for CPU utilization and

memory usage for our collector using two different scheduling poli-
cies: one based on time, the other based on work.

We can define the real-time behavior of the combined system
comprising the user program and our garbage collector with the
following parameters:

� ����� is the instantaneous memory allocation rate at time �
(MB/s).

� ���� � is the instantaneous garbage generation rate at time �
(MB/s).

� � is the garbage collector processing rate (MB/s). Since ours
is a tracing collector, this is measured over live data.

A time � is on an idealized axis in which the collector runs in-
finitely fast — we call this mutator time. As a practical matter this
can be thought of as time measured when the program has sufficient
memory to run without garbage collecting.

By convention, upper-case letters refer to primitive quantities;
lower-case quantities are derived. The only other primitive param-
eters required are the relative rates of mutator and collector.

From these basic parameters we can define a number of impor-
tant characteristics of the application relevant to real-time garbage
collection.

The amount of memory allocated and garbage generated during
the interval ���� ��� are

	����� ��� �

� ��

��

�����
� (1)

������ ��� �

� ��

��

���� �
� (2)

The maximum memory allocation for an interval of size � is

	��� � � ���
�

	���� � �� � (3)

and the maximum memory allocation rate is

���� � � 	��� ��� (4)

The instantaneous memory requirement of the program (exclud-
ing garbage, overhead, and fragmentation) at time � is

���� � 	���� ��� ����� �� (5)
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4.1 Mapping Between Mutator and Real Time
Now consider a realistic execution in which the collector is not

infinitely fast. Execution will consist of alternate executions of mu-
tator and collector. Time along real time axis will be denoted with
the variable �.

The function ���� � � maps from real to mutator time, where
� � �. Functions that operate in mutator time are written ���� �
while functions that operate in real time are written ����.

The live memory of the program at time � is thus

��� � ������� (6)

and the maximum memory requirement over the entire program
execution is

 � ���
�

��� � ���
�

���� (7)

4.2 Time-Based Scheduling
Time-based scheduling interleaves the collector and mutator us-

ing fixed time quanta. It thus results in even CPU utilization but
is subject to variations in memory requirements if the memory al-
location rate is uneven. A time-based real-time collector has two
additional fundamental parameters:

� �� is the mutator quantum: the amount of time (in seconds)
that the mutator is allowed to run before the collector is al-
lowed to operate.

� �� is the time-based collector quantum (in seconds of col-
lection time).

For the time being, we assume that the scheduler is perfect, in the
sense that it always schedules the mutator for precisely �� sec-
onds. A typical value for �� might be 10 ms. In Section 7 we will
show how close we are able to get to this ideal in practice.

Cheng and Blelloch [12] have defined the minimum mutator uti-
lization or MMU for a given time interval � as the minimum CPU
utilization by the mutator over all intervals of width �. From the
parameters �� and �� we can derive the MMU as

�� ��� �
�� �

�
��

�����

�
� �

�
(8)

where the first term in the numerator corresponds to the number of
whole mutator quanta in the interval, and the � term corresponds to
the size of the remaining partial mutator quantum, which is defined
as

� � ���

�
���� ��� � �� � �

�
�

�� � ��

�
� ��

�
(9)

While this expression is fairly awkward, as the number of intervals
becomes large, it reduces to the straightforward utilization expres-
sion

	��
����

�� ��� �
��

�� � ��
(10)

A plot of the MMU for a perfectly scheduled system using 10 mil-
lisecond mutator and collector quanta is shown in Figure 1. It is
important to note that at the small time scales of interest in real-
time systems, the � term is very significant: at � � �� ms the
MMU is ��� (the maximum value), while at � � �� ms, it drops
to ���. Also, the higher the scheduling frequency of the collector,
the more quickly it converges to the theoretical limit.

In practice, at large time intervals �� ��� is only a lower bound
on the utilization, since in most cases the collector only runs inter-
mittently.
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Figure 1: MMU for a perfectly scheduled time-based collector.
�� � �� � ���� (10 ms).

Now consider the space utilization of a time-scheduled collector.
Since we are assuming the collection rate is constant, at time � the
collector will run for ����� seconds to process the ��� live data
(since our collector is trace-based, work is essentially proportional
to live data and not garbage). In that time, the mutator will for ��

seconds per �� seconds executed by the collector. Therefore, in
order to run a collection at time �, we require excess space of

�� ��� � 	�
�
��������� �

���

�
�
��

��

�
(11)

We further define the maximum excess space required as

�� � ���
�

�� ��� (12)

Freeing an object in our collector may take as many as three
collections: the first is to collect the object; the second is because
the object may have become garbage immediately after a collection
began, and will therefore not be discovered until the following col-
lection cycle; and the third is because we may need to relocate the
object in order to make use of its space. The first two properties are
universal; the third is specific to our approach.

As a result, the space requirement of our collector paired with a
given application (including unreclaimed garbage, but not includ-
ing internal fragmentation) at time � is

�� ��� � ��� � ��� (13)

and the overall space requirement is

�� � � ��� (14)

However, note that the expected space utilization is only ��� ,
and the worst-case utilization is highly unlikely; this is discussed in
more detail below.

4.3 Work-Based Scheduling
Work-based scheduling interleaves the collector with the mutator

based on fixed amounts of allocation and collection. A work-based
real-time collector is parameterized by

� �� is the work-based mutator quantum: the number of MB
the mutator is allowed to allocate before the collector is al-
lowed to run.

� �� is the work-based collector quantum: the number of MB
the collector must process each time the mutator yields to it.
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Then the excess space required to perform a collection at time � is

�� ��� � ��� �
��

��
(15)

and the excess space required for a collection over the entire exe-
cution is

�� �  �
��

��
(16)

Note therefore that it must be the case that �� � �� or else the
space may grow without bound.

Consequently, the space requirement of the program at time � is

�� ��� � ��� � ��� (17)

and the space requirement for the entire program execution is

�� � � ��� (18)

4.3.1 Work-based CPU Utilization
Computing mutator CPU utilization when collector scheduling

is work-based is inherently problematic, because the operations of
the mutator may affect the amount of time allocated to the mutator.
In other words, there is a time dilation from � to � that is linear
and fixed in time-based scheduling but variable, non-linear, and
application-dependent in work-based scheduling.

Due to these problems it is not possible to obtain a closed-form
solution for the utilization. We begin by noting that each muta-
tor pause involves the collector processing �� memory at rate � .
Hence each mutator pause will be 
 � �� �� . In our simplified
model, this will be a constant. Each mutator quantum will involve
allocation of �� memory, so the minimum total mutator time ��
for � quanta will be given by the minimum �� that solves the equa-
tion

	����� � ��� (19)

As the time interval increases the maximum amount of allocation
in that time does not decrease, so 	��� � is a monotonically in-
creasing function and hence �� � ����. Therefore, the solution
to (19) can be found with an iterative method. This is analogous to
the iterative solution to rate monotonic scheduling in real-time sys-
tems [18].

Let � be the largest integer such that

�
��� � � (20)

so the minimum mutator utilization over an interval of size � is

�� ��� �
�� � �

�
(21)

where the first term in the numerator is the time taken by � whole
mutator quanta in the interval and the � term corresponds to the size
of the remaining partial mutator quantum (if any), which is defined
as

� � ���������� � �� � �� � 
� (22)

Note that in a work-based collector, utilization will be zero for
� � 
. In fact, any large allocation of ��� bytes will lead to
zero utilization for time �
. This simply expresses analytically the
fact that in a work-based collector, there is a much larger burden on
the programmer to achieve real-time bounds by making sure that
memory allocation is sufficiently discretized and evenly spaced.

4.4 Mutation
In addition to allocation, the other form of work by the mutator

that can interact with the operation of the collector is the actual

heap mutation. Mutation can be thought of as an alternate way for
roots to be added, along with stack scanning.

We impose the following division of labor between the muta-
tor and the collector: the mutator’s write barrier is responsible for
making sure that only non-null, unmarked objects are placed into
the write buffer. This ensures that the work performed by the col-
lector attributable to mutation is ����, where � is the number of
objects, while keeping the overhead of the write barrier constant.

The collector periodically processes the write buffer and treats
the entries like any other potential roots: it marks the objects gray
and places them into the work queue for scanning.

Note that in the worst case, the work queue can reach size � .
Now we must account for mutation in the formulas for collec-

tor performance that we have derived, because mutation consumes
memory just like allocation by the mutator. To do this, we simply
redefine ���� � to comprise both directly allocated memory and
indirectly allocated memory due to mutation, where each mutation
consumes memory of the size of one object pointer. If desired, the
formulas could all be broken up to account for each kind of space
consumption individually.

4.5 Sensitivity to Parameters
The degree to which each collector is able to meet its predicted

behavior will depend quite strongly on the accuracy of the param-
eters which are used to describe the application and the collector
strategy. These are the application parameters ����� and �����,
and the collector parameters, � and either �� and �� or �� and
�� for the time-based or work-based collectors, respectively.

In practice, the user describes the application in terms of its max-
imum memory consumption  and its maximum allocation rate
���� �.

4.5.1 Sensitivity of the Time-based Collector
The CPU utilization rate �� of the time-based collector is strictly

dependent on the quantization parameters �� and �� , so the uti-
lization will be very steady (depending only on implementation-
induced jitter, and subject to the minimum quantization that the
implementation can support).

On the other hand, the space required to perform a collection
�� ��� which determines the total space �� required to run the ap-
plication is dependent on both the maximum memory usage by the
application and the amount of memory allocated over an interval.
Thus if the user under-estimates either  or ��, then the total space
requirement �� may grow arbitrarily. In particular, time-based col-
lectors are subject to such behavior when there are intervals of time
in which the allocation rate is very high. Furthermore, the estimate
of the collector processing rate � must also be a lower bound on
the actual rate.

However, note that the space consumed by the application is over
a relatively long interval of time, namely the amount of time the
application runs while a single collection takes place or

� �
���

�
�
��

��

and therefore the allocation rate in that time will typically be close
to the average allocation rate of the program and the variation will
tend to be low.

Therefore, to a first order, a time-scheduled collector will meet
both its time and space bounds as long as the user estimate of  is
correct.

4.5.2 Sensitivity of the Work-based Collector
In the work-based collector, the space overhead for collection

290



�� ��� is straightforward to compute, and it will be accurate as long
as the user estimate of the total live memory  is accurate.

On the other hand, the CPU utilization rate for a given interval
� depends on the allocation rate ���� � where � � � as well
as on the collector processing rate � .

The interval � is the interval over which we require real-time
performance, for instance ���. Since this interval is small, the
peak allocation rate for this interval size is likely to be quite high,
as we will show in Section 7. Thus we expect that the CPU uti-
lization of the work-based collector will vary considerably with the
allocation rate.

In particular, note that the � in which the time-based collector
is dependent on allocation rate is on a much larger scale, namely
the amount of time for a garbage collection.

Therefore, to a first order a work-scheduled collector will meet
its space bound as long as the user estimate of  is correct, but
its CPU utilization will be heavily dependent on the allocation rate
over a real-time interval.

4.5.3 A Robust Collector
A robust real-time collector should primarily use a time-based

scheduling policy, but as memory resources become scarce (indi-
cating that the input parameters to the collector may have been
incorrect), if graceful degradation is desirable then the collector
should begin slowing down the allocation rate.

This can be done in a number of ways. A classical approach in
real-time systems is to separate threads into priority classes, and as
the system becomes unable to meet real-time bounds, low-priority
threads are successively suspended [15].

Another approach is to begin using a hybrid strategy which be-
comes progressively more work-based as the collector comes closer
to its memory limit. This approach will not guarantee that real-time
bounds are met, but is robust even if the allocation rate and memory
utilization of the top-priority threads have been underestimated.

We have not done this; instead we have implemented pure time-
based and work-based collector scheduling policies, and in Sec-
tion 7 we compare them experimentally so that the tradeoffs can be
evaluated.

5. SPACE COSTS
We now compare the relative space costs of the different types

of real-time collectors. Since purely non-copying algorithms are
subject to high (and often unbounded) fragmentation, they are not
suitable for use in true real-time systems.

Since our collector has a significantly different architecture from
copying real-time collectors, its space bounds are quite different.

Incremental semi-space copying collectors have an inherent space
overhead of � � � � �� � � � �, where  is the maximum live
heap memory, � is the space required to allow allocation to proceed
during a single garbage collection, � is the maximum stack depth,
and � is the maximum size of the global variable area.

Our collector has an expected-case space requirement of���
��� and a worst-case cost of ��������� , where � is the
maximum number of uncollected objects (live or dead). The extra
���� space is incurred when: a data structure of size close to is
freed immediately after the beginning of a collection (the collector
must run again to find it, requiring � extra space); all garbage found
causes external fragmentation (requiring an extra collection cycle
to relocate the data and make it available, which requires another
� extra space); and the program traverses the heap in a pessimal
fashion (forcing a maximum number of pointers to be pushed onto
the work queue for each mark operation, which requires � extra
words of memory).

There are two things to note about the worst-case memory re-
quirements of our collector. First, the difference in the worst-case
between our collector and a copying collector is � � � versus .
The space � required to run a collection is typically lower than the
maximum live memory  (and can be tuned). The maximum num-
ber of uncollected objects is the maximum uncollected space di-
vided by the average object size in words �, or �� ����. Since
� is typically on the order of 8 for Java programs, � is typically
small relative to . Thus for most programs, the worst-case space
requirements of our collector will still be smaller than those of a
copying semi-space collector.

Second, the likelihood of more than one of these worst-case sce-
narios occurring concurrently is very low. In practice, this means
that the amount of memory devoted to the system can be varied be-
tween the expected- and worst-case space requirements depending
on the acceptable failure rates for the system in question.

These figures do not include the extra space overhead required to
bound internal fragmentation with the parameter �, which we have
set to ��� in our implementation. This parameter can be further
reduced at the expense of potentially requiring additional partially
used blocks for the extra size classes. For � � ���, the number
of size classes � � �� and the measured fragmentation does not
exceed 2% for our benchmarks.

We do not include the space overhead due to the forwarding
pointer, since all high-performance copying algorithms also use
a forwarding pointer. Bacon et al. [4] have shown that an extra
header word leads to a 14% increase in space utilization (assuming
one uses an object model with a single-word header as a basis).

6. IMPLEMENTATION ISSUES
We implemented a real-time collector based on the ideas intro-

duced in the previous sections. Implementing the collector required
both coding the collector proper as well as adding read barriers to
the compiler. In certain cases, it was infeasible to introduce a read
barrier. Omitting the barrier is correct as long as we pin the ob-
ject to guarantee that it never moves. Fortunately, most objects that
fall into this category are run-time data structures that are immor-
tal. By maintaining a separate immortal heap, we can omit moving
such objects without introducing any fragmentation.

6.1 Triggering a Collection
In the worst-case analysis of the collector, we can run the pro-

gram in space  � �� where  is the amount of maximum live
data and � is the space required to run a single collection (� � ��
or �� depending on the scheduling policy). However, executing
with these boundary conditions will result in the collector always
running. Even if the application utilization is at 50% during a col-
lection, this will lead to an overall slowdown of the program by a
factor of 2 which is likely unacceptable. For comparison, running a
stop-the-world collector at  will result in a virtually infinite slow-
down. The solution is to provide headroom so that the program can
run for some time before a collection must occur. For example, if
enough headroom is provided so that the collector runs only 25%
of the time, then the overall utilization rises to 87.5%.

In our implementation, we have set the headroom to be �. A
collection is thus triggered when the amount of memory in use is
� �.

6.2 Control of Interleaving
Ideally, in the time-scheduled collector we would use a precise

timer to control the scheduling of the mutator and collector pro-
cesses. Unfortunately, AIX does not allow user-level access to
timers with a resolution of less than 10 ms. Therefore, we must
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Figure 2: Relative overhead of lazy and eager read barriers in
the Jikes RVM optimizing compiler.

use an approximate method based on polling.
The mutator polls the timer on the slow path of allocation (when

it moves to a new page) or when the mutation buffer fills up. This
keeps the polling out of the fast, in-lined cases, but is subject to
some inaccuracy. However, as a practical matter, this is acceptable
because we are increasing mutator utilization and doing it at a time
when resource consumption is low.

The collector on the other hand performs work in progressively
finer work quanta as it gets closer to the end of its time quantum
�� . When the time consumed is close to or exceeds the quantum,
the mutator is resumed.

The work-scheduled collector is also subject to some inaccuracy
because scheduling is only performed in the slow path through the
allocator, even though a precise count of bytes allocated is kept on
the fast (inlined) path.

7. MEASUREMENTS
We present empirical results in this section. All results were

obtained on an IBM RS/6000 Enterprise Server F80 running AIX
5.1. The machine has 4 GB of main memory and six 500 MHz
PowerPC RS64 III processors each with 4 MB of L2 cache.

The virtual machine runs on a single CPU. Experiments are run
on an unloaded multiprocessor so that operating system processes
are performed on different CPUs to avoid perturbing our measure-
ments.

Our system is implemented as part of the Jikes Research Virtual
Machine (RVM) version 2.1.1 at the IBM T.J. Watson Research
Center [1]. All methods were compiled with the optimizing com-
piler (since the system is real-time, adaptive compilation is turned
off). Measurements were started after a dummy run of the bench-
mark which forces all methods to be compiled.

Because the optimizing compiler often requires more space than
the applications themselves, the heap is resized after compilation
to the heap sizes given. In this way, we measure the intrinsic prop-
erties of the application rather than of the compilation.

7.1 Read Barrier Costs
Since our collector makes use of read barriers, and read barriers

are often considered prohibitively expensive, we begin by showing
that our optimized implementation of the Brooks-style read barrier
with the eager invariant can achieve very low overhead.

We have implemented both lazy and eager barriers in the IBM
Jikes RVM [1] and present their relative performance, both to each
other and to a system without barriers.

Read barriers were initially considered so expensive as to only be
practical with hardware support, as was done in a number of com-
mercially available machines such as the Symbolics Lisp Machine
[20].

The first implementation we know of the Brooks read barrier
is that by North and Reppy [22] in their concurrent collector for
Pegasus ML. However, they do not measure barrier cost but only
the total cost.

Zorn [25] compared the cost of hardware, software, and page
protection-based read barriers, and determined that software read
barriers were much better than protection based read barriers, but
still cost about 20%.

Zorn measured Baker-style read barriers that require on average
four ALU/branch instructions. The straightforward implementa-
tion of our read barrier requires a compare, a branch, and a load.
However, in most cases we are able to optimize away the compare
and branch, and to perform common subexpression elimination on
the remaining loads.

The results are shown in Figure 2. The geometric mean of the
lazy barrier overhead is 6%, with a maximum of 11% overhead for
javac. This is significantly better than previous results, but still
not acceptable in our opinion.

On the other hand, the geometric mean of the eager barrier over-
head is only 4%, with a maximum of less than 10% for compress.
The mean overhead is an order of magnitude better than previous
results, and in our opinion low enough for incorporation into a
highly aggressive optimizing compiler, given the potential benefits
in space utilization and incrementality, as shown in the following
sections.

On the other hand, the variance is still too large: we do not con-
sider the slowdown for compress to be acceptable. It turns out
that the problem with compress is due to a shortcoming in the op-
timizer which is preventing it from performing loop-invariant code
motion. Once this bug is fixed, we expect the overhead in com-
press to drop below 5%.

7.2 Collector Performance
We tested our real-time collector on the SPECjvm98 benchmarks

and a synthetic fragger benchmark designed to act adversarially:
it allocates at a high rate, uses a maximal amount of memory, and
creates maximal fragmentation.

Of the SPEC benchmarks, mpegaudio was excluded because
it performed little allocation and would have no necessary garbage
collections. In addition, compress was excluded because our
current implementation does not fully support arraylets and com-
press makes frequent use of large arrays.

Table 1 presents overall results for the benchmarks when run
with a target utilization �� �����ms� � ����, mutator quantum
�� � �� ms, and a collector quantum �� � ���� ms. For each
program, we include the high watermark of live data and the maxi-
mum memory actually used. The average allocation rate is the allo-
cation rate over the entire execution ���� � whereas peak allocation
measures the maximum allocation rate during a mutator quantum
����� �.

The collection rate � shows how quickly the collector can trace
through the live data of that application. For each program, we
show the target application utilization and the worst actual uti-
lization that occurred. Average and maximum pause times are in-
cluded. Finally, we show the total amount of moved and traced data
as an indication of how much defragmenting work is necessary.
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Maximum Memory Allocation Rate Coll. Min. Pause Time
Benchmark Live Used Ratio Avg. Peak Rate Util. Avg. Max. Copied Traced

 �� �� � ���� � ����� � � �� ���
javac 34 69.3 2.0 14.2 258.0 39.4 0.446 11.3 12.3 12.1 299.4
jess 21 52.4 2.5 19.2 94.2 53.2 0.441 11.0 12.4 2.0 324.0
jack 30 59.3 2.0 16.0 105.1 57.4 0.441 10.7 12.4 3.5 321.7
mtrt 28 44.4 1.6 9.6 114.3 45.1 0.446 11.0 12.3 2.3 176.9
db 30 54.8 1.8 14.2 82.1 36.7 0.441 11.4 12.4 1.3 144.6
fragger 20 47.7 2.4 17.5 185.9 38.4 0.441 11.0 12.4 12.6 307.0

Table 1: Overall Results for the Time-Based Collector. � is the total run-time of the program. Target mutator quantum �� � ��
ms, target collector quantum �� � ���� ms, target utilization is 0.45, � � ���� ms. All sizes in MB, all rates in MB/s, all times in
milliseconds.

All of our benchmarks had a similar amount of maximum live
data (between 20 and 30 MB) but they required anywhere from 45
to 70 MB at some point in their execution. The variance in space
usage arises from several factors. The heap size requirement ap-
pears to be primarily correlated to the average allocation rate — for
instance note the high allocation rate for jess and the correspond-
ingly high maximum memory ratio.

The measured values for the rate of collection � range from 36.7
to 57.4 MB/s. This is primarily due to variation in pointer density
in the data structures of the programs, and shows that while our
theoretical assumption that � is constant does not introduce large
error, it is nonetheless significant.

Average allocation rates ranged from 9.6 to 19.2 MB/s while
peak allocation rates ranged from 82.1 to 258 MB/s. These spikes
in allocation rates demonstrate the infeasibility of using a purely
work-based scheduling policy for the goal of maintaining a high
minimum utilization.

For all benchmarks, we ran the collector with a target application
utilization of 0.45 and obtained a minimum utilization of 0.441 to
0.446. Thus the maximum deviation is only 2%.

The last two columns in Table 1 show the amount of data copied
and traced over the entire execution of the program. The maxi-
mum amount of data copied is about 4% of the data traced (interest-
ingly, javac introduces about the same amount of fragmentation
as fragger, which we wrote specifically as a fragmenting adver-
sary program). Note that the amount of data traced by our collector
is roughly comparable to the amount of data that would be copied
by a semi-space collector, although such a collector would require
a significantly larger heap to obtain the same performance.

Table 2 summarizes the results when we changed from time- to
work-based collector scheduling. The table only shows those quan-
tities that changed appreciably from the time-based collector. Also,
since the utilization at our target � was often zero, we also give
the utilization for an interval of 50 ms. Even at this longer interval,
the best case is only half the target value.

While average pause times are considerably lower, the maximum
pause times for the work-based collector are much higher (up to 92
ms for fragger) and at � � ���� ms the minimum mutator uti-
lization is very poor. These measurements confirm experimentally
the analytic results from Section 4.

7.3 Detailed Evaluation
We examine three benchmarks in detail: mtrt, javac, and

fragger. These three were chosen because they represent a range
of difficulty for the collector. For both time- and work-based schedul-
ing, we compare the distribution of pause times, the utilization over
time, the MMU over a full range of intervals, and the space con-
sumption of these three benchmarks.

The pause time distributions are shown in Figures 3 through 8.
These figures show that our time-based collector achieves highly
uniform pause times, with the majority of all pauses at 12.2 ms.
By comparison, the work-based collector has a much more uneven
distribution (note the differences in scale on both the � and � axes).
The work-based collector has considerably shorter average pauses,
but the distribution is much more uneven and there is a much longer
“tail” in the distribution.

The adversarial nature of fragger is clearly seen in Figure 8:
while the work-based collector keeps the vast majority of pauses
below 10 ms, the tail extends to almost 100 ms.

If one only considered maximum pause time, the pause time dis-
tribution graphs would give the impression that utilization under
the work-based collector would be about 2-3 times worse for non-
adversarial programs. However, Figures 9 through 14 show that for
a short interval on the order likely to be of interest in real-time sys-
tems (22.2 ms), work-based scheduling produces very large vari-
ance in mutator utilization, often dropping to almost zero. This
can easily occur when a single large object is allocated, forcing the
collector to perform many collector quanta in a row.

On the other hand, the time-based collector performs extremely
well. There is a small amount of jitter due to slight imprecision
in our work predictor, but utilization during collection is almost
exactly on or above the target.

For mtrt and javac, after the first collection the application
enters a fairly regular cycle in which the concurrent collector is
off for ��� to ��� of the time. However, the adversarial nature of
fragger is once again apparent: in the time-based collector, it
collects continuously, and in the work-based collector the utiliza-
tion frequently drops to zero.

Figures 15 through 17 show the minimum mutator utilization
(MMU [12]) of both time- and work-based collectors superimposed
on one graph. The time scale ranges from 10 milliseconds to the
length of the program run. At small time scales, the MMU for
the time-based collector almost precisely matches the shape of the
perfect curve shown in Figure 1. At larger time scales, the effect
of the mutator being off come into play, and utilization rises above
the target.

MMU for the work-based collector is much lower, and interest-
ingly has much less of a “sawtooth” shape. At the time scale of a
small number of collections, the work-based collector may briefly
exceed the time-based collector in utilization, but as the number of
collections becomes large they appear to approach the same asymp-
totic cost.

We compute the MMU precisely below � � �� seconds using
a quadratic algorithm; above 10 seconds we use an approximate
algorithm which has very small error. Cheng and Belloch [12] used
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Minimum Pause
Benchmark Utilization Time

�� ��� �� ���ms� Avg. Max.
javac 0 0.118 5.1 31.9
jess 0 0.180 3.1 26.2
jack 0.001 0.152 2.8 13.2
mtrt 0.002 0.227 5.0 18.8
db 0 0.141 6.0 28.0
fragger 0 0 3.7 92.1

Table 2: Overall Results for the Work-Based Collector. Mu-
tator allocation quantum �� � �� KB, collector processing
quantum �� � ��� KB, � � ���� ms. All times in millisec-
onds.

a sampling technique and only plotted the MMU for certain values
of �, thus hiding some of the irregularity of the curve.

Blackburn et al. [8] use a variant of the MMU which produces a
monotonic curve which is strictly derivable from the MMU curve.
This definition of utilization is appropriate at the large time scales
at which these collectors operate (several hundred milliseconds and
above) but hides information that is important at short time intervals
of interest in true real-time systems.

Finally, Figures 18 through 20 show space consumption over
time for both time- and work-based collectors. The maximum live
data and the collector trigger threshold are also shown. What is
surprising is how little difference there is between time- and work-
based memory consumption given the large differences in behavior
seen in the previous graphs. There is some variation, but there is no
clear winner: each type of scheduling sometimes requires slightly
more or slightly less space, but the shape of the space curves is very
similar and only slightly translated.

8. REAL-TIME ISSUES
In Section 2 we outlined some of the problems common to real-

time collectors. The design choices made in our collector avoid
these problems in the following ways:

� Fragmentation is avoided through a combination of means:
internal fragmentation is limited by choosing a small ratio for
adjacent size classes. External fragmentation is prevented by
defragmenting the heap as needed, and by breaking up large
arrays into arraylets.

� Space overhead is limited by using a mostly non-copying al-
gorithm, so that from-space and to-space are mostly sharing
physical storage.

� Uneven mutator utilization is avoided because we use a time-
based scheduling policy, which is not sensitive to variations
in average allocation rate at small (real-time) intervals but
only at large intervals on the order of a full collection.

� Large data structures are handled by using arraylets, which
effectively turns large objects into small objects.

8.1 Flaws in Baker’s Real-time Definition
Baker [5] begins his seminal paper on real-time garbage collec-

tion by stating that “a real-time list processing system is one in
which the time required by the elementary list operations . . . is
bounded by a small constant.” This approach has been the basis
for most of the later work on real-time collection [2, 6, 10, 11, 17,
19, 24]. However, this is implicitly a work-based approach, and as
we have seen in Sections 4 and 7, at the small time intervals that

are typically of interest in real-time systems, work-based collectors
may be subject to very poor utilization.

Baker attempts to finesse this problem by interleaving the col-
lector with the mutator in a very fine-grained manner, but this only
hides the problem: it keeps individual pauses low, but does not pre-
vent numerous closely-spaced pauses. In the case of Baker’s copy-
ing collector, the read barrier converts what was originally a simple
load instruction into a sequence of tests, loads, and possibly a copy
of the object. Let us say that the cost of such a read with barrier is
� times the cost of the original read operation. Then if we consider
a short interval � containing only read operations, the utilization
will be ���.

Ultimately, it comes down to a question of what one means by
“small”. If � � �, then the utilization will probably be acceptable.
However, more typical values are 10 to 20. In such short intervals,
utilization may drop so low as to be useless, as we saw experimen-
tally in Table 2.

There are fundamentally three ways to ameliorate this problem:
increase �, decrease �, or make � bimodal. Increasing � is de-
pendent on the real-time requirements of the application. An exam-
ple of decreasing � is Brooks’ variant [10] of Baker’s algorithm: a
read only requires one extra load instruction, and the costly barrier
is only performed on writes, which are considerably less frequent.
However, at a resolution of 1 ms, there could be a lot of writes, and
the � for the write barrier is unlikely to be less than 10 (and is often
much higher), so utilization could still be very low. Attempts have
been made to further reduce the cost of the write barrier by using a
store buffer [24] or by pre-allocating the space for the copied object
and deferring the actual copy to collection time [15].

Nettles and O’Toole [21] introduced replicating copying collec-
tors [12, 16], which represent another point in the tradeoff space.
In these collectors, there is no read barrier, but the overall cost of
the write barrier is more expensive because it may have to update
both to- and from-space objects.

Baker attempted to keep performance uniform by interleaving
the allocator with each CONS, CAR, and CDR operation. However,
the more fine-grained the interleaving, the higher the relative cost
of the operations. Many subsequent collectors have attempted to
reduce the time overhead of concurrent collection by batching the
work (the Appel-Ellis-Li collector [2], which uses virtual memory
page traps, is an extreme example). However, this limits the reso-
lution of �, and does not function well when the cost of the quan-
tized work varies widely (for example, due to variation in object
sizes) or when the quanta occur irregularly. If the variation is low,
it should be possible, for a given �, to determine the best batch
size analytically.

Ultimately, the distinction that is generally made in the literature
between hard real-time and soft real-time is an over-simplification.
There is really a continuum that depends on the required response
time and the cost and variability of collector operations.

8.2 Time-based Collectors
While most previous work on real-time collection has focused on

work-based scheduling, there are some notable exceptions. In par-
ticular, Henriksson [15] implemented a Brooks-style collector [10]
in which application processes are divided into two priority lev-
els: for high-priority tasks (which are assumed to be periodic with
bounded compute time and allocation requirements), memory is
pre-allocated and the system is tailored to allow mutator operations
to proceed quickly. For low-priority tasks, no response-time goals
are set.

Henriksson gives a schedulability analysis using the real-time
scheduling techniques of Joseph and Pandya [18]. While his anal-
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ysis is work-based, his formula for utilization is similar to our for-
mula for time-based scheduling. This is because in his collector
the high-priority mutators can always interrupt the collector when
they are ready to run. Thus we see that interrupt-driven work-based
scheduling is essentially the same as periodic time-based schedul-
ing.

The garbage collectors of Nettles and O’Toole [21] and North
and Reppy [22] run the collector in a separate thread, which appears
to be a time-based approach. However, Nettles and O’Toole dy-
namically detect situations in which the mutator is allocating faster
than the collector, in which case they pause the mutator while a
fixed amount of work is performed.

North and Reppy’s collector does not have any feedback, nor is
there any way of balancing the mutator/collector quanta, so muta-
tors with high allocation rates may fail.

9. CONCLUSIONS
We have presented a hybrid real-time collector that operates pri-

marily as a non-moving incremental mark-sweep collector, but pre-
vents fragmentation via the use of limited copying (no more than
4% of traced data in our measurements). Because fragmentation
is bounded, the collector has a provable space bound yet retains a
lower space overhead than a fully-copying real-time collector.

The key to fully incremental defragmentation is a low-overhead
read barrier that maintains consistency without compromising the
real-time bounds. We have shown that in an optimizing Java com-
piler, a highly efficient software read barrier can be implemented
and will only cause a 4% mean slowdown.

We have implemented the collector and shown that for real ap-
plications it can achieve highly predictable mutator utilization rates
with highly stable pause times at real-time resolution. It is gener-
ally able to achieve 45% utilization while the collector is on with
only 1.6–2.5 times the actual memory high water mark of the ap-
plication.
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Figure 3: Time-based collector pause times for mtrt
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Figure 4: Time-based collector pause times for javac
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Figure 5: Time-based collector pause times for fragger
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Figure 6: Work-based collector pause times for mtrt
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Figure 7: Work-based collector pause times for javac
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Figure 8: Work-based collector pause times for fragger
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Figure 9: Time-based utilization for mtrt, � � ���� ms.
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Figure 10: Time-based utilization for javac, � � ���� ms.
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Figure 11: Time-based utilization for fragger, � � ���� ms.
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Figure 12: Work-based utilization for mtrt, � � ���� ms.
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Figure 13: Work-based utilization for javac, � � ���� ms.
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Figure 14: Work-based utilization for fragger, � � ���� ms.
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Figure 15: MMU for mtrt.
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Figure 16: MMU for javac.
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Figure 17: MMU for fragger.
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Figure 18: Space consumption by mtrt.
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Figure 19: Space consumption by javac.
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Figure 20: Space consumption by fragger.
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