
A Lock-Free Hash Table

The Art of (Java)
Benchmarking

Dr. Cliff Click
Chief JVM Architect & Distinguished Engineer
blogs.azulsystems.com/cliff
Azul Systems
Feb 15, 2012

www.azulsystems.com

Benchmarking is Easy!!!

• And Fun!!!
• “My Java is faster than your C!!!”
• And generally wrong...
• Without exception every microbenchmark I've seen

has had serious flaws
─ Except those I've had a hand in correcting

• Serious =
─ “Score” is unrelated to intended measurement or
─ error bars exceed measured values

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Split out micro-bench vs macro-bench

• Micro-benchmarks are things you write yourself
─ Attempt to discover some narrow targeted fact
─ Generally a timed tight loop around some “work”
─ Report score as iterations/sec

─ e.g. allocations/sec – object pooling vs GC

• Macro-benchmarks are supposed to be realistic
─ Larger, longer running

─ e.g. WebServer, DB caching/front-end, Portal App
─ SpecJBB, SpecJAppServer, XMLMark, Trade6

─ Load testing of Your Real App

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Some Older Busted Micro-Benchmarks

• CaffeineMark “logic”
─ trivially made dead by JIT; infinite speedup

• SciMark2 Monte-Carlo
─ 80% of time in sync'd Random.next
─ Several focused tests dead; infinite speedup

• SpecJVM98 _209_db – purports to be a DB test
─ Really: 85% of time in String shell-sort

• SpecJVM98 _227_mtrt
─ Runtime is much less than 1 sec

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Some Older Busted Micro-Benchmarks

• CaffeineMark “logic”
─ trivially made dead by JIT; infinite speedup

• SciMark2 Monte-Carlo
─ 80% of time in sync'd Random.next
─ Several focused tests dead; infinite speedup

• SpecJVM98 _209_db – purports to be a DB test
─ Really: 85% of time in String shell-sort

• SpecJVM98 _227_mtrt
─ Runtime is much less than 1 sec

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Dead Loops

// how fast is divide-by-10?
long start = Sys.CTM();
for(int i=0; i<N; i++)
 int x = i/10;
return N*1000/(Sys.CTM()-start);

• Timeline:
─ 1- Interpret a while, assume 10ms
─ 2- JIT; “x” not used, loop is dead, removed, 10ms
─ 3- “Instantly” execute rest of loop

• Time to run: 20ms – Independent of N!
─ Vary N ==> vary score ==> “Dial-o-Score!”

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Dead Loops

• Sometimes JIT proves “results not needed”
─ Then throws out whole work-loop
─ After running long enough to JIT
─ So loop runs at least a little while first

• Score “ops/sec” not related to trip count 'N'
─ Larger N ==> larger score

• Score can be infinite- or NaN
─ Generally reported as a very large, but valid #
─ And mixed in with other numbers, confusing things

─ (e.g. geomean of infinite's and other more real numbers)

www.azulsystems.com

| ©2007 Azul Systems, Inc.

SciMark2 Monte-Carlo

• 80% of time in synchronize'd Random.next
• 3-letter-company “spammed” it by replacing with

intrinsic doing a CompareAndSwap (CAS)
• I was ordered to follow suit (match performance)
• Doug Lea said “wait: just make a CAS from Java”
• Hence sun.misc.AtomicLong was born
• Rapidly replaced by Unsafe.compareAndSwap...
• ...and eventually java.lang.Atomic*

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Micro-bench Advice: Warmup

• Code starts interpreted, then JIT'd
─ JIT'd code is 10x faster than interpreter

• JIT'ing happens “after a while”
─ HotSpot -server: 10,000 iterations
─ Plus compile time

• Warmup code with some trial runs
─ Keeping testing until run-times stabilize

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Micro-bench Advice: Warmup

• Not allowing warmup is a common mistake
• Popular failure-mode of C-vs-Java comparisons

─ Found on many, many, many web pages
─ Entire benchmark runs in few milli-seconds
─ There are domains requiring milli-second reboots...

• But most desktop/server apps expect:
─ Reboots are minutes long and days apart
─ Steady-state throughput after warmup is key
─ So a benchmark that ends in <10sec

probably does not measure anything interesting

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Micro-bench Advice: “Compile plan”

• JIT makes inlining & other complex decisions
─ Based on very volatile & random data
─ Inline decisions vary from run-to-run

• Performance varies from run-to-run
─ Stable numbers within a single JVM invocation
─ But could vary by >20% with new JVM launch
─ Bigger apps are more performance-stable

• Micro-benchmarks tend to be “fragile” here
─ e.g. 1 JVM launch in 5 will be 20% slower*

*”Statistically Rigorous Java Performance Evaluation” OOPSLA 2007

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Micro-bench Advice: “Compile plan”

public int a() { for(...) b(); }
public int b() { for(...) c(); }
public int c() { …work... }

A:
loop1:
 …
loop2:
 …
 call C
 …
 jne loop2
 …
 jne loop1
 return
C:
 …
 return

80% chance
A calls B

B inlines C

20% chance
A inlines B
B calls C

A:
loop1:
 …
 call B
 jne loop1
 return

B:
 loop2:
 ...
 jne loop2
 …
 return

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Micro-bench Advice: “Compile plan”

• Launch the JVM many times
─ Toss 1st launch to remove OS caching effects
─ Average out “good” runs with the “bad”
─ Don't otherwise toss outliers

─ (unless you have good reason: i.e. unrelated load)

• Enough times to get statistically relevant results
─ Might require 30+ runs

• Report average and standard deviation
─ In this case, expect to see a large std.dev

*”Statistically rigorous Java performance evaluation” OOPSLA 2007

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Micro-bench Advice: “1st fast, 2nd slow”

• Timing harness needs to invoke many targets
─ In a loop, repeatedly a few times
─ Else JIT sees 1 hot target in a loop

─ And then does a guarded inline
─ And then hoists the timed work outside of timing loop

class bench1 implements bench { void sqrt(int i); }
class bench2 implements bench { void sqrt(int i); }
static final int N=1000000; // million
...
static int test(bench B) {
 long start = System.currentTimeMillis();
 for(int i=0; i<N; i++)
 B.sqrt(i); // hot loop v-call
 return N*1000/(System.currentTimeMillis()-start);

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Micro-bench Advice: “1st fast, 2nd slow”

class bench1 implements bench { void sqrt(int i); }
class bench2 implements bench { void sqrt(int i); }
static final int N=1000000; // million
...
static int test(bench B) {
 long start = System.currentTimeMillis();
 for(int i=0; i<N; i++)
 B.sqrt(i); // hot loop v-call
 return N*1000/(System.currentTimeMillis()-start);

Pass in one of two
different classes

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Micro-bench Advice: v-call optimization

• First call: test(new bench1)

long start = Sys.CTM();
for(int i=0; i<N; i++)
 B.sqrt(i);
return N*1000/(Sys.CTM()-start);

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Micro-bench Advice: v-call optimization

• First call: test(new bench1)
─ Single target callsite; JIT does guarded inlining

─ Inlines bench1.sqrt

long start = Sys.CTM();
for(int i=0; i<N; i++)
 B.sqrt(i);
return N*1000/(Sys.CTM()-start);

long start = Sys.CTM();
for(int i=0; i<N; i++)
 Math.sqrt(i); // inline bench1.sqrt
return N*1000/(Sys.CTM()-start);

guarded
inline

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Micro-bench Advice: v-call optimization

• First call: test(new bench1)
─ Single target callsite; JIT does guarded inlining

─ Inlines bench1.sqrt
─ Hoists loop-invariants, dead-code-remove, etc

─ Execution time does NOT depend on N!!!
─ Dreaded “Dial-o-Score!”

long start = Sys.CTM();
for(int i=0; i<N; i++)
 B.sqrt(i);
return N*1000/(Sys.CTM()-start);

long start = Sys.CTM();
for(int i=0; i<N; i++)
 Math.sqrt(i); // inline bench1.sqrt
return N*1000/(Sys.CTM()-start);

guarded
inline dead code

long start = Sys.CTM();
// JIT'd loop removed
return N*1000/(Sys.CTM()-start);

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Micro-bench Advice: v-call optimization

• Second call: test(new bench2)
─ 2nd target of call; guarded inlining fails
─ Code is incorrect; must be re-JIT'd
─ Measures overhead of N calls to bench2.sqrt

─ Plus guard failure, deoptimization
─ Plus JIT'ing new version of test()
─ Plus virtual call overhead

long start = System.CTM();
for(int i=0; i<N; i++)
 B.sqrt(i);
return N*1000/(System.CTM()-start);

int bench2.sqrt(int i) {
 // alternate impl
}

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Micro-bench Advice: v-call optimization

• Reversing order of calls reverses “good” & “bad”
─ e.g. “test(new bench2); test(new bench1);”

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Micro-bench Advice: v-call optimization

• Reversing order of calls reverses “good” & “bad”
─ e.g. “test(new bench2); test(new bench1);”

• Timing harness needs to invoke all targets
─ In a loop, repeatedly a few times

class bench1 implements bench { void sqrt(int i); }
class bench2 implements bench { void sqrt(int i); }
...
 // warmup loop
 for(int i=0; i<10; i++) {
 test(new bench1);
 test(new bench2);
 }
 // now try timing
 printf(test(new bench1));

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Micro-bench Advice: v-call optimization

• Reversing order of calls reverses “good” & “bad”
─ e.g. “test(new bench2); test(new bench1);”

• Timing harness needs to invoke all targets
─ In a loop, repeatedly a few times

class bench1 implements bench { void sqrt(int i); }
class bench2 implements bench { void sqrt(int i); }
...
 // warmup loop
 for(int i=0; i<10; i++) {
 test(new bench1);
 test(new bench2);
 }
 // now try timing
 printf(test(new bench1));

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Micro-bench Advice: GC

• Avoid GC or embrace it
• Either no (or trivial) allocation, or use verbose:gc to

make sure you hit steady-state
• Statistics: not just average, but also std-dev
• Look for trends

─ Could be creeping GC behavior
• Could be “leaks” causing more-work-per-run

─ e.g. leaky HashTable growing heap or
─ Growing a LinkedList slows down searches

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Micro-bench Advice: Synchronization

• Account for multi-threaded & locking
• I do see people testing, e.g. locking costs on single-

threaded programs
• Never contended lock is very cheap

─ +BiasedLocking makes it even cheaper

• Very slightly contended lock is probably 4x more
• Real contention: Amdahl's Law

─ Plus lots and lots of OS overhead
• java.util.concurrent is your friend

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Micro-bench Advice

• Realistic runtimes
─ Unless you need sub-milli-sec reboots

• Warm-up loops - give the JIT a chance
• Statistics: plan for variation in results
• Dead loops – look for “Dial-o-Score!”, deal with it
• 1st run fast, 2nd run slow – look for it, deal with it
• GC: avoid or embrace

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Macro-bench warnings

• JVM98 is too small anymore
─ Easy target; cache-resident; GC ignored

• JBB2000, 2005
─ Not much harder target
─ VERY popular, easy enough to “spam”
─ Score rarely related to anything real

• SpecJAppServer, DaCapo, SpecJVM2008, XMLMark
─ Bigger, harder to spam, less popular

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Macro-bench warnings

• Popular ones are targeted by companies
• General idea: JVM engineers are honest

─ But want the best for company
─ So do targeted optimizations

─ e.g. intrinsic CAS for Random.next
─ Probably useful to somebody
─ Never incorrect
─ Definitely helps this benchmark

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Typical Performance Tuning Cycle

• Benchmark X becomes popular
• Management tells Engineer: “Improve X's score!”
• Engineer does an in-depth study of X
• Decides optimization “Y” will help

─ And Y is not broken for anybody
─ Possibly helps some other program

• Implements & ships a JVM with “Y”
• Management announces score of “X” is now 2*X
• Users yawn in disbelief: “Y” does not help them

www.azulsystems.com

| ©2007 Azul Systems, Inc.

SpecJBB2000

• Embarrassing parallel - no contended locking
• No I/O, no database, no old-gen GC

─ NOT typically of any middle-ware
─ Very high allocation rate of young-gen objects,

definitely not typically
─ But maybe your program gets close?

• Key to performance:
having enough Heap to avoid old-gen GC
during 4-min timed window

www.azulsystems.com

| ©2007 Azul Systems, Inc.

SpecJBB2000: Spamming

• Drove TONS of specialized GC behaviors & flags
─ Across many vendors
─ Many rolled into “-XX:+AggressiveOptimizations”
─ Goal: no old-gen GC in 4 minutes

• 3-letter-company “spammed” - with a 64-bit VM and
12Gig heap (in an era of 3.5G max heaps)

─ Much more allocation, hence “score” before GC
─ Note that while huge heaps are generically useful to

somebody, 12Gig was not typical of the time
─ Forced Sun to make a 64-bit VM

www.azulsystems.com

| ©2007 Azul Systems, Inc.

SpecJBB2000: Spamming

• Drove TONS of specialized GC behaviors & flags
─ Across many vendors
─ Many rolled into “-XX:+AggressiveOptimizations”
─ Goal: no old-gen GC in 4 minutes

• 3-letter-company “spammed” - with a 64-bit VM and
12Gig heap (in an era of 3.5G max heaps)

─ Much more allocation, hence “score” before GC
─ Note that while huge heaps are generically useful to

somebody, 12Gig was not typical of the time
─ Forced Sun to make a 64-bit VM

www.azulsystems.com

| ©2007 Azul Systems, Inc.

What can you read from the results?

• The closer your apps resemble benchmark “X”
─ The closer improvements to X's score impact you

• Huge improvements to unrelated benchmarks
─ Might be worthless to you

• e.g. SpecJBB2000 is a perfect-young-gen GC test
─ Improvements to JBB score have been tied to better

young-gen behavior
─ Most web-servers suffer from OLD-gen GC issues

─ Improving young-gen didn't help web-servers much

www.azulsystems.com

| ©2007 Azul Systems, Inc.

SpecJBB2005

• Intended to fix JBB2000's GC issues
─ No explicit GC between timed windows
─ Penalize score if GC pause is too much

(XTNs are delayed too long)
─ Same as JBB2000, but more XML
─ Needs some Java6-isms optimized

• Still embarrassing parallel – young-gen GC test
• Azul ran up to 1700 warehouse/threads

on a 350Gig heap, allocating 20Gigabytes/sec
for 3.5 days and STILL no old-gen GC

www.azulsystems.com

| ©2007 Azul Systems, Inc.

SpecJBB2005

• Intended to fix JBB2000's GC issues
─ No explicit GC between timed windows
─ Penalize score if GC pause is too much

(XTNs are delayed too long)
─ Same as JBB2000, but more XML
─ Needs some Java6-isms optimized

• Still embarrassing parallel – young-gen GC test
• Azul ran up to 1700 warehouse/threads

on a 350Gig heap, allocating 20Gigabytes/sec
for 3.5 days and STILL no old-gen GC

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Some Popular Macro-Benchmarks

• SpecJVM98 – too small, no I/O, no GC
─ 227_mtrt – too short to say anything

─ Escape Analysis pays off too well here
─ 209_db – string-sort NOT db, performance tied to TLB

& cache structure, not JVM
─ 222_mpegaudio – subject to odd FP optimizations
─ 228_jack – throws heavy exceptions – but so do many

app-servers; also parsers are popular. Improvements
here might carry over

─ 213_javac – generically useful metric for modest CPU
bound applications

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Some Popular Macro-Benchmarks

• SpecJVM98 – too small, no I/O, no GC
─ 227_mtrt – too short to say anything

─ Escape Analysis pays off too well here
─ 209_db – string-sort NOT db, performance tied to TLB

& cache structure, not JVM
─ 222_mpegaudio – subject to odd FP optimizations
─ 228_jack – throws heavy exceptions – but so do many

app-servers; also parsers are popular. Improvements
here might carry over

─ 213_javac – generically useful metric for modest CPU
bound applications

www.azulsystems.com

| ©2007 Azul Systems, Inc.

SpecJAppServer

• Very hard to setup & run
• Very network, I/O & DB intensive
• Need a decent (not great) JVM (e.g. GC is < 5%)
• But peak score depends on an

uber-DB and fast disk or network
• Not so heavily optimized by JVM Engineers
• Lots of “flex” in setup rules (DB & network config)
• So hard to read the results unless your external (non-

JVM) setup is similar

www.azulsystems.com

| ©2007 Azul Systems, Inc.

SpecJAppServer

• Very hard to setup & run
• Very network, I/O & DB intensive
• Need a decent (not great) JVM (e.g. GC is < 5%)
• But peak score depends on an

uber-DB and fast disk or network
• Not so heavily optimized by JVM Engineers
• Lots of “flex” in setup rules (DB & network config)
• So hard to read the results unless your external (non-

JVM) setup is similar

www.azulsystems.com

| ©2007 Azul Systems, Inc.

DaCapo

• Less popular so less optimized
• Realistic of mid-sized POJO apps
• NOT typical of app-servers, J2EE stuff
• Expect 1000's of classes loaded & methods JIT'd
• Some I/O, more typical GC behavior
• Much better score reporting rules
• DaCapo upgrades coming soon!

─ New version has web-servers & parallel codes

www.azulsystems.com

| ©2007 Azul Systems, Inc.

DaCapo

• Less popular so less optimized
• Realistic of mid-sized POJO apps
• NOT typical of app-servers, J2EE stuff
• Expect 1000's of classes loaded & methods JIT'd
• Some I/O, more typical GC behavior
• Much better score reporting rules
• DaCapo upgrades coming soon!

─ New version has web-servers & parallel codes

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Some Popular Macro-Benchmarks

• XMLMark
─ Perf varies by 10x based on XML parser & JDK version
─ Too-well-behaved young-gen allocation
─ Like DaCapo – more realistic of mid-sized POJO apps
─ Very parallel (not a contention benchmark)

unlike most app-servers
• SpecJVM2008

─ Also like DaCapo – realistically sized POJO apps
─ But also has web-servers & parallel apps
─ Newer, not so heavily targeted by Vendors

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Some Popular Macro-Benchmarks

• XMLMark
─ Perf varies by 10x based on XML parser & JDK version
─ Too-well-behaved young-gen allocation
─ Like DaCapo – more realistic of mid-sized POJO apps
─ Very parallel (not a contention benchmark)

unlike most app-servers
• SpecJVM2008

─ Also like DaCapo – realistically sized POJO apps
─ But also has web-servers & parallel apps
─ Newer, not so heavily targeted by Vendors

www.azulsystems.com

| ©2007 Azul Systems, Inc.

“Popular” Macro-Benchmark Problems

• Unrealistic treatment of GC
─ e.g. None in timed window
─ Or perfect young-gen collections
─ Real apps typical trigger full GC every hour or so

• Unrealistic load generation
─ Not enough load to stress system
─ Or very simple or repetitive loads
─ Bottlenecks in getting load to server

www.azulsystems.com

| ©2007 Azul Systems, Inc.

“Popular” Macro-Benchmark Problems

• Benchmark too short for full GC
─ Many real applications leak

─ Broken 3rd party libs, legacy code, etc
─ Leaks accumulate in old-gen

─ Which makes old-gen full GC expensive
─ But benchmark never triggers old-gen full GC

• I/O & DB not benchmarked well
─ But make a huge difference in Real Life
─ Your app might share I/O & DB with others

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Summary

• Macrobenchmarks
─ Targeted by JVM Engineers

─ Buyer Beware!
─ The closer the benchmark is to your problem

─ The more likely improvements will impact you
─ GC is likely to not be typical of real applications

─ Your applications ever go 3.5 days without a full GC?
─ I/O & DB load also probably not typical

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Summary

• Microbenchmarks
─ Easy to Write, Hard to get Right
─ Easy to be Fooled
─ Won't tell you much about macro-code anyways
─ Warmup – 1's of seconds to 10's of seconds
─ Statistics – average lots of runs

─ Even out variations in the “compile plan”
─ Call out to many methods in the hot loop
─ Be wary of dead-code super-score results

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Put Micro-Trust in a Micro-Benchmark!

www.azulsystems.com

| ©2007 Azul Systems, Inc.

Put Micro-Trust in a Micro-Benchmark!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

