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Benchmarking is Easy!!!

• And Fun!!!
• “My Java is faster than your C!!!”
• And generally wrong...
• Without exception every microbenchmark I've seen 

has had serious flaws
─ Except those I've had a hand in correcting

• Serious = 
─ “Score” is unrelated to intended measurement or 
─ error bars exceed measured values
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Split out micro-bench vs macro-bench

• Micro-benchmarks are things you write yourself
─ Attempt to discover some narrow targeted fact
─ Generally a timed tight loop around some “work”
─ Report score as iterations/sec

─ e.g. allocations/sec – object pooling vs GC

• Macro-benchmarks are supposed to be realistic
─ Larger, longer running

─ e.g. WebServer, DB caching/front-end, Portal App
─ SpecJBB, SpecJAppServer, XMLMark, Trade6

─ Load testing of Your Real App
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Some Older Busted Micro-Benchmarks

• CaffeineMark “logic” 
─ trivially made dead by JIT; infinite speedup

• SciMark2 Monte-Carlo  
─ 80% of time in sync'd Random.next
─ Several focused tests dead; infinite speedup

• SpecJVM98 _209_db – purports to be a DB test
─ Really: 85% of time in String shell-sort

• SpecJVM98 _227_mtrt 
─ Runtime is much less than 1 sec
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Dead Loops

// how fast is divide-by-10?
long start = Sys.CTM();
for( int i=0; i<N; i++ )
  int x = i/10;
return N*1000/(Sys.CTM()-start);

• Timeline:
─ 1- Interpret a while, assume 10ms
─ 2- JIT; “x” not used, loop is dead, removed, 10ms 
─ 3- “Instantly” execute rest of loop

• Time to run: 20ms – Independent of N!
─ Vary N ==> vary score  ==> “Dial-o-Score!”
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Dead Loops

• Sometimes JIT proves “results not needed”
─ Then throws out whole work-loop
─ After running long enough to JIT
─ So loop runs at least a little while first

• Score “ops/sec” not related to trip count 'N'
─ Larger N ==> larger score

• Score can be infinite- or NaN
─ Generally reported as a very large, but valid #
─ And mixed in with other numbers, confusing things

─ (e.g. geomean of infinite's and other more real numbers)
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SciMark2 Monte-Carlo

• 80% of time in synchronize'd Random.next
• 3-letter-company “spammed” it by replacing with 

intrinsic doing a CompareAndSwap (CAS)
• I was ordered to follow suit (match performance)
• Doug Lea said “wait: just make a CAS from Java”
• Hence sun.misc.AtomicLong was born
• Rapidly replaced by Unsafe.compareAndSwap...
• ...and eventually java.lang.Atomic*
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Micro-bench Advice: Warmup

• Code starts interpreted, then JIT'd
─ JIT'd code is 10x faster than interpreter

• JIT'ing happens “after a while”
─ HotSpot -server: 10,000 iterations
─ Plus compile time

• Warmup code with some trial runs
─ Keeping testing until run-times stabilize
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Micro-bench Advice: Warmup

• Not allowing warmup is a common mistake
• Popular failure-mode of C-vs-Java comparisons

─ Found on many, many, many web pages
─ Entire benchmark runs in few milli-seconds
─ There are domains requiring milli-second reboots...

• But most desktop/server apps expect: 
─ Reboots are minutes long and days apart
─ Steady-state throughput after warmup is key
─ So a benchmark that ends in <10sec 

probably does not measure anything interesting
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Micro-bench Advice: “Compile plan”

• JIT makes inlining & other complex decisions
─ Based on very volatile & random data
─ Inline decisions vary from run-to-run

• Performance varies from run-to-run
─ Stable numbers within a single JVM invocation
─ But could vary by >20% with new JVM launch
─ Bigger apps are more performance-stable

• Micro-benchmarks tend to be “fragile” here
─ e.g. 1 JVM launch in 5 will be 20% slower*

*”Statistically Rigorous Java Performance Evaluation” OOPSLA 2007
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Micro-bench Advice: “Compile plan”

public int a() {  for(...) b(); }
public int b() {  for(...) c(); }
public int c() {  …work... }

A:
loop1:  
  …
loop2:
  …
  call C
  …
  jne loop2
  …
  jne loop1
  return
C:
  …
  return

80% chance
A calls B

B inlines C

20% chance
A inlines B
B calls C

A:
loop1:  
  …
  call B
  jne loop1
  return

B:
  loop2:
  ...
  jne loop2
  …
  return
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Micro-bench Advice: “Compile plan”

• Launch the JVM many times
─ Toss 1st launch to remove OS caching effects
─ Average out “good” runs with the “bad”
─ Don't otherwise toss outliers

─ (unless you have good reason: i.e. unrelated load)

• Enough times to get statistically relevant results
─ Might require 30+ runs

• Report average and standard deviation
─ In this case, expect to see a large std.dev

*”Statistically rigorous Java performance evaluation” OOPSLA 2007
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Micro-bench Advice: “1st fast, 2nd slow”

• Timing harness needs to invoke many targets
─ In a loop, repeatedly a few times
─ Else JIT sees 1 hot target in a loop

─ And then does a guarded inline
─ And then hoists the timed work outside of timing loop

class bench1 implements bench { void sqrt(int i); }
class bench2 implements bench { void sqrt(int i); }
static final int N=1000000; // million
...
static int test( bench B ) {
  long start = System.currentTimeMillis();
  for( int i=0; i<N; i++ )
    B.sqrt(i);     // hot loop v-call
  return N*1000/(System.currentTimeMillis()-start);
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Micro-bench Advice: “1st fast, 2nd slow”

class bench1 implements bench { void sqrt(int i); }
class bench2 implements bench { void sqrt(int i); }
static final int N=1000000; // million
...
static int test( bench B ) {
  long start = System.currentTimeMillis();
  for( int i=0; i<N; i++ )
    B.sqrt(i);     // hot loop v-call
  return N*1000/(System.currentTimeMillis()-start);

Pass in one of two 
different classes



www.azulsystems.com

|    ©2007 Azul Systems, Inc.

Micro-bench Advice: v-call optimization

• First call:  test(new bench1)

long start = Sys.CTM();
for( int i=0; i<N; i++ )
  B.sqrt(i);
return N*1000/(Sys.CTM()-start);
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Micro-bench Advice: v-call optimization

• First call:  test(new bench1)
─ Single target callsite; JIT does guarded inlining

─ Inlines  bench1.sqrt

long start = Sys.CTM();
for( int i=0; i<N; i++ )
  B.sqrt(i);
return N*1000/(Sys.CTM()-start);

long start = Sys.CTM();
for( int i=0; i<N; i++ )
  Math.sqrt(i); // inline bench1.sqrt
return N*1000/(Sys.CTM()-start);

guarded
inline
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Micro-bench Advice: v-call optimization

• First call:  test(new bench1)
─ Single target callsite; JIT does guarded inlining

─ Inlines  bench1.sqrt
─ Hoists loop-invariants, dead-code-remove, etc

─ Execution time does NOT depend on N!!!
─ Dreaded  “Dial-o-Score!”

long start = Sys.CTM();
for( int i=0; i<N; i++ )
  B.sqrt(i);
return N*1000/(Sys.CTM()-start);

long start = Sys.CTM();
for( int i=0; i<N; i++ )
  Math.sqrt(i); // inline bench1.sqrt
return N*1000/(Sys.CTM()-start);

guarded
inline dead code

long start = Sys.CTM();
// JIT'd loop removed
return N*1000/(Sys.CTM()-start);
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Micro-bench Advice: v-call optimization

• Second call:  test(new bench2)
─ 2nd target of call; guarded inlining fails
─ Code is incorrect; must be re-JIT'd
─ Measures overhead of N calls to bench2.sqrt

─ Plus guard failure, deoptimization
─ Plus JIT'ing new version of test()
─ Plus virtual call overhead

long start = System.CTM();
for( int i=0; i<N; i++ )
  B.sqrt(i);
return N*1000/(System.CTM()-start);

int bench2.sqrt( int i ) {
  // alternate impl 
}
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Micro-bench Advice: v-call optimization

• Reversing order of calls reverses “good” & “bad”
─ e.g. “test(new bench2); test(new bench1);”
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Micro-bench Advice: v-call optimization

• Reversing order of calls reverses “good” & “bad”
─ e.g. “test(new bench2); test(new bench1);”

• Timing harness needs to invoke all targets
─ In a loop, repeatedly a few times

class bench1 implements bench { void sqrt(int i); }
class bench2 implements bench { void sqrt(int i); }
...
  // warmup loop
  for( int i=0; i<10; i++ ) {
    test( new bench1 );
    test( new bench2 );
  }
  // now try timing 
  printf(test(new bench1));
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Micro-bench Advice: GC

• Avoid GC or embrace it
• Either no (or trivial) allocation, or use verbose:gc to 

make sure you hit steady-state
• Statistics: not just average, but also std-dev
• Look for trends

─ Could be creeping GC behavior
• Could be “leaks” causing more-work-per-run

─ e.g. leaky HashTable growing heap or 
─ Growing a LinkedList slows down searches
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Micro-bench Advice: Synchronization

• Account for multi-threaded & locking
• I do see people testing, e.g. locking costs on single-

threaded  programs
• Never contended lock is very cheap

─ +BiasedLocking makes it even cheaper

• Very slightly contended lock is probably 4x more
• Real contention: Amdahl's Law

─ Plus lots and lots of OS overhead
• java.util.concurrent is your friend
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Micro-bench Advice

• Realistic runtimes
─ Unless you need sub-milli-sec reboots

• Warm-up loops - give the JIT a chance
• Statistics: plan for variation in results
• Dead loops – look for “Dial-o-Score!”, deal with it
• 1st run fast, 2nd run slow – look for it, deal with it
• GC: avoid or embrace
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Macro-bench warnings

• JVM98 is too small anymore
─ Easy target; cache-resident; GC ignored

• JBB2000, 2005
─ Not much harder target
─ VERY popular, easy enough to “spam”
─ Score rarely related to anything real

• SpecJAppServer, DaCapo, SpecJVM2008, XMLMark
─ Bigger, harder to spam, less popular
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Macro-bench warnings

• Popular ones are targeted by companies
• General idea: JVM engineers are honest

─ But want the best for company
─ So do targeted optimizations 

─ e.g. intrinsic CAS for Random.next
─ Probably useful to somebody
─ Never incorrect
─ Definitely helps this benchmark
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Typical Performance Tuning Cycle

• Benchmark X becomes popular
• Management tells Engineer: “Improve X's score!”
• Engineer does an in-depth study of X
• Decides optimization “Y” will help

─ And Y is not broken for anybody
─ Possibly helps some other program

• Implements & ships a JVM with “Y”
• Management announces score of “X” is now 2*X
• Users yawn in disbelief: “Y” does not help them
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SpecJBB2000

• Embarrassing parallel  - no contended locking
• No I/O, no database, no old-gen GC

─ NOT typically of any middle-ware
─ Very high allocation rate of young-gen objects, 

definitely not typically 
─ But maybe your program gets close?

• Key to performance: 
having enough Heap to avoid old-gen GC 
during 4-min timed window
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SpecJBB2000: Spamming

• Drove TONS of specialized GC behaviors & flags
─ Across many vendors
─ Many rolled into “-XX:+AggressiveOptimizations”
─ Goal: no old-gen GC in 4 minutes

• 3-letter-company “spammed” - with a 64-bit VM and 
12Gig heap (in an era of 3.5G max heaps)

─ Much more allocation, hence “score” before GC
─ Note that while huge heaps are generically useful to 

somebody, 12Gig was not typical of the time
─ Forced Sun to make a 64-bit VM
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What can you read from the results?

• The closer your apps resemble benchmark “X”
─ The closer improvements to X's score impact you

• Huge improvements to unrelated benchmarks
─ Might be worthless to you

• e.g. SpecJBB2000 is a perfect-young-gen GC test
─ Improvements to JBB score have been tied to better 

young-gen behavior
─ Most web-servers suffer from OLD-gen GC issues

─ Improving young-gen didn't help web-servers much
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SpecJBB2005

• Intended to fix JBB2000's GC issues
─ No explicit GC between timed windows
─ Penalize score if GC pause is too much 

(XTNs are delayed too long)
─ Same as JBB2000, but more XML
─ Needs some Java6-isms optimized

• Still embarrassing parallel – young-gen GC test
• Azul ran up to 1700 warehouse/threads 

on a 350Gig heap, allocating 20Gigabytes/sec 
for 3.5 days and STILL no old-gen GC
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Some Popular Macro-Benchmarks

• SpecJVM98 – too small, no I/O, no GC
─ 227_mtrt – too short to say anything

─ Escape Analysis pays off too well here
─ 209_db – string-sort NOT db, performance tied to TLB 

& cache structure, not JVM
─ 222_mpegaudio – subject to odd FP optimizations
─ 228_jack – throws heavy exceptions – but so do many 

app-servers; also parsers are popular. Improvements 
here might carry over

─ 213_javac – generically useful metric for modest CPU 
bound applications



www.azulsystems.com

|    ©2007 Azul Systems, Inc.

Some Popular Macro-Benchmarks

• SpecJVM98 – too small, no I/O, no GC
─ 227_mtrt – too short to say anything

─ Escape Analysis pays off too well here
─ 209_db – string-sort NOT db, performance tied to TLB 

& cache structure, not JVM
─ 222_mpegaudio – subject to odd FP optimizations
─ 228_jack – throws heavy exceptions – but so do many 

app-servers; also parsers are popular. Improvements 
here might carry over

─ 213_javac – generically useful metric for modest CPU 
bound applications



www.azulsystems.com

|    ©2007 Azul Systems, Inc.

SpecJAppServer

• Very hard to setup & run
• Very network, I/O & DB intensive
• Need a decent (not great) JVM (e.g. GC is < 5%)
• But peak score depends on an 

uber-DB and fast disk or network
• Not so heavily optimized by JVM Engineers
• Lots of “flex” in setup rules (DB & network config)
• So hard to read the results unless your external (non-

JVM) setup is similar
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DaCapo

• Less popular so less optimized
• Realistic of mid-sized POJO apps
• NOT typical of app-servers, J2EE stuff
• Expect 1000's of classes loaded & methods JIT'd
• Some I/O, more typical GC behavior
• Much better score reporting rules
• DaCapo upgrades coming soon!

─ New version has web-servers & parallel codes
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Some Popular Macro-Benchmarks

• XMLMark
─ Perf varies by 10x based on XML parser & JDK version
─ Too-well-behaved young-gen allocation
─ Like DaCapo – more realistic of mid-sized POJO apps 
─ Very parallel (not a contention benchmark) 

unlike most app-servers
• SpecJVM2008

─ Also like DaCapo – realistically sized POJO apps
─ But also has web-servers & parallel apps
─ Newer, not so heavily targeted by Vendors
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“Popular” Macro-Benchmark Problems

• Unrealistic treatment of GC
─ e.g. None in timed window
─ Or perfect young-gen collections
─ Real apps typical trigger full GC every hour or so

• Unrealistic load generation
─ Not enough load to stress system
─ Or very simple or repetitive loads
─ Bottlenecks in getting load to server
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“Popular” Macro-Benchmark Problems

• Benchmark too short for full GC
─ Many real applications leak

─ Broken 3rd party libs, legacy code, etc
─ Leaks accumulate in old-gen

─ Which makes old-gen full GC expensive
─ But benchmark never triggers old-gen full GC

• I/O & DB not benchmarked well
─ But make a huge difference in Real Life
─ Your app might share I/O & DB with others
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Summary

• Macrobenchmarks
─ Targeted by JVM Engineers

─ Buyer Beware!
─ The closer the benchmark is to your problem

─ The more likely improvements will impact you
─ GC is likely to not be typical of real applications

─ Your applications ever go 3.5 days without a full GC?
─ I/O & DB load also probably not typical
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Summary

• Microbenchmarks
─ Easy to Write, Hard to get Right
─ Easy to be Fooled
─ Won't tell you much about macro-code anyways
─ Warmup – 1's of seconds to 10's of seconds
─ Statistics – average lots of runs

─ Even out variations in the “compile plan”
─ Call out to many methods in the hot loop
─ Be wary of dead-code super-score results
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Put Micro-Trust in a Micro-Benchmark!
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