Garbage-First Garbage Collection
by David Detlefs, Christine Flood,
Steve Heller & Tony Printezis

Presented by Edward Raff

Motivational Setup

« Java Enterprise World

* High end multiprocessor servers
» Large heaps (that contain many live objects)

o Soft Real Time requirements

 Needs to be responsive.

* Letthe user tell us exactly how responsive we need
to be (specified desired max pause time in
milliseconds)

To Obtain

Concurrent Collection
« Still stop-the-world
Parallel Collection
High throughput

“PAC”ish (Probably Approximately Correct)
configurable pause times & frequency

Method Set Up

 Many moving parts, discuss Heap layout first

 Heap is subdivided into several regions of equal
size
- “humongous” objects (>= 3/4 region size) are allocated in
a special area
* Each region maintains its own Remembered Set
(RS), which keeps track of all objects that point to
an object in its own region

» 2 sets of bitmaps for each region. 1-bit mark for
each 64 bits in the region. One bitmap is for the
current collection, the other is for the previous

Heap Macro View

Performing a collection
on R,

Heap Macro View: After Collection

Heap: Region View

L 1 bit 'dirty’
Each Region is composed of marks for
several 512 byte cards each card

CO

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

CN

Card Micro View

1 byte marking bitmap

[;

64 bits | 64 bits | 64 bits 64 bits | 64 bits | 64 bits | 64 bits = 64 bits

Marks the sections that are live or dead

LIT T T T 1T | NextBitmap
| PrevBitmap Initial Marking

®

Bottom Top
PrevTAMS NextTAMS

B B | W NexiBitmap
| PrevBitmap Remark

Bottom NextTAMS Top
PrevTAMS

| NextBitmap
B B | W PrevBitmap Cleanup/GC Pauses

©

Bottom PrevTAMS Top
NextTAMS

LTI T I PT P TT PP TTPTT 1 | NextBitmap
B B | W PrevBitmap Initial Marking

®

Bottom PrevTAMS Top
NextTAMS

 HE BN BEEE H BEE BNIHEN
B B | B PrevBitmap Remark

®

Bottom PrevTAMS NextTAMS Top

|NextBitmap
 HE EEE BEE B EEE JEVE Cleanup/GC Pauses

- [-

Bottom PrevTAMS Top
NextTAMS

Write Barrier

* Write barrier needs to update the Remembered
Sets

* Ignore same region writes
 |f a card is already remembered (Dirty), ignore it

 Ignore null writes
* Use bit ops to perform fast region checks

 Marking also needs Write Barrier logic

» Skip book keeping if the region is not being
concurrently marked

* Do not log nulls

Exploiting the Structure:
Parallelism and Concurrency

 Snapshot of the heap when we stop the world
to be used concurrently

 Regions can be marked by different threads
during mutator execution concurrently with the
mutators

* Regions can be collected in parallel

* The bitmaps are important for this. Mutators alter
the objects, collectors alter the bitmaps. Changes to
the heap are made by the collector during stop-the-
world phases

« Each mutator thread has a buffer of changes

Exploiting the Structure:
High Throughput
 Can mark live and dead objects from the
snapshot

* Approximate, but it is a lower bound on the true
value (anything added after the snapshot is
considered 'live')

 \WWe can use the lower bound to select the
regions with the lowest liveness to collect.

* Collecting regions with the largest amount of
garbage first, hence — Garbage First

* By collecting the high garbage regions first, we
maximize the memory collected and do not
waste time in reqgions with no garbage

Exploiting the Structure:
"PAC” pause times

* We can model the cost of performing a
collection

Cost(cs)=V o +U-d+ Z (S-rsSize(r)+C-liveBytes(r))
Region r€&cs

cs : set of regions to collect
V. .4 - fixed cost, constant

U : average cost to scan a card

d :number of dirty cards that need to be updated
S : cost of scaning the remember set

C : cost per byte to evacuate a live object

Exploiting the Structure:
‘PAC” pause times, Continue

 Course Initial estimates for these values,
updated during execution

» Keep track of standard deviation (o) of the values
as well

 Use model to select a number of blocks we can
collect in the time requested, use the o to be
conservative

Generational?

» Concept of generations is semi constant, each
region is a “generation”, and we treat them
differently by how many objects die off in every
generation. We treat them differently by
mortality rates

* Paper considers generational by mandating all
regions currently used for allocations to be part
of the collected set.

Extra Work Done

» Use the model to intelligently schedule a
collection (part of meeting soft real time goal)

» Use a Hard and Soft Limit to control when we give
up procrastinating and force collections

» Special space for the popular objects, can
reduce the RS size. Promote them to their own

special region

Results: Soft Real Time Compliance

Benchmark/ Soft real-time goal compliance statistics by Heap Size
configuration V% avgV% | wV% V% avgV% | wV% V% | avgV% | wV%
SPECjbb 512 M 640 M 768 M
G-F (100/200) 4.29% | 36.40% | 100.00% || 1.73% | 12.83% | 63.31% | 1.68% | 10.94% | 69.67%
G-F (150/300) 1.20% | 5.95% | 15.29% 1.51% | 4.01% | 20.80% | 1.78% | 3.38% 8.96%
G-F (150/450) 1.63% | 4.40% | 14.32% 3.14% | 2.34% 6.53% 1.23% | 1.53% 3.28%
G-F (150/600) 2.63% | 2.90% 5.38% 3.66% | 2.45% 8.39% 2.09% | 2.54% 8.65%
G-F (200/800) 0.00% | 0.00% 0.00% 0.34% | 0.72% 0.72% 0.00% | 0.00% 0.00%
CMS (150/450) || 23.93% | 82.14% | 100.00% || 13.44% | 67.72% | 100.00% || 5.72% | 28.19% | 100.00%
Telco 384 M 512 M 640 M
G-F (50/100) 0.34% | 8.92% | 35.48% 0.16% | 9.09% | 48.08% | 0.11% | 12.10% | 38.57%
G-F (75/150) 0.08% | 11.90% | 19.99% 0.083% | 5.60% 7.47% 0.19% | 3.81% 9.15%
G-F (75/225) 0.44% | 2.90% | 10.45% 0.15% | 3.31% 3.74% 0.50% | 1.04% 2.07%
G-F (75/300) 0.65% | 2.55% 8.76% 0.42% | 0.57% 1.07% 0.63% | 1.07% 2.91%
G-F (100/400) 0.57% | 1.79% 6.04% 0.29% | 0.37% 0.54% 0.44% | 1.52% 2.73%
CMS (75/225) 0.78% | 35.05% | 100.00% || 0.54% | 32.83% | 100.00% | 0.60% | 26.39% | 100.00%

Throughput (1000 ops/sec)

40

35

30

25

20

Throughput

SPEGjbb Throughput (G-F/CMS)

007200 ——

G
G-F 150/300 ----
G-F 150/450 -
G-F 150/600 -
G-F 200/800 -

CMS --

(J=rmimmimiais

B '.. :;::--"‘"""' ' '
'.'.:'II“‘w.mlgli_.l-:m‘Ef‘_:l:.‘:‘f;',.‘ﬁ.thﬁ'-.l'-*.-'d.ﬂ”iﬂ.'.'_!_'!ﬁ:rtm::.I:......___,_‘.
YAl x
384 512 640 768 896 1024

Heap Size (MBs)

Throughput (calls/sec)

1240
1230
1220
1210
1200
1190
1180
1170
1160
1150
1140

Throughput

telco Throughput (G-F/CMS)

G-F 50100 ——
G-F 75/150 ===3¢-=~
G-F 75/225
G-F 75/300 -

G-F 100/400 --

CMS --

X

OWIX

ﬁ.""Wil;w‘;!"L"’-‘E’.‘!’E‘:‘L’.‘.‘:E‘-‘;“"—" F
-l‘-l---—lq--lil---l-q-l - = o)
Ay - al Aime

384 512 640
Heap Size (MBs)

Parallel Speedup
(Stop the world activities)

—SPECJED —— |
TelCo «eepge--
Perfect Scalability ------------

Parallel Speedup
= — Mo) L= (4] o | oo wo
3 T I I I I I I

Number of CPUs

Some Thoughts

» Very Memory Greedy Collector

 Lots of meta data

* Relies on excess memory to procrastinate
collections and meet real time requirements

* |s using the “client” JRE valid?
 What is the effect of not concurrently marking?

 What is the effect of a mutator heavily using all
available threads when attempting to
concurrently mark?

User Supplied Pause time

* The Soft Real Time goal requires the user to
specify the desired maximum pause time (and

optionally, a confidence in the form of standard
deviations)

» Using the model, we could turn around and
instead have the user specify throughput and a
desired mutator overhead

* Would this be helpful? Why not try a version that
maximizes throughput?

Note about the o = 1

 ChebysheV's inequality

* Absolute lower bound probability 0.5 that a
collection takes too long

 Normal Distribution

« = (.16 probability that a collection takes too long
(0.07 for o = 1.5)

* Results are in the range [0.008, 0.043]

* Over long runs, we can model the differences and
attempt to rescale so that its probability matches
N(O, 1.5) - avoiding super short collections on a
better behaved application

Mixing the JIT & GC

* Could we perform new optimizations using the
information form both the JIT & GC

* There are methods that are hot in the JIT sense
(take long time to execute / called often)

 Define hot methods from the GC sense
(perform lots of allocations)

 Make the JIT perform optimizations based on
hot GC methods

 Make certain methods remember the region they
were allocating into (and lock the region from
others)

lllustration: Normal

allocateShortLived() allocateLonglived()

lllustration: Optimized

allocateShortLived() allocatel.ongLived()

Mixing the JIT & GC

* By identifying methods by allocation type, we
can perform population segregation. We don't
need to keep track of object life times, but
lifetime consistency given the creating method

 Var[p(object mortality | method)] < C

* Heuristic hot methods (according to the JIT) are
the only methods called often enough to make
the optimization meaningful

 Hot methods have more data
e JIT is already doing extra work for them

