

Garbage-First Garbage Collection
by David Detlefs, Christine Flood,

Steve Heller & Tony Printezis

Presented by Edward Raff

Motivational Setup

● Java Enterprise World
● High end multiprocessor servers
● Large heaps (that contain many live objects)

● Soft Real Time requirements
● Needs to be responsive.
● Let the user tell us exactly how responsive we need

to be (specified desired max pause time in
milliseconds)

To Obtain

● Concurrent Collection
● Still stop-the-world

● Parallel Collection
● High throughput
● “PAC”ish (Probably Approximately Correct)

configurable pause times & frequency

Method Set Up

● Many moving parts, discuss Heap layout first
● Heap is subdivided into several regions of equal

size
– “humongous” objects (>= 3/4 region size) are allocated in

a special area
● Each region maintains its own Remembered Set

(RS), which keeps track of all objects that point to
an object in its own region

● 2 sets of bitmaps for each region. 1-bit mark for
each 64 bits in the region. One bitmap is for the
current collection, the other is for the previous

Heap Macro View

R
N

R
2

R
1

R
0

…

A B C

RS
0

Performing a collection
on R

0

Heap Macro View: After Collection

R
N

R
2

R
1

R
0

…

AC

RS
2

RS
0

Heap: Region View
Each Region is composed of
several 512 byte cards

Card
0

Card
1

Card
2

Card
3

Card
4

Card
5

Card
6

Card
7

Card
8

Card
9 ... Card

N

C0
C1
C2
C3
C4

C0C0

C5

C7
C8
C9

C10

C6

C11

C13
C14
C15

...

C12

CN

C16
C17

1 bit 'dirty'
marks for
each card

Card Micro View

64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits

1 byte marking bitmap

Marks the sections that are live or dead

Write Barrier

● Write barrier needs to update the Remembered
Sets
● Ignore same region writes
● If a card is already remembered (Dirty), ignore it
● Ignore null writes
● Use bit ops to perform fast region checks

● Marking also needs Write Barrier logic
● Skip book keeping if the region is not being

concurrently marked
● Do not log nulls

Exploiting the Structure:
Parallelism and Concurrency

● Snapshot of the heap when we stop the world
to be used concurrently

● Regions can be marked by different threads
during mutator execution concurrently with the
mutators

● Regions can be collected in parallel
● The bitmaps are important for this. Mutators alter

the objects, collectors alter the bitmaps. Changes to
the heap are made by the collector during stop-the-
world phases

● Each mutator thread has a buffer of changes

Exploiting the Structure:
High Throughput

● Can mark live and dead objects from the
snapshot
● Approximate, but it is a lower bound on the true

value (anything added after the snapshot is
considered 'live')

● We can use the lower bound to select the
regions with the lowest liveness to collect.
● Collecting regions with the largest amount of

garbage first, hence – Garbage First

● By collecting the high garbage regions first, we
maximize the memory collected and do not
waste time in regions with no garbage

Exploiting the Structure:
“PAC” pause times

● We can model the cost of performing a
collection

Cost (cs)=V fixed+U⋅d+ ∑
Region r∈cs

(S⋅rsSize(r)+C⋅liveBytes(r))

cs : set of regions to collect
V fixed : fixed cost, constant
U : average cost to scan a card
d : number of dirty cards that need to be updated
S : cost of scaning the remember set
C : cost per byte to evacuate a live object

Exploiting the Structure:
“PAC” pause times, Continue

● Course initial estimates for these values,
updated during execution
● Keep track of standard deviation (σ) of the values

as well

● Use model to select a number of blocks we can
collect in the time requested, use the σ to be
conservative

Generational?

● Concept of generations is semi constant, each
region is a “generation”, and we treat them
differently by how many objects die off in every
generation. We treat them differently by
mortality rates

● Paper considers generational by mandating all
regions currently used for allocations to be part
of the collected set.

Extra Work Done

● Use the model to intelligently schedule a
collection (part of meeting soft real time goal)
● Use a Hard and Soft Limit to control when we give

up procrastinating and force collections

● Special space for the popular objects, can
reduce the RS size. Promote them to their own
special region

Results: Soft Real Time Compliance

Throughput

Throughput

Parallel Speedup
(Stop the world activities)

Some Thoughts

● Very Memory Greedy Collector
● Lots of meta data
● Relies on excess memory to procrastinate

collections and meet real time requirements
● Is using the “client” JRE valid?

● What is the effect of not concurrently marking?
● What is the effect of a mutator heavily using all

available threads when attempting to
concurrently mark?

User Supplied Pause time

● The Soft Real Time goal requires the user to
specify the desired maximum pause time (and
optionally, a confidence in the form of standard
deviations)

● Using the model, we could turn around and
instead have the user specify throughput and a
desired mutator overhead
● Would this be helpful? Why not try a version that

maximizes throughput?

Note about the σ = 1

● Chebyshev's inequality
● Absolute lower bound probability 0.5 that a

collection takes too long

● Normal Distribution
● ≈ 0.16 probability that a collection takes too long

(0.07 for σ = 1.5)

● Results are in the range [0.008, 0.043]
● Over long runs, we can model the differences and

attempt to rescale so that its probability matches
N(0, 1.5) - avoiding super short collections on a
better behaved application

Mixing the JIT & GC

● Could we perform new optimizations using the
information form both the JIT & GC

● There are methods that are hot in the JIT sense
(take long time to execute / called often)

● Define hot methods from the GC sense
(perform lots of allocations)

● Make the JIT perform optimizations based on
hot GC methods
● Make certain methods remember the region they

were allocating into (and lock the region from
others)

Illustration: Normal

R
1

allocateShortLived() allocateLongLived()

Illustration: Optimized

R
1

allocateShortLived() allocateLongLived()

R
2

Mixing the JIT & GC

● By identifying methods by allocation type, we
can perform population segregation. We don't
need to keep track of object life times, but
lifetime consistency given the creating method
● Var[p(object mortality | method)] < C

● Heuristic hot methods (according to the JIT) are
the only methods called often enough to make
the optimization meaningful
● Hot methods have more data
● JIT is already doing extra work for them

