
¨  Chapter 4, pages 41--56, 2010. From: "Garbage Collection and the Case 
for High-level Low-level Programming," Daniel Frampton, Doctoral 
Dissertation, Australian National University. 

Cycle Tracing 

Presented by: Siddharth Tiwary 



Outline 
2 

§  Motivation 
§  Existing Approaches 
§  Brief Intro: Snapshot-at-the-Beginning Concurrent Mark-

Sweep 
§  Base Backup Tracing Algorithm 
§  Optimizations In a Ref Count Environment 
§  Concurrency: Reduce the fix-up set 
§  Acyclic objects 
§  Sweep less than whole heap 
§  More Interaction with the RC 

§  Results 



Motivation 
3 

§  Make Reference Counting more practical 
§  Issues discussed previously: 

§  Deferred Reference Counting – Deutsch and Bobrow, 
1976 

§  Ulterior Reference Counting – Blackburn and McKinley, 
2003 

§  Both inefficient in presence of significant cyclic garbage 
§  Today: Cyclic Garbage 

§  Idea: Use the information available in a reference 
counting environment to remove cyclic garbage during 
(concurrent) tracing based collection    



Existing Solutions to Cyclic Garbage 
4 

§  Existing solutions are expensive: 

§  Trace the whole heap (backup tracing) 
§  Pause times become huge 
§  In presence of significant cyclic garbage becomes a 

normal mark-sweep collector with even more 
overheads for keeping ref counts 

§  Temporarily delete an object and see if the cycle 
collapses (trial deletion) 
§  Tends to have huge tracing overheads in presence 

of significant cyclic garbage 



Base Backup Tracing Algorithm 
5 

1.  Roots: All objects referenced by roots are added to 
the work queue. 

2.  Mark: The work queue is exhaustively processed. 
a)   Process: Each object is taken off the work queue, and if 

the object is not marked, it is marked and then each of its 
referents are added to the work queue. 

b)  Check: Before leaving the mark phase, we process any 
object potentially subject to the collector—mutator race. If 
any of these objects are not marked, they are marked, 
added to the work queue, and the Mark phase is resumed. 

3.  Sweep: Reclaim space used by objects that have not 
been marked. 



Concurrent Mark Sweep 
6 

§  Collector processes a work queue 
§  Heap objects are one of: 

§  Collector and mutator run simultaneously 

Unvisited Visited Children 
Visited 



Collector-Mutator Race 
7 

C1: A pointer 
from a black 
object to a 
white object is 
created 

 

C2: The 
original 
reference to a 
white object is 
destroyed 



Collector-Mutator Race 
8 

C1: A pointer 
from a black 
object to a 
white object is 
created 

 

C2’: The 
original path 
reference to a 
white object is 
destroyed 



How can we avoid this race? 
9 

§  Snapshot-at-the-beginning 
§  Keep a log of the original state of all objects when 

they are mutated for the  first time 
§  Collector only traces these original states and thus 

avoids race 
§  Pitfall – Floating garbage 

§  Incremental-Update Algorithms 
§  Marking the target of a new reference gray if it 

was white - Dijkstra et al. 1978 
§  Marking the source gray if it was black – Steele, 

1975 
§  Differ in the degree of floating garbage  



How does this work avoid the race? 
10 

§  Step 2b in the base backup tracing algorithm 
§  Each mutated object must be included in the 

fix-up set 
§  So, effectively each write responsible for 

prolonging the mark phase 

§  How can we reduce this fix-up set? 



Concurrency Optimization 
11 

C1: A pointer 
from a black 
object to a 
white object is 
created 

C2’: The 
original path 
to a white 
object is 
destroyed 

§  For C2’ to happen, white object or some 
object in the path to it gets a reference 
count decrement to nonzero 

§  We trace the fix-up set, so we can add 
any object in the path to the white obj. 

§  Objects whose ref count decrements to 
nonzero become the new fix-up set 

§  We only need to determine this as we 
are collecting 



Examples 

Black: marked and scanned 
Grey: marked, not yet scanned 
White: not yet visited 

C	  is	  never	  visited	  and	  incorrectly	  collected	  

	  Again,	  C	  is	  never	  visited	  and	  
incorrectly	  collected	  

	  Same	  here…	  

Necessary	  condi8ons	  for	  a	  race:	  
• 	  Create	  a	  pointer	  from	  a	  black	  to	  a	  white	  object	  C	  
• 	  Destroy	  the	  last	  path	  from	  a	  grey	  object	  to	  that	  white	  object	  C	  

RC(C):	  1	  →	  2	  →	  1	  

RC(C):	  1	  →	  2	  →	  1	  

RC(E):	  2	  →	  1	  



Inherent Acyclic Objects 
13 

§  Proposed by Bacon and Rajan[2001] 
§  Acyclic object 

§  No pointer fields 
§  OR can only point to another acyclic object 
§  We’ll make them green 

§  Trivial to skip in mark phase: green=marked 



Sweep Optimization 
14 

§  Limit sweep to potentially cyclic garbage: purple set 
§  Acyclic garbage swept by reference counter 
§  Disadvantage: now we need the purple set to be 

known 



Implementation 
15 

§  Interaction with the reference counter 
§  Establish roots atomically  
§  Add complete fixup-set to mark queue 
§ RC must not free objects pointed to by collector 

(mark queue and fixup queue): dangling pointer 

§  Invocation heuristics 
§ When RC is unable to free enough memory 
§ Heap fullness threshold 
§  Size of the purple set 



Methodology and Results 
16 

§  Jikes RVM 2.3.4+CVS, MMTk 
§  Dacapo beta050224, SPECjvm98 and pseudojbb 

§  Stop-the-world (i.e. limit) throughput:  
§  Trial deletion is about 70% worse than Backup MS, while 

MSCD is about 20% better than Backup MS. 
§  MSCD visits only 12% fewer nodes: 
§ green objects on the fringe still have to be visited,  
§ green objects are short lived (many allocated, fewer on 

the heap at a given time) 
§  MSCD has about 7% cheaper cost per visited node: 
§ green objects not scanned 



More Results 
17 

§  Concurrent throughput: 
§  Time-slicing (i.e. single-context uniprocessor): no benefit 

from concurrency optimization 

§  Overall performance (stop-the-world CD triggered by 
insufficient reclamation by RC): 
§ MSCD with mark opt. is better than MSCD with both 

mark and sweep opt. due to overhead of maintaining 
the purple set 

§ Overhead of gray bit – too many short lived objects 
§  Heuristics to trigger CD are naive, especially on tight 

heaps 


