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Ulterior RC Approach

e Match mechanisms to object demographics
o Copying nursery space
Highly mutated, high mortality young objects
lgnore nursery pointer mutations

GC time proportional to survivors

o RC mature space
Low mutation, low mortality old objects

GC time proportional to dead objects and pointer
mutations

* Generalize deferred RC to heap objects

> Defer fields of highly mutated objects and enumerate
them quickly

> Reference count only infrequently mutated fields



Background

» Reference Counting
> Advantage

Incremental: the work of garbage detection is spread
out over every mutation

o Disadvantage
Unable to reclaim cycles
* Solution: additional algorithm

Tracking every pointer mutation is expensive

* Solution: Deferal, Buffering, Coalescing



Background

e RC Formal Definitions

> Mutation event: RCM(p)
RC(Pbefore)--, RC(Pafter)++

May be buffered or performed immediately

> Retain event: RCR(p)
Zero count table (ZCT)
Generate a temporary increment for p
> Deferral
No mutation event generates RCM(p)
Need a RCR(p) to preserve objects



Background

* RC Optimization Mechanism: to reduce
computation overhead
- Buffering
apply RC(p)--, RC(p)++ later

- Coalescing

apply RCM (p) only for the initial and final values of p
(coalesce intermediate values)

{RCM(p)I RCM(pl)r RCM(pn)} - Rc(pinitial)"l

> Deferral
Defer RC events.



Ulterior Reference Counting

* Idea: Extends deferral to select heap pointers

° e.g. pointers from nursery space to mature space

» Deferral is not a fixed property of a pointer

° e.g.an object can be moved between nursery and
mature spaces.

* Integrate Event: RCl(p)

> Change p from deferred to not-deferred.



Ulterior Reference Counting

* Generalizing Deferral
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Ulterior Reference Counting

e A Generational RC Hybrid Collector (BG-
RC)

> Combine a bounded copying nursery with RC.
° For young objects

Bump-pointer allocation

Copying collection
For old objects

Free-list allocation

©)

Reference counting collection



Ulterior Reference Counting

* Nursery phase
° Scan roots
> Process the modified object buffer
> Reclaim nursery

* RC phase

> Process decrement buffer, recursively decrement
> Reclaim old objects
> Cycle detection if needed



Ulterior Reference Counting

e Write Barrier

- Remember pointers into the nursery from the
non-nursery spaces. (RC, immortal and boot image
spaces)

> Generate RCM(p) for mutations to pointer fields
within the non-nursery spaces.

> An object remembering coalescing barrier.



Ulterior Reference Counting

e Write Barrier

1 private void writeBarrier(VM_Address
2 VM_Address ,
3 VM_Address )
4 throws VM_Pragmalnline {

5 if (getLogState(srcObj) I= LOGGED)
6 writeBarrierSlow(srcOb));

7  VM_Magic.setMemoryAddress(srcSlot, tgtObj);
8
9

}

10 private void writeBarrierSlow(VM_Address )

11 throws VM_PragmaNoInline {

12 if (attemptToLog(srcObj)) {

13 modifiedBuffer.push(srcObj);

14 enumeratePointersToDecBuffer(srcObj). // trade-off for sparsely
15 setLogState(srcObj, LOGGED); // modified objects
16}

17}



Ulterior Reference Counting

e Mutation Phase
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~ o Nursery Collection: Scan Roots
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Ulterior Reference Counting

~ o Nursery Collection: Process Object Buffer
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Ulterior Reference Counting

- * Nursery Collection: Reclaim Nursery
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Ulterior Reference Counting

o RC Collection: Process Decrement Buffer
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Ulterior Reference Counting

- o RC Collection: Recursive Decrement
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Ulterior Reference Counting

o RC Collection: Process Decrement Buffer
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Ulterior Reference Counting

- e Collection Complete.

Stacks Regs

obj buf  decbuf  root buf



Ulterior Reference Counting

» Controlling Pause Times: nursery collection &
reference counting times

> Modest bounded nursery size

° Limit the growth of meta data
Decrement and modified object buffers
Trigger a collection if too big

> RC time cap
Limit time recursively decrementing RC obj & in cycle
detection

* Cycle detection

Use Bacon/Rajan trial deletion algorithm
Add a trigger to invoke cycle detection



Evaluation

¢ Jikes RYM and [IMTK
* 4 Collectors

> MS, RC, BG-MS, BG-RC
* Benchmarks

> SPEC JVM & pseudojbb
e Collection triggers

> Each 4MB of allocation for BG-RC (I MB for RC)
> Time cap of 60ms

> Cycle detection at 512KB



Throughput/Pause time
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Table 3: Throughput and Responsiveness of MS, BG-MS, BG-RC, and RC at a Moderate Heap Size
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Throughput & Responsiveness
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Conclusion

» Match allocation and collection policies to
the behaviors of older and younger object
demographics

* Extend deferral to select heap objects

* Achieve good throughput performance
and good responsiveness



