Ulterior Reference Counting:
Fast Garbage Collection without a

Long Wait
Stephen M Blackburn and Kathryn S Mckinley

Present by Qi Chen
March 6,2012

Slides adapted from presentation by Dimitris Prountzos

QOutline

e Problem Statement

» Background
> Reference Counting

 Ulterior Reference Counting (URC)
e URC Implementation
 Evaluation

e Conclusion

Problem Statement

e Throughput/Responsiveness trade-off
> High throughput: mark-sweep (MYS)

> Short pause time: reference counting (RC)

Problem Statement

e Throughput/Responsiveness trade-off
> High throughput: mark-sweep (MYS)
> Short pause time: reference counting (RC)

* Any collector can achieve the two goals!?

Problem Statement

e Throughput/Responsiveness trade-off
> High throughput: mark-sweep (MYS)
> Short pause time: reference counting (RC)

* Any collector can achieve the two goals!?
> Ulterior Reference Counting (URC)

Ulterior RC Approach

e Match mechanisms to object demographics
o Copying nursery space
Highly mutated, high mortality young objects
lgnore nursery pointer mutations

GC time proportional to survivors

o RC mature space
Low mutation, low mortality old objects

GC time proportional to dead objects and pointer
mutations

* Generalize deferred RC to heap objects

> Defer fields of highly mutated objects and enumerate
them quickly

> Reference count only infrequently mutated fields

Background

» Reference Counting
> Advantage

Incremental: the work of garbage detection is spread
out over every mutation

o Disadvantage
Unable to reclaim cycles
* Solution: additional algorithm

Tracking every pointer mutation is expensive

* Solution: Deferal, Buffering, Coalescing

Background

e RC Formal Definitions

> Mutation event: RCM(p)
RC(Pbefore)--, RC(Pafter)++

May be buffered or performed immediately

> Retain event: RCR(p)
Zero count table (ZCT)
Generate a temporary increment for p
> Deferral
No mutation event generates RCM(p)
Need a RCR(p) to preserve objects

Background

* RC Optimization Mechanism: to reduce
computation overhead
- Buffering
apply RC(p)--, RC(p)++ later

- Coalescing

apply RCM (p) only for the initial and final values of p
(coalesce intermediate values)

{RCM(p)I RCM(pl)r RCM(pn)} - Rc(pinitial)"l

> Deferral
Defer RC events.

Ulterior Reference Counting

* Idea: Extends deferral to select heap pointers

° e.g. pointers from nursery space to mature space

» Deferral is not a fixed property of a pointer

° e.g.an object can be moved between nursery and
mature spaces.

* Integrate Event: RCl(p)

> Change p from deferred to not-deferred.

Ulterior Reference Counting

* Generalizing Deferral

 Stacks A'
ge,‘g.‘r R-:-gis:ers i RC
Y : 4
RC space

(a) Classic deferred reference counting

" Stacks |
o f | Registers | anore
RC dever, g Jgnore ignore
» Yy ydeferorRC™ y Ly
Npe——

RC space non-RC space

(b) A simple mstance of URC

Ulterior Reference Counting

e A Generational RC Hybrid Collector (BG-
RC)

> Combine a bounded copying nursery with RC.
° For young objects

Bump-pointer allocation

Copying collection
For old objects

Free-list allocation

©)

Reference counting collection

Ulterior Reference Counting

* Nursery phase
° Scan roots
> Process the modified object buffer
> Reclaim nursery

* RC phase

> Process decrement buffer, recursively decrement
> Reclaim old objects
> Cycle detection if needed

Ulterior Reference Counting

e Write Barrier

- Remember pointers into the nursery from the
non-nursery spaces. (RC, immortal and boot image
spaces)

> Generate RCM(p) for mutations to pointer fields
within the non-nursery spaces.

> An object remembering coalescing barrier.

Ulterior Reference Counting

e Write Barrier

1 private void writeBarrier(VM_Address
2 VM_Address ,
3 VM_Address)
4 throws VM_Pragmalnline {

5 if (getLogState(srcObj) I= LOGGED)
6 writeBarrierSlow(srcOb));

7 VM_Magic.setMemoryAddress(srcSlot, tgtObj);
8
9

}

10 private void writeBarrierSlow(VM_Address)

11 throws VM_PragmaNoInline {

12 if (attemptToLog(srcObj)) {

13 modifiedBuffer.push(srcObj);

14 enumeratePointersToDecBuffer(srcObj). // trade-off for sparsely
15 setLogState(srcObj, LOGGED); // modified objects
16}

17}

Ulterior Reference Counting

e Mutation Phase

Stacks Regs

obj buf decbuf root buf

Ulterior Reference Counting

e Mutation Phase

Stacks Regs

obj buf decbuf root buf

o®

Ulterior Reference Counting

e Mutation Phase

Stacks Regs

obj buf decbuf root buf

™

Ulterior Reference Counting

- e Mutation Phase

Stacks Regs

obj buf decbuf root buf

™

Ulterior Reference Counting

- e Mutation Phase

Stacks Regs

obj buf decbuf root buf

™

Ulterior Reference Counting

e Mutation Phase

Stacks Regs

obj buf decbuf root buf

™

Ulterior Reference Counting

- e Mutation Phase

Stacks Regs

obj buf decbuf root buf

™

Ulterior Reference Counting

~ o Nursery Collection: Scan Roots

Stacks Regs

obj buf decbuf root buf

™

Ulterior Reference Counting

~ o Nursery Collection: Scan Roots

Stacks Regs

obj buf decbuf root buf

Ulterior Reference Counting

~ o Nursery Collection: Scan Roots

el
()
b d b
e S

obj buf decbuf root buf

Ulterior Reference Counting

~ o Nursery Collection: Process Object Buffer

Stacks Regs

obj buf decbuf root buf

Ulterior Reference Counting

- * Nursery Collection: Reclaim Nursery

Stacks Regs

a ®Re@g§n

®© O
w o

obj buf decbuf root buf

Ulterior Reference Counting

o RC Collection: Process Decrement Buffer

Stacks Regs

s

A b

n

obj buf decbuf root buf

Ulterior Reference Counting

- o RC Collection: Recursive Decrement

Stacks Regs

By I

obj buf decbuf root buf

n

Ulterior Reference Counting

o RC Collection: Process Decrement Buffer

Stacks Regs

obj buf decbuf root buf

Ulterior Reference Counting

- e Collection Complete.

Stacks Regs

obj buf decbuf root buf

Ulterior Reference Counting

» Controlling Pause Times: nursery collection &
reference counting times

> Modest bounded nursery size

° Limit the growth of meta data
Decrement and modified object buffers
Trigger a collection if too big

> RC time cap
Limit time recursively decrementing RC obj & in cycle
detection

* Cycle detection

Use Bacon/Rajan trial deletion algorithm
Add a trigger to invoke cycle detection

Evaluation

¢ Jikes RYM and [IMTK
* 4 Collectors

> MS, RC, BG-MS, BG-RC
* Benchmarks

> SPEC JVM & pseudojbb
e Collection triggers

> Each 4MB of allocation for BG-RC (I MB for RC)
> Time cap of 60ms

> Cycle detection at 512KB

Throughput/Pause time

benchmatk

U2 Jess

213 Javac
228 jack

205 saytrace
227 mrt

201 compress
pseudojbb
209.db

222 mpegaudio
mean

geometIic mean

used t1me
MB 560

0ax
tme pause

’68
134
203
A4
160
264

238
183

1o
fime

[V}

X
pause

101
tme

max

norm

,&-
2\

|I)93
\ o | \ |3 HWIHW

Table 3: Throughput and Responsiveness of MS, BG-MS, BG-RC, and RC at a Moderate Heap Size

Throughput/Pause time

tme [oo | max || norm | max [nom | max || nom | max
benchmatk || N sec || fme | pawse |f tme | pavse [| tume [pause [| fume

213 Javac
228 jack

205 saytrace
221 mirt

201 compress
pseudojbb
209.db

222 mpegaudio

mean || 3 II | :
oeometric mean || 31 104 1.00 ’06 098 5

Table 3: Throughput and Responsiveness of MS, BG-MS, BG-RC, and RC at a Moderate Heap Size

Throughput & Responsiveness

_228_jack

0.9 A
0.8 A
0.7 A
0.6 A
0.5 A
0.4
0.3 -
0.2 -
0.1 -

Utilization

10 100 1000 10000

Window (msec)

Conclusion

» Match allocation and collection policies to
the behaviors of older and younger object
demographics

* Extend deferral to select heap objects

* Achieve good throughput performance
and good responsiveness

