
Ulterior Reference Counting:
Fast Garbage Collection without a
Long Wait
Stephen M Blackburn and Kathryn S Mckinley

Present by Qi Chen
March 6, 2012

Slides adapted from presentation by Dimitris Prountzos

Outline
� Problem Statement
� Background
◦ Reference Counting

� Ulterior Reference Counting (URC)
� URC Implementation
� Evaluation
� Conclusion

Problem Statement
� Throughput/Responsiveness trade-off
◦ High throughput: mark-sweep (MS)
◦  Short pause time: reference counting (RC)

Problem Statement
� Throughput/Responsiveness trade-off
◦ High throughput: mark-sweep (MS)
◦  Short pause time: reference counting (RC)

� Any collector can achieve the two goals?

Problem Statement
� Throughput/Responsiveness trade-off
◦ High throughput: mark-sweep (MS)
◦  Short pause time: reference counting (RC)

� Any collector can achieve the two goals?
◦ Ulterior Reference Counting (URC)

Ulterior RC Approach
� Match mechanisms to object demographics
◦  Copying nursery space
�  Highly mutated, high mortality young objects
�  Ignore nursery pointer mutations
�  GC time proportional to survivors
◦  RC mature space
�  Low mutation, low mortality old objects
�  GC time proportional to dead objects and pointer

mutations

� Generalize deferred RC to heap objects
◦  Defer fields of highly mutated objects and enumerate

them quickly
◦  Reference count only infrequently mutated fields

Background
� Reference Counting
◦ Advantage
�  Incremental: the work of garbage detection is spread

out over every mutation

◦ Disadvantage
�  Unable to reclaim cycles

�  Solution: additional algorithm

�  Tracking every pointer mutation is expensive
�  Solution: Deferal, Buffering, Coalescing

Background
� RC Formal Definitions
◦ Mutation event: RCM(p)
�  RC(Pbefore)--, RC(Pafter)++
�  May be buffered or performed immediately

◦ Retain event: RCR(p)
�  Zero count table (ZCT)
�  Generate a temporary increment for p

◦ Deferral
�  No mutation event generates RCM(p)
�  Need a RCR(p) to preserve objects

Background
� RC Optimization Mechanism: to reduce

computation overhead
◦ Buffering
�  apply RC(p)--, RC(p)++ later

◦ Coalescing
�  apply RCM（p) only for the initial and final values of p

(coalesce intermediate values)
	
 	
 	
 {RCM(p),	
 RCM(p1),	
 ...	
 RCM(pn)}	
 ➔	
 RC(pini/al)-­‐-­‐,	
 RC(pfinal)++

◦ Deferral
�  Defer RC events.

Ulterior Reference Counting
�  Idea: Extends deferral to select heap pointers
◦  e.g. pointers from nursery space to mature space

� Deferral is not a fixed property of a pointer
◦  e.g. an object can be moved between nursery and

mature spaces.

�  Integrate Event: RCI(p)
◦ Change p from deferred to not-deferred.

Ulterior Reference Counting
� Generalizing Deferral

Ulterior Reference Counting
� A Generational RC Hybrid Collector (BG-

RC)
◦ Combine a bounded copying nursery with RC.
◦  For young objects
�  Bump-pointer allocation
�  Copying collection

◦  For old objects
�  Free-list allocation
�  Reference counting collection

Ulterior Reference Counting
� Nursery phase
◦  Scan roots
◦  Process the modified object buffer
◦ Reclaim nursery

� RC phase
◦  Process decrement buffer, recursively decrement
◦ Reclaim old objects
◦ Cycle detection if needed

Ulterior Reference Counting
� Write Barrier
◦ Remember pointers into the nursery from the

non-nursery spaces. (RC, immortal and boot image
spaces)
◦ Generate RCM(p) for mutations to pointer fields

within the non-nursery spaces.
◦ An object remembering coalescing barrier.

Ulterior Reference Counting
� Write Barrier

10 private void writeBarrierSlow(VM_Address srcObj)
11 throws VM_PragmaNoInline {
12 if (attemptToLog(srcObj)) {
13 modifiedBuffer.push(srcObj);
14 enumeratePointersToDecBuffer(srcObj); // trade-off for sparsely
15 setLogState(srcObj, LOGGED); // modified objects
16 }
17 }

1 private void writeBarrier(VM_Address srcObj,
2 VM_Address srcSlot,
3 VM_Address tgtObj)
4 throws VM_PragmaInline {
5 if (getLogState(srcObj) != LOGGED)
6 writeBarrierSlow(srcObj);
7 VM_Magic.setMemoryAddress(srcSlot, tgtObj);
8 }
9 }

Ulterior Reference Counting
� Mutation Phase

Stacks Regs

 root buf

RC space

obj buf dec buf

non-RC space
d
1

a
1

b
0

e
1

Ulterior Reference Counting
� Mutation Phase

Stacks Regs

 root buf

RC space

obj buf dec buf

non-RC space
d
1

a
1

b
0

e
1

✗

b
e
d

Ulterior Reference Counting
� Mutation Phase

Stacks Regs

 root buf

RC space

obj buf dec buf

non-RC space
d
1

a
1

b
0

e
1

b
e
d

Ulterior Reference Counting
� Mutation Phase

Stacks Regs

 root buf

RC space

obj buf dec buf

non-RC space
d
1

a
1

b
0

e
1

b
e
d

r

Ulterior Reference Counting
� Mutation Phase

Stacks Regs

 root buf

RC space

obj buf dec buf

non-RC space
d
1

a
1

b
0

e
1

s

b
e
d

r

Ulterior Reference Counting
� Mutation Phase

Stacks Regs

 root buf

RC space

obj buf dec buf

non-RC space
d
1

a
1

b
0

e
1

s

t

b
e
d

r

Ulterior Reference Counting
� Mutation Phase

Stacks Regs

 root buf

RC space

obj buf dec buf

non-RC space
d
1

a
1

b
0

e
1

s

t

b
e
d

r

Ulterior Reference Counting
� Nursery Collection: Scan Roots

Stacks Regs

 root buf

RC space

obj buf dec buf

non-RC space
d
1

a
1

b
1

e
1

s

t

b
e
d

r

b

Ulterior Reference Counting
� Nursery Collection: Scan Roots

Stacks Regs

 root buf

RC space

obj buf dec buf

non-RC space
d
1

a
1

b
1

e
1

s

t

b
e
d

r

b
s

s
1

Ulterior Reference Counting
� Nursery Collection: Scan Roots

Stacks Regs

 root buf

RC space

obj buf dec buf

non-RC space
d
1

a
1

b
1

e
2

s

t

b
e
d

r

b
s

s
1

t
1

Ulterior Reference Counting
� Nursery Collection: Process Object Buffer

Stacks Regs

 root buf

RC space

obj buf dec buf

non-RC space
d
1

a
2

b
1

e
3

s

t

b
e
d

r

b
s

s
1

t
1

✗

r
1

Ulterior Reference Counting
� Nursery Collection: Reclaim Nursery

Stacks Regs

 root buf

RC space

obj buf dec buf

non-RC space
d
1

a
2

b
1

e
3

s

t

e
d

r

b
s

s
1

t
1

r
1

Reclaim

Ulterior Reference Counting
� RC Collection: Process Decrement Buffer

Stacks Regs

 root buf

RC space

obj buf dec buf

non-RC space
d
0

a
2

b
1

e
3

e
d b

s

s
1

t
1

r
1

✗

Ulterior Reference Counting
� RC Collection: Recursive Decrement

Stacks Regs

 root buf

RC space

obj buf dec buf

non-RC space
d
0

a
1

b
1

e
3

e b
s

s
1

t
1

r
1

✗

free

Ulterior Reference Counting
� RC Collection: Process Decrement Buffer

Stacks Regs

 root buf

RC space

obj buf dec buf

non-RC space

a
1

b
1

e
2

e b
s

s
1

t
1

r
1

✗

Ulterior Reference Counting
� Collection Complete.

Stacks Regs

 root buf

RC space

obj buf dec buf

non-RC space

a
1

b
1

e
2

b
s

s
1

t
1

r
1

✗

✗

b

s

Ulterior Reference Counting
� Controlling Pause Times: nursery collection &

reference counting times
◦ Modest bounded nursery size
◦  Limit the growth of meta data
�  Decrement and modified object buffers
�  Trigger a collection if too big
◦ RC time cap
�  Limit time recursively decrementing RC obj & in cycle

detection

� Cycle detection
�  Use Bacon/Rajan trial deletion algorithm
�  Add a trigger to invoke cycle detection

Evaluation
�  Jikes RVM and JMTK
� 4 Collectors
◦ MS, RC, BG-MS, BG-RC

� Benchmarks
◦  SPEC JVM & pseudojbb

� Collection triggers
◦  Each 4MB of allocation for BG-RC (1MB for RC)
◦ Time cap of 60ms
◦ Cycle detection at 512KB

Throughput/Pause time

Throughput/Pause time

Throughput & Responsiveness

_228_jack

0
0.1

0.2
0.3
0.4

0.5
0.6
0.7
0.8

0.9
1

10 100 1000 10000
Window (msec)

U
ti

liz
at

io
n

BG-MS
RC
BG-RC

Conclusion
� Match allocation and collection policies to

the behaviors of older and younger object
demographics

� Extend deferral to select heap objects
� Achieve good throughput performance

and good responsiveness

