
An efficient, incremental, automatic
garbage collector

Deutsch & Bobrow

Presented by Hou-Jen Ko

Outline

• Introduction

• Advantage/Disadvantage of Reference
counting

• Methodology

• Conclusion

Introduction – Reference counting

• Reference counting (RC) contains

– A counter for each object

• The counter means how many other objects
reference it.

• When the value of the counter becomes 0

– The object is garbage and can be reclaimed.

Advantage of RC

• GC costs are distributed throughout the
computation

• Unreferenced structures can be reclaimed
immediately

• Do not need to know the roots of the program

– It can reclaim some memory even if some parts of
the system are unavailable

Disadvantage of RC

• Redefine all read / write operations in order to
manipulate reference counts

– Undesirable, i.e. traverse a list

• Atomic operations to update reference counts

• Circular structures are not reclaimed

• Space overhead to store reference counts

Three ways to improve RC

• Deferral RC
– Defer the identification of garbage objects to a

reclamation phase

• Coalescing
– Eliminate unnecessary temporal adjustments of

reference counts

• Buffering
– Buffer the adjustment of reference counts for later

processing

Deferred RC

• Observation:
– The majority of objects have a RC of 1

• Solution:
– Record transactions that affect the accessibility in

the transaction file
• Allocate a new cell

• Create a pointer to a cell

• Destroy a pointer to a cell

– Store the reference count for objects with 2 or
more references in a multireference table (MRT)

Deferred RC

• Observation:

– The majority of pointer loads are to local and
temporary variables

• Solution:

– Do not count local variable references

• Counts are no longer accurate

– Need a zero count table (ZCT) for objects with
reference counts of 0 but may be referenced from
locals

Transaction file processing
for (Transaction* t = FirstTransaction(); t; t = Next(t)) {
 if (IsAllocate(t)) {
 AddToZCT(t); // Upon allocation, simply add to ZCT
 } else if (IsCreatePtr(t)) {
 if (!RemoveFromZCT(t)) { // Remove from ZCT if present
 if (IsInMRT(t))
 IncrementMRTReference(t); // Add reference to MRT or increment its ref count
 else
 SetMRTReferenceCount(t,2);
 }
 } else if (IsDestroyPtr(t)) {
 if (IsInMRT(t)) {
 if (GetMRTCount(t) == 2)
 RemoveFromMRT(t);
 else
 DecrementMRTReference(t);
 } else {
 AddToZCT(t); // Add to ZCT if this was the last reference
 }
 }
}

Reclamation

• Reference count = 0 (in ZCT)

– Not count yet referenced from local variables

– “May” be live

• Any objects in ZCT are reclaimable if it is not
reachable from the stack.

– Variable reference table (VRT) contains all the
pointers from the stack.

– Reclaim (obj ∈ ZCT) if IsInVRT(obj) = true

Reclamation

• Upon freeing an object

– Decrement the references counts of objects which
it may point to

• Free a large data structure

– May defer the decremented operations in order to
disperse the disruptive effects

Coalescing

• Eliminate unnecessary temporal adjustments of
reference counts

– allocate – create

– destroy- create

Linearizing Garbage Collection

• Collect circular structures

• Generational garbage collector

– In depth-first traversal order

– Extended MRT

• MRT must be updated before copying

• (taking the stack into account)

• Store the relocation address for each entry of MRT (?)

• It improves locality

Incremental linearization

Old data New Data …

1 1 1 1 1 1 bitmap

• Old data can be released by reference counts

• Full linearization will be performed if the
storage needs to be reclaimed

• MRT and ZCT are segmented by address

Root pointers
(old->new)

Root pointers
(old->new)

Remember

Root pointers
(external objects)

Root pointers
(external objects)

heap

Create transaction

Extended MRT Extended MRT New for new New for new

ZCT for old ZCT for old ZCT for new ZCT for new

Further Observation
Mutator

Transaction file ZCT / MRT

transactions

Collector Collector

Mutator

Transaction file ZCT / MRT

stack

Stop-the-world

Reference

• www.cs.utexas.edu/users/mckinley/395Tmm/
talks/Mar-9-DRC.pdf

• Richard Jones, Antony Hosking, and Eliot Moss,
The Garbage Collection Handbook

http://www.cs.utexas.edu/users/mckinley/395Tmm/talks/Mar-9-DRC.pdf
http://www.cs.utexas.edu/users/mckinley/395Tmm/talks/Mar-9-DRC.pdf
http://www.cs.utexas.edu/users/mckinley/395Tmm/talks/Mar-9-DRC.pdf
http://www.cs.utexas.edu/users/mckinley/395Tmm/talks/Mar-9-DRC.pdf
http://www.cs.utexas.edu/users/mckinley/395Tmm/talks/Mar-9-DRC.pdf
http://www.cs.utexas.edu/users/mckinley/395Tmm/talks/Mar-9-DRC.pdf

