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Introduction – Reference counting 

• Reference counting (RC) contains 

– A counter for each object 

• The counter means how many other objects 
reference it. 

• When the value of the counter becomes 0 

– The object is garbage and can be reclaimed. 



Advantage of RC 

• GC costs are distributed throughout the 
computation 

• Unreferenced structures can be reclaimed 
immediately 

• Do not need to know the roots of the program 

– It can reclaim some memory even if some parts of 
the system are unavailable 



Disadvantage of RC 

• Redefine all read / write operations in order to 
manipulate reference counts 

– Undesirable, i.e. traverse a list 

• Atomic operations to update reference counts 

• Circular structures are not reclaimed 

• Space overhead to store reference counts 



Three ways to improve RC 

• Deferral RC 
– Defer the identification of garbage objects to a 

reclamation phase 

• Coalescing 
– Eliminate unnecessary temporal adjustments of 

reference counts 

• Buffering 
– Buffer the adjustment of reference counts for later 

processing 



Deferred RC 

• Observation: 
– The majority of objects have a RC of 1 

• Solution: 
– Record transactions that affect the accessibility in 

the transaction file 
• Allocate a new cell 

• Create a pointer to a cell 

• Destroy a pointer to a cell 

– Store the reference count for objects with 2 or 
more references in a multireference table (MRT) 

 



Deferred RC 

• Observation: 

– The majority of pointer loads are to local and 
temporary variables 

• Solution: 

– Do not count local variable references 

• Counts are no longer accurate 

– Need a zero count table (ZCT) for objects with 
reference counts of 0 but may be referenced from 
locals  



Transaction file processing 
for ( Transaction* t = FirstTransaction(); t; t = Next(t) ) { 
    if ( IsAllocate(t) ) { 
        AddToZCT(t);    // Upon allocation, simply add to ZCT 
    } else if ( IsCreatePtr(t) ) { 
        if ( !RemoveFromZCT(t) ) {  // Remove from ZCT if present 
            if ( IsInMRT(t) ) 
                IncrementMRTReference(t);  // Add reference to MRT or increment its ref count 
            else 
                SetMRTReferenceCount(t,2); 
        } 
    } else if ( IsDestroyPtr(t) ) { 
        if ( IsInMRT(t) ) {    
            if ( GetMRTCount(t) == 2 ) 
                RemoveFromMRT(t); 
            else 
                DecrementMRTReference(t); 
        } else { 
            AddToZCT(t);   // Add to ZCT if this was the last reference 
        } 
    } 
} 



Reclamation 

• Reference count = 0 (in ZCT) 

– Not count yet referenced from local variables 

– “May” be live 

• Any objects in ZCT are reclaimable if it is not 
reachable from the stack.  

– Variable reference table (VRT) contains all the 
pointers from the stack. 

– Reclaim (obj ∈ ZCT) if IsInVRT(obj) = true 



Reclamation 

• Upon freeing an object 

– Decrement the references counts of objects which 
it may point to 

• Free a large data structure 

– May defer the decremented operations in order to 
disperse the disruptive effects 



Coalescing 

• Eliminate unnecessary temporal adjustments of 
reference counts 

– allocate – create 

– destroy- create 



Linearizing Garbage Collection 

• Collect circular structures 

• Generational garbage collector 

– In depth-first traversal order 

– Extended MRT 

• MRT must be updated before copying 

• (taking the stack into account) 

• Store the relocation address for each entry of MRT (?) 

• It improves locality 



Incremental linearization 

Old data New Data … 

1 1 1 1 1 1 bitmap 

• Old data can be released by reference counts 

• Full linearization will be performed if the 
storage needs to be reclaimed 

• MRT and ZCT are segmented by address 
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Further Observation 
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