
Simple Garbage Collection and Fast Allocation
Andrew W. Appel

Presented by 

Karthik Iyer



Agenda

• Background

• Motivation

• Appel’s Technique

• Terminology

• Fast Allocation

• Arranging Generations

Invariant

Arranging Generations

• Invariant

• GC Working

• Heuristic

• Handling Assignments

• Handling Registers

• Conclsion

• Questions



Background

• Modern Computers – Automatic GC

• Mark and Sweep

– Parses and marks the object graph – DFS

– Unmarked objects in free list– Unmarked objects in free list

– O(size of mem)

• Copy Collectors

– Copies live objects from src to dst regions

– Src and dst flip 

– O(live object mem)



Background contd…

• Key observations
– Newer objects point to old ones

– Young object more likely to become garbage

• Generational GC
– Memory divided into regions

– Objects of similar age – same region

– GC of region x => GC of regions y < x

– Not suitable for all languages– Not suitable for all languages

• Handling ‘Reverse Pointers’
– Entry Table – Lieberman & Hewitt

– Special VM Hardware, marking pages – Moon

– List of pointers - Ungar

• Cheney’s Algorithm
– If a root R points in dst, object already copied

– Else, copy the object, store a forwarding pointer, update NEXT and 
SCAN



Motivation

• In a Generational GC Setup, lower bound for 

reclamation is very low, close to zero – Why?

– All the objects in the collected region are dead

– Allocation may take more time then collection– Allocation may take more time then collection

– Technique for fast allocation

• When to ask memory from OS?

– Need a way to organize generations

– Also a Heuristic to aid decisions 



Appel’s Technique

• Divide heap into two regions – Copy from 

Newer to Older

Older Newer

• Why only two regions?

– Two generations maximize space for the allocator

– Large space reduces GC cycles, avoids unnecessary 

elevation of objects, reduces copying

– Other (will visit later)



Appel’s Technique contd…

• Uses Cheney’s algorithm

• A technique for fast allocation

• A way to layout heap

• Heuristic to aid memory management• Heuristic to aid memory management

– based on mutator behavior

• A way to keep track of ‘reverse pointers’

• Unix implementation



Terminology

• Assignment – A modification to the records in the 
older region such that he record is made to point to a 
newer region

• Minor Collection – GC of the Newer Region. Appends 

live objects into Older Region.

• Major Collection – GC of the Older Region. Retains • Major Collection – GC of the Older Region. Retains 
live objects in the Older Region

• Free Space Pointer (FSP) – Pointer to first free byte in 
the Newer Region

• Free Space Limit – End of the Newer Region

• Inaccessible Page – A dedicated page access to which 
triggers GC as Newer Region is full



Fast Allocation

• Unallocated region is continous

• CONS(A,B)

– Test FSP below Limit, trigger GC if at limit

– FSP = FSP -2

– Store A, B and return FSP– Store A, B and return FSP

• Overhead of CONS

– Test executed by VM handler. Page Fault if FSP hits 

inaccessible page

– On a VAX, auto decrement FSP while store

– Hence overhead Zero



Variable Sized Records

• Many techniques to handle
– Associate tag with object

– Allocate objects in different regions based on size

– Type System map in a statically typed language

– We use tags

• Issues• Issues
– Allocation is difficult, may span beyond region

– Two word records not an issue as regions boundaries 
are even

• Solution
– Allocate in reverse order

– If last word fits, rest is guaranteed to fit

– Page Fault if last word hits inaccessible page



Arranging Generations

• Arrange heap such that inaccessible page at 

one end of heap

• Unix Memory Layout

• Inaccessible Page – Unix Program Break

texttext bss heap stack

• Inaccessible Page – Unix Program Break

• Newer Region – Starts mid-heap and grows 

towards inaccessible page

• Older Region – Starts beginning of heap and 

grows towards mid-heap point

texttext bss heap stackOlder Newer



Invariant

• A two region copying collector runs out of 

space if there is not enough free space in dst

region to fit src region live objects

• Hence M > 2A

– where M – heap size, A – mutator requirement– where M – heap size, A – mutator requirement

• If A approaches M/2, GC performance 

degrades – Why?

– Too many collections

• For good performance, M >> 2A



GC Working

• Heap Organization

• Reserve – Free space in Older Region

• Free – Free space in the Newer Region

textOlder Reserve Newer Free

• Working

– Allocation happens in Free area until inaccessible page is 

hit (Minor Collection - MiC Triggered)

– MiC copies live data (x) at the end of Older Region

– Remaining free space beyond x, is divided into equal 

regions to accommodate Reserve and Free regions



GC Working - Illustration

textOlder Reserve Newer Free

textOlder Reserve Newer Free

Minor Collection Triggered

Allocation

textOlder EmptyX

textOlder X Reserve Free

Minor Collection Triggered



GC Working contd….

• At some point, Older region fills out –
appending ‘X’ of a MiC crosses the Older 
Region Boundary (h)

• Major Collection (MaC) Triggered

• How do we ensure enough space for live 
objects in Older Region (Y)?objects in Older Region (Y)?

– Copy Y after X

– Since we crossed h after appending X to Y, Y < M/2

– Free Space = M/2, hence Y fits

• Bring back Y+X to beginning of heap, call it 
Older Region



GC Working – Illustration contd…

textOlder Free

h

h

text FreeOlder’(Y)

textOlder Reserve Free



When to ask for Memory? Heuristic !

• Let ϒ be M/A

• If ϒ < 2, mutator runs out of space

• If ϒ = 2, GC performance degrades

• ϒ >> 2• ϒ >> 2

– Depending on compiler and language GC 

performance varies based on ϒ

– But higher ϒ => better GC performance

• Let ϒ’ be required ϒ for required performance



Heuristic contd…

• Allocated some space initially – may be based 
on predicted value of A

• If A grows – ask for more memory from OS

• How to know A is growing? When to trigger?

– After MaC, if ϒ’ < ϒ– After MaC, if ϒ’ < ϒ

– No space when appending Y to X. ϒ < 2

– After an MiC, Free region not enough for a huge 
object. Most probably A > M/ ϒ’

• Use UNIX brk() for more memory

• Calculating A, hence ϒ in a multi-generation 
setup is difficult



Keeping track of Assignments

• Root Set – Globals, Registers, Stack and Reverse 

Pointers

• Stack in heap saves tracking stack frames –

efficient

• How to keep track of assignments?• How to keep track of assignments?

– A linked list or a list of vectors of all Reverse Pointers

– Compiler adds code to insert Reverse Pointers to the 

list during assignment

– Compiler runs checks to see if an assignment is a 

Reverse Pointer



Assignments contd…

• Multi-generational setup – After each MiC, 

need to maintain pruned lists. Difficult

– Remember our Two region setup? List will empty 

after each Mic. Advantage.

• Root list overhead• Root list overhead

– 8 instructions

– 4 for list update

– 4 to examine a record

– List Traversal overhead to check duplicate?



Handling Registers

• Registers are part of Root set

• During Traps and GC, Root set modified

• But Traps require registers for execution

• Root Set registers pushed onto stack and • Root Set registers pushed onto stack and 

modified

• Can run a check to learn about what registers 

pushed and the order



Conclusion

• Fast allocation

• Simple Algorithm – Two regions

• No entry tables – Reverse pointers part of 

heap. Less overhead to manage these pointersheap. Less overhead to manage these pointers

• Easy to implement in UNIX



Questions

• What does fast mean? How many instructions 

other collectors take to allocate? Compare.

• Isn’t fast too tied to a machine?

• Assessing A may be skewed due to list of • Assessing A may be skewed due to list of 

reverse pointers in heap?

• Why size of Free Space reduced after each 

MiC?


