Simple Garbage Collection and Fast Allocation
Andrew W. Appel

Presented by
Karthik lyer

Agenda

Background
Motivation

Appel’s Technique
Terminology

Fast Allocation
Arranging Generations
Invariant

GC Working

Heuristic

Handling Assignments
Handling Registers
Conclsion

Questions

Background

e Modern Computers — Automatic GC

e Mark and Sweep
— Parses and marks the object graph — DFS
— Unmarked objects in free list
— O(size of mem)

* Copy Collectors
— Copies live objects from src to dst regions
— Src and dst flip
— O(live object mem)

Background contd...

Key observations

— Newer objects point to old ones
— Young object more likely to become garbage

Generational GC
— Memory divided into regions
— Objects of similar age — same region
— GC of region x => GC of regions y < x
— Not suitable for all languages

Handling ‘Reverse Pointers’

— Entry Table — Lieberman & Hewitt

— Special VM Hardware, marking pages — Moon
— List of pointers - Ungar

Cheney’s Algorithm

— If a root R points in dst, object already copied

— Else, copy the object, store a forwarding pointer, update NEXT and
SCAN

Motivation

* |[n a Generational GC Setup, lower bound for
reclamation is very low, close to zero — Why?

— All the objects in the collected region are dead
— Allocation may take more time then collection
— Technique for fast allocation

* When to ask memory from OS?
— Need a way to organize generations
— Also a Heuristic to aid decisions

Appel’s Technique

* Divide heap into two regions — Copy from
Newer to Older

Older Newer

 Why only two regions?
— Two generations maximize space for the allocator

— Large space reduces GC cycles, avoids unnecessary
elevation of objects, reduces copying

— Other (will visit later)

Appel’s Technique contd...

Uses Cheney’s algorithm

A technique for fast allocation

A way to layout heap

Heuristic to aid memory management

— based on mutator behavior

A way to keep track of ‘reverse pointers’

Unix implementation

Terminology

Assignment — A modification to the records in the
older region such that he record is made to point to a
newer region

Minor Collection — GC of the Newer Region. Appends
live objects into Older Region.

Major Collection — GC of the Older Region. Retains
live objects in the Older Region

Free Space Pointer (FSP) — Pointer to first free byte in
the Newer Region

Free Space Limit — End of the Newer Region

Inaccessible Page — A dedicated page access to which
triggers GC as Newer Region is full

Fast Allocation

* Unallocated region is continous

e CONS(A,B)
— Test FSP below Limit, trigger GC if at limit
— FSP = FSP -2
— Store A, B and return FSP

e Overhead of CONS

— Test executed by VM handler. Page Fault if FSP hits
inaccessible page

— On a VAX, auto decrement FSP while store
— Hence overhead Zero

Variable Sized Records

e Many techniques to handle
— Associate tag with object
— Allocate objects in different regions based on size
— Type System map in a statically typed language
— We use tags

e |ssues

— Allocation is difficult, may span beyond region

— Two word records not an issue as regions boundaries
are even

e Solution
— Allocate in reverse order
— If last word fits, rest is guaranteed to fit
— Page Fault if last word hits inaccessible page

Arranging Generations

Arrange heap such that inaccessible page at
one end of heap

Unix Memory Layout /

text bss heap I stack

Inaccessible Page — Unix Program Break

Newer Region — Starts mid-heap and grows
towards inaccessible page

Older Region — Starts beginning of heap and
grows towards mid-heap point

text bss Older Newer I stack

Invariant

A two region copying collector runs out of
space if there is not enough free space in dst
region to fit src region live objects

Hence M > 2A
— where M — heap size, A — mutator requirement

If A approaches M/2, GC performance
degrades — Why?
— Too many collections

For good performance, M >> 2A

GC Working

Heap Organization

Older Reserve Newer Free

Reserve — Free space in Older Region

-ree — Free space in the Newer Region
Working

— Allocation happens in Free area until inaccessible page is
hit (Minor Collection - MiC Triggered)

— MIC copies live data (x) at the end of Older Region

— Remaining free space beyond x, is divided into equal
regions to accommodate Reserve and Free regions

GC Working - lllustration

Allocation

T
1

Older Reserve Newer Free

Older Reserve Newer E

Minor Collection Triggered

Older Empty

Older Reserve Free

GC Working contd....

At some point, Older region fills out —

appending ‘X’ of a MiC crosses the Older
Region Boundary (h)

Major Collection (MaC) Triggered

How do we ensure enough space for live
objects in Older Region (Y)?

— Copy Y after X

— Since we crossed h after appending Xto Y, Y < M/2
— Free Space = M/2, hence Y fits

Bring back Y+X to beginning of heap, call it
Older Region

GC Working — lllustration contd...

/h

h

/

When to ask for Memory? Heuristic !

et Y be M/A
f Y < 2, mutator runs out of space

fY =2, GC performance degrades
Y>>2

— Depending on compiler and language GC
performance varies based on Y

— But higher Y => better GC performance
Let Y’ be required Y for required performance

Heuristic contd...

* Allocated some space initially — may be based
on predicted value of A

e |f A grows — ask for more memory from OS

e How to know A is growing? When to trigger?
— After MaC, if Y/ <Y

— No space when appending Yto X. Y < 2

— After an MiC, Free region not enough for a huge
object. Most probably A > M/ Y’

e Use UNIX brk() for more memory

e Calculating A, hence Y in a multi-generation
setup is difficult

Keeping track of Assighments

 Root Set — Globals, Registers, Stack and Reverse
Pointers

e Stack in heap saves tracking stack frames —
efficient

* How to keep track of assignments?
— A linked list or a list of vectors of all Reverse Pointers

— Compiler adds code to insert Reverse Pointers to the
list during assignment

— Compiler runs checks to see if an assignment is a
Reverse Pointer

Assignments contd...

 Multi-generational setup — After each MiC,
need to maintain pruned lists. Difficult

— Remember our Two region setup? List will empty
after each Mic. Advantage.

e Root list overhead
— 8 instructions
— 4 for list update
— 4 to examine a record
— List Traversal overhead to check duplicate?

Handling Registers

Registers are part of Root set
During Traps and GC, Root set modified
But Traps require registers for execution

Root Set registers pushed onto stack and
modified

Can run a check to learn about what registers
pushed and the order

Conclusion

Fast allocation
Simple Algorithm — Two regions

No entry tables — Reverse pointers part of
heap. Less overhead to manage these pointers

Easy to implement in UNIX

Questions

What does fast mean? How many instructions
other collectors take to allocate? Compare.

Isn’t fast too tied to a machine?

Assessing A may be skewed due to list of
reverse pointers in heap?

Why size of Free Space reduced after each
MiC?

