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Agenda

• Compaction..What is that?

• Presenting four different algorithms

• Lisp2

• Table Compactors
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• Jonkers
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Lisp2 .. Summary

• Requires 1 extra word in each object for temp 
pointer. (even when the object is not live)

• Compaction is done in 3 phases:

1. Traverse the objects, sorted by address

• Compute new address of each live object

• free_ptr=0; free_ptr+=free_ptr+size of live 
object

2. Update Pointer fields.

3. Sliding Compaction
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Table Compactors

• We need to save the overhead due to temp 
pointers.

• Using inactive cells to store readjustments.
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Break Table

• Rolling back causes it to become unsorted.

• Need another phase just to sort the BT.
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Break Table

• Phase3 to fix the pointers.

1. Search through the BT table and 
determine the adjacent pairs(a, s) and (a’, 
s’) such that a <= p < a’

2. readjusted value should be p - s.
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Break Table ..Cost

• Phase1: linear

• Phase2: nlogn

• Phase3: nlogn

• we can enhance the last phase by 
constructing a hash if we have enough 
space.

• Other suggestions to keep  a linked list in 
holes and update pointers before moving 
objects.
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Problem .. revisited

• It is clear from the previous 2 algorithms 
that updating pointers is bottleneck.
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Threading
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Threading

• After calculating the new address of P we 
can traverse the list and fix all the pointers 
to point to the new address of P.
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Jonker Algorithm
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Analysis of Threaded

• Each object is touched three times.

• Space:

• Jonker, no space required but each node  
has a pointer-sized header.

• Morris

• 2 tag bits per field, 0 inactive, 1 pointer, 2 
swapped pointer, 3 non pointer.

• Could be improved by merging marking phase with 
first phase.
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Threaded..Analysis

• Compact tables touch every object only 
twice.
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Compaction Summary

• Suits smaller physical memory. Semi-Space 
requires double the memory space.

• For long lived objects, the heap becomes 
similar to “generational collector”.

• Improve locality.

• Other algorithms have only one path.
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How to Compare

• Variable sized objects?

• Directions?

• Have to tag pointer data?

• Time and Space Performance.
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Time Comparison
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