
Comparison of 
Compacting Algorithms 
for Garbage Collection 

Ahmed Hussein

Tuesday, February 7, 12



Agenda

• Compaction..What is that?

• Presenting four different algorithms

• Lisp2

• Table Compactors

• Morris

• Jonkers

Tuesday, February 7, 12



Overview
Memory

O1 O2 O3 O4

O5 O6

O7 O8 O9

Tuesday, February 7, 12



Phase1..Marking
Memory

O1 O2 O3 O4

O5 O6

O7 O8 O9

Tuesday, February 7, 12



Phase2..Collecting
Memory

O1 O3

O5 O6

O7 O9

Tuesday, February 7, 12



Phase2..Collecting
Memory

O1 O3

O5 O6

O7 O9

O10

Tuesday, February 7, 12



Phase3..Compaction
Memory

O1 O3

O5 O6

O7 O9

O10

Tuesday, February 7, 12



Phase3..Compaction
Memory

O1 O3

O5 O6

O7 O9

O10

Tuesday, February 7, 12



Phase3..Compaction
Memory

O1 O3 O5

O6

O7 O9

O10

Tuesday, February 7, 12



Phase3..Compaction
Memory

O1 O3 O5

O6

O7

O9

O10

Tuesday, February 7, 12



Phase3..Compaction
Memory

O1 O3 O5

O6

O7

O9

O10

Tuesday, February 7, 12



Phase3..Compaction
Memory

O1 O3 O5

O6

O7

O9

O10

Tuesday, February 7, 12



Object Model

Size c

npc

Size
npc

data

Tuesday, February 7, 12



Lisp2
Memory

Size c1

npc

Size c2

npc

Size c1

npc

Tuesday, February 7, 12



Lisp2
Memory

Size c1

npc

Size c2

npc

Compacting

Size c1

npc

Tuesday, February 7, 12



Lisp2
Memory

Size c1

npc

Size c2

npc

Compacting

Size c1

npc

Tuesday, February 7, 12



Lisp2
Memory

Size c1

npc

Size c2

npc

Compacting

Size c1

npc

Tuesday, February 7, 12



Lisp2

Size c1

npc

addressSize c

npc

Tuesday, February 7, 12



Lisp2

Size c1

npc

address

Tuesday, February 7, 12



Lisp2
a2a1 a3 a4a0 a5

Pass1

Tuesday, February 7, 12



Lisp2
a2a1 a3 a4a0 a5

Pass1

Tuesday, February 7, 12



Lisp2
a2a1 a3 a4a0 a5

Pass1

Tuesday, February 7, 12



Lisp2
a2a1 a3 a4a0 a5

Pass1

Tuesday, February 7, 12



Lisp2
a2a1 a3 a4a0 a5

a1’

Pass1

Tuesday, February 7, 12



Lisp2
a2a1 a3 a4a0 a5

a1’
a2’=
a1’+
size

Pass1

Tuesday, February 7, 12



Lisp2
a2a1 a3 a4a0 a5

a1’
a2’=
a1’+
size

a4’=
a2’+
size

Pass1

Tuesday, February 7, 12



Lisp2
a2a1 a4

Pass2

Tuesday, February 7, 12



Lisp2
a2a1 a4

a1’

Pass2

Tuesday, February 7, 12



Lisp2
a2a1 a4

a1’
a2’=
a1’+

size a1

Pass2

Tuesday, February 7, 12



Lisp2
a2a1 a4

a1’
a2’=
a1’+

size a1

a4’=
a2’+

size a2

Pass2

Tuesday, February 7, 12



Lisp2
a2a1 a4

a1’
a2’=
a1’+

size a1

a4’=
a2’+

size a2

Pass2

a1’

Tuesday, February 7, 12



Lisp2
a2a1 a4

a1’
a2’=
a1’+

size a1

a4’=
a2’+

size a2

Pass2

a1’ a2’

Tuesday, February 7, 12



Lisp2
a2a1 a4

a1’
a2’=
a1’+

size a1

a4’=
a2’+

size a2

Pass2

a1’ a2’ a4’

Tuesday, February 7, 12



Lisp2
a4a1

a1’

a2
a2’=
a1’+
size

a4’=
a2’+
size

Pass3

Tuesday, February 7, 12



Lisp2
a4a1

a1’

a2
a2’=
a1’+
size

a4’=
a2’+
size

Pass3

Tuesday, February 7, 12



Lisp2
a4a1

a1’

a2
a2’=
a1’+
size

a4’=
a2’+
size

Pass3

Tuesday, February 7, 12



Lisp2
a4a1

a1’

a2
a2’=
a1’+
size

a4’=
a2’+
size

Pass3

Tuesday, February 7, 12



Lisp2
a4a1

a1’

a2
a2’=
a1’+
size

a4’=
a2’+
size

Pass3

Tuesday, February 7, 12



Lisp2
a4a1

a1’

a2
a2’=
a1’+
size

a4’=
a2’+
size

Pass3

a1’

Tuesday, February 7, 12



Lisp2
a4a1

a1’

a2
a2’=
a1’+
size

a4’=
a2’+
size

Pass3

a1’ a2’

Tuesday, February 7, 12



Lisp2
a4a1

a1’

a2
a2’=
a1’+
size

a4’=
a2’+
size

Pass3

a1’ a2’ a4’

Tuesday, February 7, 12



Lisp2
a4

a1

a1’

a2
a2’=
a1’+
size

a4’=
a2’+
size

Pass3

a1’ a2’ a4’

Tuesday, February 7, 12



Lisp2
a4

a1

a1’

a2
a2’=
a1’+
size

a4’=
a2’+
size

Pass3

a1’ a2’ a4’

Tuesday, February 7, 12



Lisp2
a4

a1

a1’

a2
a2’=
a1’+
size

a4’=
a2’+
size

Pass3

a1’ a2’ a4’

Tuesday, February 7, 12



Lisp2..Final
a2a1 a3

nil

Tuesday, February 7, 12



Lisp2..Final
a2a1

nil

a3

nil

Tuesday, February 7, 12



Lisp2..Final
a2a1

nil nil

a3

nil

Tuesday, February 7, 12



Lisp2 .. Summary

• Requires 1 extra word in each object for temp 
pointer. (even when the object is not live)

• Compaction is done in 3 phases:

1. Traverse the objects, sorted by address

• Compute new address of each live object

• free_ptr=0; free_ptr+=free_ptr+size of live 
object

2. Update Pointer fields.

3. Sliding Compaction
Tuesday, February 7, 12



Table Compactors

• We need to save the overhead due to temp 
pointers.

• Using inactive cells to store readjustments.

Tuesday, February 7, 12



Break Table

0 100 300 950 1200 1600 1999

Phase1

Tuesday, February 7, 12



Break Table

0 100 300 950 1200 1600 1999

(100,100)

0 100 300 950 1200 1600 1999

Phase1

Tuesday, February 7, 12



Break Table

0 100 300 950 1200 1600 1999

(100,100)

0 100 300 950 1200 1600 1999

(100,100)
(950,750)

0 100 300 950 1200 1600 1999

Phase1

Tuesday, February 7, 12



Break Table

0 100 300 950 1200 1600 1999

(100,100)

0 100 300 950 1200 1600 1999

(100,100)
(950,750)

0 100 300 950 1200 1600 1999
(950,750)
(100,100)

(1600, 1150)
0 100 300 950 1200 1600 1999

Phase1

Tuesday, February 7, 12



Break Table

• Rolling back causes it to become unsorted.

• Need another phase just to sort the BT.

Tuesday, February 7, 12



Break Table

• Phase3 to fix the pointers.

1. Search through the BT table and 
determine the adjacent pairs(a, s) and (a’, 
s’) such that a <= p < a’

2. readjusted value should be p - s.

Tuesday, February 7, 12



Break Table ..Cost

• Phase1: linear

• Phase2: nlogn

• Phase3: nlogn

• we can enhance the last phase by 
constructing a hash if we have enough 
space.

• Other suggestions to keep  a linked list in 
holes and update pointers before moving 
objects.

Tuesday, February 7, 12



Problem .. revisited

• It is clear from the previous 2 algorithms 
that updating pointers is bottleneck.

Tuesday, February 7, 12



Threading

A CB

PInfo

Tuesday, February 7, 12



Threading

A CB

PInfo

P

CBAInfo

Tuesday, February 7, 12



Threading

• After calculating the new address of P we 
can traverse the list and fix all the pointers 
to point to the new address of P.

Tuesday, February 7, 12



Jonker Algorithm

info
P

Tuesday, February 7, 12



Jonker Algorithm

info

First Path
P

Tuesday, February 7, 12



Jonker Algorithm

info

First Path

Info

P

Tuesday, February 7, 12



Jonker Algorithm

info

First Path

Info

P

Info

p’=nextFree

Tuesday, February 7, 12



Jonker Algorithm

Tuesday, February 7, 12



Jonker Algorithm
Second Path

Tuesday, February 7, 12



Jonker Algorithm
Second Path

Info
P

p’

Tuesday, February 7, 12



Jonker Algorithm
Second Path

Info
P

p’

info

Tuesday, February 7, 12



Analysis of Threaded

• Each object is touched three times.

• Space:

• Jonker, no space required but each node  
has a pointer-sized header.

• Morris

• 2 tag bits per field, 0 inactive, 1 pointer, 2 
swapped pointer, 3 non pointer.

• Could be improved by merging marking phase with 
first phase.

Tuesday, February 7, 12



Threaded..Analysis

• Compact tables touch every object only 
twice.

Tuesday, February 7, 12



Compaction Summary

• Suits smaller physical memory. Semi-Space 
requires double the memory space.

• For long lived objects, the heap becomes 
similar to “generational collector”.

• Improve locality.

• Other algorithms have only one path.

Tuesday, February 7, 12



How to Compare

• Variable sized objects?

• Directions?

• Have to tag pointer data?

• Time and Space Performance.

Tuesday, February 7, 12



Time Comparison

Tuesday, February 7, 12


