
A Non-recursive List Compacting
Algorithm

C. J. CHENEY

Thursday, February 9, 12

Introduction

‣Recursive list compacting algorithms presented by
- Hansen
- Fenichel and Yochelson

‣Chenny presents a Non-recursive list compacting algorithm
- The function COPYLIST copies list in the CDR direction
- List pointers copied without transformation
- Perform a linear scan of the new list area
- When a list pointer is encountered invoke COPYLIST to copy the sublist

2

Thursday, February 9, 12

Cheney’s Algorithm
3

A B CHEAD

Thursday, February 9, 12

A B CHEAD

HEAD

A B CHEAD

SCAN NEXT

old list
area

new list
area

Thursday, February 9, 12

HEAD

A B CHEAD

SCAN NEXT

old list
area

new list
area

HEAD

A B CHEAD

SCAN NEXT

old list
area

new list
area

Thursday, February 9, 12

HEAD

A B CHEAD

SCAN NEXT

old list
area

new list
area

HEAD

A B CHEAD

SCAN
NEXT

old list
area

new list
area

Thursday, February 9, 12

Questions?

‣What’s the importance in having a non-recursive algorithm?

7

Thursday, February 9, 12

List Processing in Real Time on a
Serial Computer

Henry G. Baker Jr.

Thursday, February 9, 12

Problem Statement

‣Three main problems with list processing systems
- Usually interpreted hence slow
- Used inefficient storage structure
- Long pauses for GC (Could be days for large Database programs)

‣First two issues can be fixed by compiling

‣Paper targets third problem

9

Thursday, February 9, 12

Solution

‣ Baker’s algorithm (SRT - Serial Real-Time)

‣ Based on MFYCA’s (Minsky-Feinchel-Yochelson-Cheney-

Arnborg) algorithm

‣ Basic idea: Do a little copying during each cons, rather than

a lot of copying infrequently

‣ Real-time: all operations in O(1) time

‣ Pretty good space efficiency

10

Thursday, February 9, 12

MFYCA algorithm

‣A semispace copying algorithm

‣Requires only one pass

‣Does not require a collector stack
- Avoided through the use of S (Scan) and B (Bottom) pointers

‣Program sees addresses in to space

11

Thursday, February 9, 12

MFYCA: Initial (Post Flip)
12

Thursday, February 9, 12

MFYCA: Copy Registers
13

Thursday, February 9, 12

MFYCA: Copying
14

Thursday, February 9, 12

MFYCA: Done
15

Thursday, February 9, 12

Baker’s Algorithm

‣When tospace fills up, do a flip and copy only roots

‣At each CONS, perform k iterations of the GC loop from

MFYCA

‣Both semispaces now contain accessible cells

‣Pretend GC completed at time of last flip

‣Modify CAR, CDR: Follow forwarding addresses, move cells

found in from space and update pointers

‣New cells placed at top of To Space

16

Thursday, February 9, 12

Baker’s Algorithm

‣CAR, CDR can move cells before the collector has traced it
- Does that matter?

‣How about REPLACA and RPLACD?
- REPLACA(p,q) - Suppose p is already traced and q is not
- REPLACA(p,q) - Suppose q is already traced and q is not
- REPLACA(p,q) - Suppose both traced or both not traced

17

Thursday, February 9, 12

Space requirements

‣N - Number of accessible nodes

‣k - Cells traced per CONS

‣Maximum storage required <= N (2 + 2/k)

‣Space can be reduced using CDR-coding

18

Thursday, February 9, 12

Space requirements

‣Tradeoff between space and CONS speed by varying k

‣For k > 4 space saving become insignificant
- Doubling k = 8 gives 10% savings bit doubles cons time

‣Can even make k < 1
- With k = 1/3 need 4N storage but cons is much faster

‣How about changing k dynamically?

19

Thursday, February 9, 12

Can we bound all operation?

‣How do we handle user stacks?
- Can grow to a unbounded size (in theory)

‣Can we have a bound on ARRAY-CONS and array accessing

function?
- Doubling k = 8 gives 10% savings bit doubles cons time

‣Hash Tables?

20

Thursday, February 9, 12

Limitations

‣Virtual memory machines not supported
- Cannot guarantee constant time

‣Arbitrary size arrays not supported

‣Multiple processes?

21

Thursday, February 9, 12

Discussion

‣Paper focus a great deal on space requirement

‣Size of working set?

‣The “graph” of objects is traversed in breadth-first order
- True for both MFYCA and Baker
- What does this mean for locality?

‣Read barrier overhead?

22

Thursday, February 9, 12

Conclusions

‣Modification to MFYCA

‣Real-time: all operations constant time

‣Space efficiency and flexibility: can choose k for space-time

tradeoff

‣Proof: Correct and doesn’t run out of space when it shouldn’t

23

Thursday, February 9, 12

Conclusions

‣Modification to MFYCA

‣Real-time: all operations constant time

‣Space efficiency and flexibility: can choose k for space-time

tradeoff

‣Proof: Correct and doesn’t run out of space when it shouldn’t

24

Thursday, February 9, 12

