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Introduction

‣Recursive list compacting algorithms presented by
- Hansen
- Fenichel and Yochelson

‣Chenny presents a Non-recursive list compacting algorithm
- The function COPYLIST copies list in the CDR direction
- List pointers copied without transformation
- Perform a linear scan of the new list area 
- When a list pointer is encountered invoke COPYLIST to copy the sublist
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Cheney’s Algorithm
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Questions?

‣What’s the importance in having a non-recursive algorithm?
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List Processing in Real Time on a 
Serial Computer

Henry G. Baker Jr.
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Problem Statement

‣Three main problems with list processing systems
- Usually interpreted hence slow
- Used inefficient storage structure
- Long pauses for GC (Could be days for large Database programs)

‣First two issues can be fixed by compiling

‣Paper targets third problem
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Solution

‣  Baker’s algorithm (SRT - Serial Real-Time)

‣ Based on MFYCA’s (Minsky-Feinchel-Yochelson-Cheney-

Arnborg) algorithm

‣ Basic idea: Do a little copying during each cons, rather than 

a lot of copying infrequently

‣ Real-time: all operations in O(1) time

‣ Pretty good space efficiency
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MFYCA algorithm

‣A semispace copying algorithm

‣Requires only one pass

‣Does not require a collector stack
- Avoided through the use of S (Scan) and B (Bottom) pointers

‣Program sees addresses in to space
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MFYCA: Initial (Post Flip)
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MFYCA: Copy Registers
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MFYCA: Copying
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MFYCA: Done
15

Thursday, February 9, 12



Baker’s Algorithm

‣When tospace fills up, do a flip and copy only roots

‣At each CONS, perform k iterations of the  GC loop from 

MFYCA

‣Both semispaces now contain accessible  cells

‣Pretend GC completed at time of last flip

‣Modify CAR, CDR: Follow forwarding  addresses, move cells 

found in from space  and update pointers

‣New cells placed at top of To Space
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Baker’s Algorithm

‣CAR, CDR can move cells before the collector has traced it 
- Does that matter?

‣How about REPLACA and RPLACD?
- REPLACA(p,q) -  Suppose p is already traced and q is not
- REPLACA(p,q) -  Suppose q is already traced and q is not
- REPLACA(p,q) -  Suppose both traced or both not traced

17

Thursday, February 9, 12



Space requirements

‣N - Number of accessible nodes

‣k - Cells traced per CONS

‣Maximum storage required <= N (2 + 2/k)

‣Space can be reduced using CDR-coding
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Space requirements

‣Tradeoff between space and CONS speed by varying k

‣For k > 4 space saving become insignificant
- Doubling k = 8 gives 10% savings bit doubles cons time

‣Can even make k < 1
- With k = 1/3 need 4N storage but cons is much faster

‣How about changing k dynamically?
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Can we bound all operation?

‣How do we handle user stacks?
- Can grow to a unbounded size (in theory)

‣Can we have a bound on ARRAY-CONS and array accessing 

function?
- Doubling k = 8 gives 10% savings bit doubles cons time

‣Hash Tables?
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Limitations

‣Virtual memory machines not supported
- Cannot guarantee constant time

‣Arbitrary size arrays not supported

‣Multiple processes?
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Discussion

‣Paper focus a great deal on space requirement

‣Size of working set?

‣The “graph” of objects is traversed in breadth-first order
- True for both MFYCA and Baker 
- What does this mean for locality?

‣Read barrier overhead?
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Conclusions

‣Modification to MFYCA 

‣Real-time: all operations constant time

‣Space efficiency and flexibility: can choose k for space-time 

tradeoff

‣Proof: Correct and doesn’t run out of space when it shouldn’t
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