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– Traversing the graph uses substantial space
– List elements must smaller than 1 word
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3 main techniques at this point
● Manual memory management
● Reference counting
● Tracing GC (mark and sweep)

Improve mark and sweep GC
● No extra space to traverse
● Heterogeneous objects handled
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Improving Mark and Sweep

How can we reduce the space taken by M&S?
– Where does the space go?
– Maintaining current traversal state

Idea:
– Maintain the current traversal state by modifying the 

graph pointers!

Better intuition from David Gries' lecture notes, 2006
Published, 1979
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How can we get to B?
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We've reached the end!
Return along pointers.
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B holds a sublist.
We have to traverse it now!
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Improving Mark and Sweep
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G has already been marked,
so return.
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Improving Mark and Sweep

● Reverse pointers to implicitly store the 'stack' in 
the graph itself!

A B C D

E F G H



  

Evaluation

● Run on complete binary tree (20,000 nodes)
– Schorr & Waite: 1.85 seconds
– Wilkes: 2.75 seconds
– DFS, stack size 48: 0.448 seconds

● Throughput? Real world scenarios?



  

Heterogeneous Lists

● Multiple words for an atom?
– Use another prefix bit to identify
– Store the number of words in the first word

● Full word atoms? (negative numbers)
– Treat like multi-word atoms...
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Questions

● How general is it, really?
– Wikipedia: IBM 7094
– Are all of the mark bits necessary?

● What if you have more than 2 outgoing edges 
per node?
– Implications in other designs?

● How appropriate is the evaluation?



Myths and realities: The 
performance impact of garbage 

collection
(3.0-3.1)

Blackburn, Cheng, & McKinley
 SIGMETRICS, 2004



  

Background

● Implemented several MM policies
– allocation scheme + collection scheme

● Allocation
– Contiguous (bump pointers)
– Free list (size segregated)

● Collection
– Tracing
– Reference counting

● Whole heap v. Generational



  

Contrasting GC Counterparts
Original Generational

SemiSpace
(copying)

Contiguous + tracing
Use two regions, allocate in R1
Copy to R2 when full.
O(Live objects)

MarkSweep

Free list + tracing
Mark and lazily collect on 
allocation
O(Live objects)

RefCount

Free list + reference counting
Deferred (coalesced) counting
Trial deletion for cycles
O(Dead objects) + mutator load
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SemiSpace
(copying)

Contiguous + tracing
Use two regions, allocate in R1
Copy to R2 when full.
O(Live objects)

MarkSweep

Free list + tracing
Mark and lazily collect on 
allocation
O(Live objects)

RefCount

Free list + reference counting
Deferred (coalesced) counting
Trial deletion for cycles
O(Dead objects?) + mutator load

Repeatedly copies
long lived objects.

Doubles required space

Repeatedly traverses
long lived objects.

High mutator load.
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(copying)

Contiguous + tracing
Use two regions, allocate in R1.
Copy to R2 when full.
O(Live objects)

Allocate into a nursery space.
Promote survivors to mature space.
Reclaim mature only as necessary.
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Contrasting GC Counterparts
Original Generational

SemiSpace
(copying)

Contiguous + tracing
Use two regions, allocate in R1.
Copy to R2 when full.
O(Live objects)

Allocate into a nursery space.
Promote survivors to mature space.
Reclaim mature only as necessary.

(semispaces for mature as well?)

MarkSweep

Free list + tracing
Mark and lazily collect on 
allocation
O(Live objects)

Use a copy-based nursery.
Mark and sweep for mature collection.

RefCount

Free list + reference counting
Deferred counting
Trial deletion for cycles
O(Dead objects) + mutator load

Use a copy-based nursery.
Reference counts for mature space.
Eliminates counting for young objects.
Collects entire mature space.

Better locality
Uses more space

Better space usage
More fragmentation

Better space usage
More fragmentation
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contiguous allocation?
– Are they preserved when generational GC is used?

Some questions inspired by remainder of paper
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Questions

● What are the trade-offs between free lists & 
contiguous allocation?
– Are they preserved when generational GC is used?

● With the same nursery, GenCopy and GenMS 
are similar. What might this mean?

● What might the pathological cases for the 
different techniques be?
– Are they common? Reducible?

Some questions inspired by remainder of paper
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