
An efficient machine-independent
procedure for garbage collection

in various list structures

Schorr & Waite, CACM, 1967
Presented by Nick Sumner

31 Jan 2012

Background

3 main techniques at this point
● Manual memory management

Background

3 main techniques at this point
● Manual memory management
● Reference counting

Background

3 main techniques at this point
● Manual memory management
● Reference counting

– Can't handle cycles
– Onerous bookkeeping

Background

3 main techniques at this point
● Manual memory management
● Reference counting
● Tracing GC (mark and sweep)

Background

3 main techniques at this point
● Manual memory management
● Reference counting
● Tracing GC (mark and sweep)

Background

3 main techniques at this point
● Manual memory management
● Reference counting
● Tracing GC (mark and sweep)

Background

3 main techniques at this point
● Manual memory management
● Reference counting
● Tracing GC (mark and sweep)

– Traversing the graph uses substantial space
– List elements must smaller than 1 word

Background

3 main techniques at this point
● Manual memory management
● Reference counting
● Tracing GC (mark and sweep)

Improve mark and sweep GC

Background

3 main techniques at this point
● Manual memory management
● Reference counting
● Tracing GC (mark and sweep)

Improve mark and sweep GC
● No extra space to traverse
● Heterogeneous objects handled

Improving Mark and Sweep

How can we reduce the space taken by M&S?
– Where does the space go?
– Maintaining current traversal state

Improving Mark and Sweep

How can we reduce the space taken by M&S?
– Where does the space go?
– Maintaining current traversal state

A B C D

E F G H

Improving Mark and Sweep

How can we reduce the space taken by M&S?
– Where does the space go?
– Maintaining current traversal state

A B C D

E F G H

A

B

C

G

Improving Mark and Sweep

How can we reduce the space taken by M&S?
– Where does the space go?
– Maintaining current traversal state

Idea:
– Maintain the current traversal state by modifying the

graph pointers!

Better intuition from David Gries' lecture notes, 2006
Published, 1979

Improving Mark and Sweep

A B C D

E F G H

Improving Mark and Sweep

A B C D

E F G H

How can we get to B?

Improving Mark and Sweep

A B C D

E F G H

Improving Mark and Sweep

A B C D

E F G H

Improving Mark and Sweep

A B C D

E F G H

We've reached the end!
Return along pointers.

Improving Mark and Sweep

A B C D

E F G H

Improving Mark and Sweep

A B C D

E F G H

B holds a sublist.
We have to traverse it now!

Improving Mark and Sweep

A B C D

E F G H

Improving Mark and Sweep

A B C D

E F G H

Improving Mark and Sweep

A B C D

E F G H

G has already been marked,
so return.

Improving Mark and Sweep

A B C D

E F G H

Improving Mark and Sweep

A B C D

E F G H

Improving Mark and Sweep

A B C D

E F G H

Improving Mark and Sweep

● Reverse pointers to implicitly store the 'stack' in
the graph itself!

A B C D

E F G H

Evaluation

● Run on complete binary tree (20,000 nodes)
– Schorr & Waite: 1.85 seconds
– Wilkes: 2.75 seconds
– DFS, stack size 48: 0.448 seconds

● Throughput? Real world scenarios?

Heterogeneous Lists

● Multiple words for an atom?
– Use another prefix bit to identify
– Store the number of words in the first word

● Full word atoms? (negative numbers)
– Treat like multi-word atoms...

Questions

● How general is it, really?
– Wikipedia: IBM 7094
– Are all of the mark bits necessary?

Questions

● How general is it, really?
– Wikipedia: IBM 7094
– Are all of the mark bits necessary?

● What if you have more than 2 outgoing edges
per node?
– Implications in other designs?

Questions

● How general is it, really?
– Wikipedia: IBM 7094
– Are all of the mark bits necessary?

● What if you have more than 2 outgoing edges
per node?
– Implications in other designs?

● How appropriate is the evaluation?

Myths and realities: The
performance impact of garbage

collection
(3.0-3.1)

Blackburn, Cheng, & McKinley
 SIGMETRICS, 2004

Background

● Implemented several MM policies
– allocation scheme + collection scheme

● Allocation
– Contiguous (bump pointers)
– Free list (size segregated)

● Collection
– Tracing
– Reference counting

● Whole heap v. Generational

Contrasting GC Counterparts
Original Generational

SemiSpace
(copying)

Contiguous + tracing
Use two regions, allocate in R1
Copy to R2 when full.
O(Live objects)

MarkSweep

Free list + tracing
Mark and lazily collect on
allocation
O(Live objects)

RefCount

Free list + reference counting
Deferred (coalesced) counting
Trial deletion for cycles
O(Dead objects) + mutator load

Contrasting GC Counterparts
Original Generational

SemiSpace
(copying)

Contiguous + tracing
Use two regions, allocate in R1
Copy to R2 when full.
O(Live objects)

MarkSweep

Free list + tracing
Mark and lazily collect on
allocation
O(Live objects)

RefCount

Free list + reference counting
Deferred (coalesced) counting
Trial deletion for cycles
O(Dead objects?) + mutator load

Repeatedly copies
long lived objects.

Doubles required space

Repeatedly traverses
long lived objects.

High mutator load.

Contrasting GC Counterparts
Original Generational

SemiSpace
(copying)

Contiguous + tracing
Use two regions, allocate in R1.
Copy to R2 when full.
O(Live objects)

Allocate into a nursery space.
Promote survivors to mature space.
Reclaim mature only as necessary.

(semispaces for mature as well?)

MarkSweep

Free list + tracing
Mark and lazily collect on
allocation
O(Live objects)

Use a copy-based nursery.
Mark and sweep for mature collection.

RefCount

Free list + reference counting
Deferred (coalesced) counting
Trial deletion for cycles
O(Dead objects) + mutator load

Use a copy-based nursery.
Reference counts for mature space.
Eliminates counting for young objects.
Collects entire mature space.

Contrasting GC Counterparts
Original Generational

SemiSpace
(copying)

Contiguous + tracing
Use two regions, allocate in R1.
Copy to R2 when full.
O(Live objects)

Allocate into a nursery space.
Promote survivors to mature space.
Reclaim mature only as necessary.

(semispaces for mature as well?)

MarkSweep

Free list + tracing
Mark and lazily collect on
allocation
O(Live objects)

Use a copy-based nursery.
Mark and sweep for mature collection.

RefCount

Free list + reference counting
Deferred counting
Trial deletion for cycles
O(Dead objects) + mutator load

Use a copy-based nursery.
Reference counts for mature space.
Eliminates counting for young objects.
Collects entire mature space.

Better locality
Uses more space

Better space usage
More fragmentation

Better space usage
More fragmentation

Questions

● What are the trade-offs between free lists &
contiguous allocation?
– Are they preserved when generational GC is used?

Some questions inspired by remainder of paper

Questions

● What are the trade-offs between free lists &
contiguous allocation?
– Are they preserved when generational GC is used?

● With the same nursery, GenCopy and GenMS
are similar. What might this mean?

Some questions inspired by remainder of paper

Questions

● What are the trade-offs between free lists &
contiguous allocation?
– Are they preserved when generational GC is used?

● With the same nursery, GenCopy and GenMS
are similar. What might this mean?

● What might the pathological cases for the
different techniques be?
– Are they common? Reducible?

Some questions inspired by remainder of paper

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

