
Scanner

code
source tokens

errors

scanner parser IR

• maps characters into tokens – the basic unit of syntax
x = x + y;

becomes
<id, x> = <id, x> + <id, y> ;

• character string value for a token is a lexeme

• typical tokens: number, id, +, -, *, /, do, end
• eliminates white space (tabs, blanks, comments)
• a key issue is speed
) use specialized recognizer (as opposed to lex)

Copyright c�2010 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this

work for personal or classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and full citation on the first page. To

copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission

and/or fee. Request permission to publish from hosking@cs.purdue.edu.

1



Specifying patterns

A scanner must recognize the units of syntax

Some parts are easy:

white space

<ws> ::= <ws> ’ ’
| <ws> ’\t’
| ’ ’
| ’\t’

keywords and operators

specified as literal patterns: do, end

comments

opening and closing delimiters: /* · · · */

2



Specifying patterns

A scanner must recognize the units of syntax

Other parts are much harder:

identifiers

alphabetic followed by k alphanumerics ( , $, &, . . . )

numbers

integers: 0 or digit from 1-9 followed by digits from 0-9
decimals: integer ’.’ digits from 0-9
reals: (integer or decimal) ’E’ (+ or -) digits from 0-9
complex: ’(’ real ’,’ real ’)’

We need a powerful notation to specify these patterns

3



Operations on languages

Operation Definition
union of L and M L[M = {s | s 2 L or s 2M}

written L[M

concatenation of L and M LM = {st | s 2 L and t 2M}
written LM

Kleene closure of L L

⇤ =
S•

i=0 L

i

written L

⇤

positive closure of L L

+ =
S•

i=1 L

i

written L

+

4



Regular expressions

Patterns are often specified as regular languages

Notations used to describe a regular language (or a regular set) include
both regular expressions and regular grammars

Regular expressions (over an alphabet S):

1. e is a RE denoting the set {e}
2. if a 2 S, then a is a RE denoting {a}
3. if r and s are REs, denoting L(r) and L(s), then:

(r) is a RE denoting L(r)

(r) | (s) is a RE denoting L(r)
S

L(s)

(r)(s) is a RE denoting L(r)L(s)

(r)⇤ is a RE denoting L(r)⇤

If we adopt a precedence for operators, the extra parentheses can go
away. We assume closure, then concatenation, then alternation as the
order of precedence.

5



Examples

identifier
letter ! (a | b | c | ... | z | A | B |C | ... | Z)

digit ! (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)

id ! letter ( letter | digit )⇤

numbers
integer ! (+ |� | e) (0 | (1 | 2 | 3 | ... | 9) digit

⇤)

decimal ! integer . ( digit )⇤

real ! ( integer | decimal ) E (+ |�) digit

⇤

complex ! ’(’ real , real ’)’

Numbers can get much more complicated

Most programming language tokens can be described with REs

We can use REs to build scanners automatically
6



Algebraic properties of REs

Axiom Description
r|s = s|r | is commutative

r|(s|t) = (r|s)|t | is associative
(rs)t = r(st) concatenation is associative
r(s|t) = rs|rt concatenation distributes over |
(s|t)r = sr|tr

er = r e is the identity for concatenation
re = r

r

⇤ = (r|e)⇤ relation between ⇤ and e
r

⇤⇤ = r

⇤ ⇤ is idempotent

7



Examples

Let S = {a,b}

1. a|b denotes {a,b}

2. (a|b)(a|b) denotes {aa,ab,ba,bb}
i.e., (a|b)(a|b) = aa|ab|ba|bb

3. a

⇤ denotes {e,a,aa,aaa, . . .}

4. (a|b)⇤ denotes the set of all strings of a’s and b’s (including e)
i.e., (a|b)⇤ = (a⇤b⇤)⇤

5. a|a⇤b denotes {a,b,ab,aab,aaab,aaaab, . . .}

8



Recognizers

From a regular expression we can construct a

deterministic finite automaton (DFA)

Recognizer for identifier :

0 21

3

digit
other

letter

digit
letter

other

error

accept

identifier

letter ! (a | b | c | ... | z | A | B |C | ... | Z)

digit ! (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)
id ! letter ( letter | digit )⇤

9



Code for the recognizer

char  next char();
state  0; /* code for state 0 */
done  false;
token value  "" /* empty string */
while( not done ) {

class  char class[char];
state  next state[class,state];
switch(state) {

case 1: /* building an id */
token value  token value + char;
char  next char();
break;

case 2: /* accept state */
token type = identifier;
done = true;
break;

case 3: /* error */
token type = error;
done = true;
break;

}
}
return token type;

10



Tables for the recognizer

Two tables control the recognizer

char class:
a� z A�Z 0�9 other

value letter letter digit other

next state:

class 0 1 2 3
letter 1 1 — —
digit 3 1 — —
other 3 2 — —

To change languages, we can just change tables
11



Automatic construction

Scanner generators automatically construct code from RE-like
descriptions

• construct a DFA

• use state minimization techniques

• emit code for the scanner
(table driven or direct code )

A key issue in automation is an interface to the parser

lex is a scanner generator supplied with UNIX

• emits C code for scanner

• provides macro definitions for each token
(used in the parser)

12



Grammars for regular languages

Can we place a restriction on the form of a grammar to ensure that it
describes a regular language?

Provable fact:

For any RE r, 9 a grammar g such that L(r) = L(g)

Grammars that generate regular sets are called regular grammars:

They have productions in one of 2 forms:

1. A! aA

2. A! a

where A is any non-terminal and a is any terminal symbol

These are also called type 3 grammars (Chomsky)

13



More regular languages

Example: the set of strings containing an even number of zeros and an
even number of ones

s0 s1

s2 s3

1

1

0 0

1

1

0 0

The RE is (00 | 11)⇤((01 | 10)(00 | 11)⇤(01 | 10)(00 | 11)⇤)⇤

14



More regular expressions

What about the RE (a | b)⇤abb ?

s0 s1 s2 s3

a b

a b b

State s0 has multiple transitions on a!
) nondeterministic finite automaton

a b

s0 {s0,s1} {s0}
s1 – {s2}
s2 – {s3}

15



Finite automata

A non-deterministic finite automaton (NFA) consists of:

1. a set of states S = {s0, . . . ,sn

}

2. a set of input symbols S (the alphabet)

3. a transition function move mapping state-symbol pairs to sets of
states

4. a distinguished start state s0

5. a set of distinguished accepting or final states F

A Deterministic Finite Automaton (DFA) is a special case of an NFA:

1. no state has a e-transition, and

2. for each state s and input symbol a, there is at most one edge labelled
a leaving s

A DFA accepts x iff. 9 a unique path through the transition graph from s0 to
a final state such that the edges spell x.

16



DFAs and NFAs are equivalent

1. DFAs are clearly a subset of NFAs

2. Any NFA can be converted into a DFA, by simulating sets of
simultaneous states:

• each DFA state corresponds to a set of NFA states

• possible exponential blowup

17



NFA to DFA using the subset construction: example 1

s0 s1 s2 s3

a b

a b b

a b

{s0} {s0,s1} {s0}
{s0,s1} {s0,s1} {s0,s2}
{s0,s2} {s0,s1} {s0,s3}
{s0,s3} {s0,s1} {s0}

s0 s0 s1 s0 s2 s0 s3

b

a b b

b

a

a

a

18



Constructing a DFA from a regular expression

DFA

DFA

NFA

RE

minimized

movesε

RE!NFA w/e moves
build NFA for each term
connect them with e moves

NFA w/e moves to DFA
construct the simulation
the “subset” construction

DFA! minimized DFA
merge compatible states

DFA! RE
construct R

k

i j

= R

k�1
ik

(Rk�1
kk

)⇤Rk�1
k j

S
R

k�1
i j

19



RE to NFA

N(e) ε

N(a)
a

N(A|B)
ε

AN(A)

N(B) B

ε

εε

N(AB) AN(A) N(B) B

N(A⇤)

ε

AN(A)

ε

ε ε

20



RE to NFA: example

a|b 1

2 3

6

4 5

ε

ε ε

ε

a

b

(a|b)⇤ 0 1

2 3

6

4 5

7
ε

ε

ε ε

ε

ε

a

b

ε

ε

abb

7 8 9 10
a b b

21



NFA to DFA: the subset construction

Input: NFA N

Output: A DFA D with states Dstates and transitions Dtrans such that L(D) = L(N)
Method: Let s be a state in N and T be a set of states, and using the following operations:

Operation Definition
e-closure(s) set of NFA states reachable from NFA state s on e-transitions

alone
e-closure(T ) set of NFA states reachable from some NFA state s in T on

e-transitions alone
move(T,a) set of NFA states to which there is a transition on input symbol

a from some NFA state s in T

add state T = e-closure(s0) unmarked to Dstates

while 9 unmarked state T in Dstates

mark T

for each input symbol a

U = e-closure(move(T,a))
if U 62 Dstates then add U to Dstates unmarked
Dtrans[T,a] =U

endfor
endwhile

e-closure(s0) is the start state of D

A state of D is final if it contains at least one final state in N

22



NFA to DFA using subset construction: example 2

0 1

2 3

6

4 5

7
ε

ε

ε ε

ε

ε

a

b

ε

ε

8 9 10
a b b

A = {0,1,2,4,7} D = {1,2,4,5,6,7,9}
B = {1,2,3,4,6,7,8} E = {1,2,4,5,6,7,10}
C = {1,2,4,5,6,7}

a b

A B C

B B D

C B C

D B E

E B C

A B

C

D E

b

a b b

a

a

a

a

b

b

23



Limits of regular languages

Not all languages are regular

One cannot construct DFAs to recognize these languages:

• L = {p

k

q

k}

• L = {wcw

r | w 2 S⇤}

Note: neither of these is a regular expression!

(DFAs cannot count!)

But, this is a little subtle. One can construct DFAs for:

• alternating 0’s and 1’s
(e | 1)(01)⇤(e | 0)

• sets of pairs of 0’s and 1’s
(01 | 10)+

24



So what is hard?

Language features that can cause problems:

reserved words

PL/I had no reserved words
if then then then = else; else else = then;

significant blanks

FORTRAN and Algol68 ignore blanks
do 10 i = 1,25
do 10 i = 1.25

string constants

special characters in strings
newline, tab, quote, comment delimiter

finite closures

some languages limit identifier lengths
adds states to count length
FORTRAN 66! 6 characters

These can be swept under the rug in the language design

25



How bad can it get?

1 INTEGERFUNCTIONA
2 PARAMETER(A=6,B=2)
3 IMPLICIT CHARACTER*(A-B)(A-B)
4 INTEGER FORMAT(10),IF(10),DO9E1
5 100 FORMAT(4H)=(3)
6 200 FORMAT(4 )=(3)
7 DO9E1=1
8 DO9E1=1,2
9 IF(X)=1
10 IF(X)H=1
11 IF(X)300,200
12 300 CONTINUE
13 END

C this is a comment
$ FILE(1)

14 END

Example due to Dr. F.K. Zadeck of IBM Corporation

26



Scanning MiniJava

White space:

• ’ ’, ’\t’, ’\n’, ’\r’, ’\f’

Tokens:

• Operators, keywords (straightforward; I’ve done them for you)

• Identifiers (straightforward)

• Integers (straightforward)

• Strings (tricky for escapes)

27


