
Scanner

code
source tokens

errors

scanner parser IR

• maps characters into tokens – the basic unit of syntax
x = x + y;

becomes
<id, x> = <id, x> + <id, y> ;

• character string value for a token is a lexeme

• typical tokens: number, id, +, -, *, /, do, end
• eliminates white space (tabs, blanks, comments)
• a key issue is speed
) use specialized recognizer (as opposed to lex)
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Specifying patterns

A scanner must recognize the units of syntax

Some parts are easy:

white space

<ws> ::= <ws> ’ ’
| <ws> ’\t’
| ’ ’
| ’\t’

keywords and operators

specified as literal patterns: do, end

comments

opening and closing delimiters: /* · · · */
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Specifying patterns

A scanner must recognize the units of syntax

Other parts are much harder:

identifiers

alphabetic followed by k alphanumerics ( , $, &, . . . )

numbers

integers: 0 or digit from 1-9 followed by digits from 0-9
decimals: integer ’.’ digits from 0-9
reals: (integer or decimal) ’E’ (+ or -) digits from 0-9
complex: ’(’ real ’,’ real ’)’

We need a powerful notation to specify these patterns
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Operations on languages

Operation Definition
union of L and M L[M = {s | s 2 L or s 2M}

written L[M

concatenation of L and M LM = {st | s 2 L and t 2M}
written LM

Kleene closure of L L

⇤ =
S•

i=0 L

i

written L

⇤

positive closure of L L

+ =
S•

i=1 L

i

written L

+
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Regular expressions

Patterns are often specified as regular languages

Notations used to describe a regular language (or a regular set) include
both regular expressions and regular grammars

Regular expressions (over an alphabet S):

1. e is a RE denoting the set {e}
2. if a 2 S, then a is a RE denoting {a}
3. if r and s are REs, denoting L(r) and L(s), then:

(r) is a RE denoting L(r)

(r) | (s) is a RE denoting L(r)
S

L(s)

(r)(s) is a RE denoting L(r)L(s)

(r)⇤ is a RE denoting L(r)⇤

If we adopt a precedence for operators, the extra parentheses can go
away. We assume closure, then concatenation, then alternation as the
order of precedence.
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Examples

identifier
letter ! (a | b | c | ... | z | A | B |C | ... | Z)

digit ! (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)

id ! letter ( letter | digit )⇤

numbers
integer ! (+ |� | e) (0 | (1 | 2 | 3 | ... | 9) digit

⇤)

decimal ! integer . ( digit )⇤

real ! ( integer | decimal ) E (+ |�) digit

⇤

complex ! ’(’ real , real ’)’

Numbers can get much more complicated

Most programming language tokens can be described with REs

We can use REs to build scanners automatically
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Algebraic properties of REs

Axiom Description
r|s = s|r | is commutative

r|(s|t) = (r|s)|t | is associative
(rs)t = r(st) concatenation is associative
r(s|t) = rs|rt concatenation distributes over |
(s|t)r = sr|tr

er = r e is the identity for concatenation
re = r

r

⇤ = (r|e)⇤ relation between ⇤ and e
r

⇤⇤ = r

⇤ ⇤ is idempotent
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Examples

Let S = {a,b}

1. a|b denotes {a,b}

2. (a|b)(a|b) denotes {aa,ab,ba,bb}
i.e., (a|b)(a|b) = aa|ab|ba|bb

3. a

⇤ denotes {e,a,aa,aaa, . . .}

4. (a|b)⇤ denotes the set of all strings of a’s and b’s (including e)
i.e., (a|b)⇤ = (a⇤b⇤)⇤

5. a|a⇤b denotes {a,b,ab,aab,aaab,aaaab, . . .}
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Recognizers

From a regular expression we can construct a

deterministic finite automaton (DFA)

Recognizer for identifier :

0 21

3

digit
other

letter

digit
letter

other

error

accept

identifier

letter ! (a | b | c | ... | z | A | B |C | ... | Z)

digit ! (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)
id ! letter ( letter | digit )⇤
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Code for the recognizer

char  next char();
state  0; /* code for state 0 */
done  false;
token value  "" /* empty string */
while( not done ) {

class  char class[char];
state  next state[class,state];
switch(state) {

case 1: /* building an id */
token value  token value + char;
char  next char();
break;

case 2: /* accept state */
token type = identifier;
done = true;
break;

case 3: /* error */
token type = error;
done = true;
break;

}
}
return token type;
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Tables for the recognizer

Two tables control the recognizer

char class:
a� z A�Z 0�9 other

value letter letter digit other

next state:

class 0 1 2 3
letter 1 1 — —
digit 3 1 — —
other 3 2 — —

To change languages, we can just change tables
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Automatic construction

Scanner generators automatically construct code from RE-like
descriptions

• construct a DFA

• use state minimization techniques

• emit code for the scanner
(table driven or direct code )

A key issue in automation is an interface to the parser

lex is a scanner generator supplied with UNIX

• emits C code for scanner

• provides macro definitions for each token
(used in the parser)
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Grammars for regular languages

Can we place a restriction on the form of a grammar to ensure that it
describes a regular language?

Provable fact:

For any RE r, 9 a grammar g such that L(r) = L(g)

Grammars that generate regular sets are called regular grammars:

They have productions in one of 2 forms:

1. A! aA

2. A! a

where A is any non-terminal and a is any terminal symbol

These are also called type 3 grammars (Chomsky)

13



More regular languages

Example: the set of strings containing an even number of zeros and an
even number of ones

s0 s1

s2 s3

1

1

0 0

1

1

0 0

The RE is (00 | 11)⇤((01 | 10)(00 | 11)⇤(01 | 10)(00 | 11)⇤)⇤
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More regular expressions

What about the RE (a | b)⇤abb ?

s0 s1 s2 s3

a b

a b b

State s0 has multiple transitions on a!
) nondeterministic finite automaton

a b

s0 {s0,s1} {s0}
s1 – {s2}
s2 – {s3}
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Finite automata

A non-deterministic finite automaton (NFA) consists of:

1. a set of states S = {s0, . . . ,sn

}

2. a set of input symbols S (the alphabet)

3. a transition function move mapping state-symbol pairs to sets of
states

4. a distinguished start state s0

5. a set of distinguished accepting or final states F

A Deterministic Finite Automaton (DFA) is a special case of an NFA:

1. no state has a e-transition, and

2. for each state s and input symbol a, there is at most one edge labelled
a leaving s

A DFA accepts x iff. 9 a unique path through the transition graph from s0 to
a final state such that the edges spell x.
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DFAs and NFAs are equivalent

1. DFAs are clearly a subset of NFAs

2. Any NFA can be converted into a DFA, by simulating sets of
simultaneous states:

• each DFA state corresponds to a set of NFA states

• possible exponential blowup
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NFA to DFA using the subset construction: example 1

s0 s1 s2 s3

a b

a b b

a b

{s0} {s0,s1} {s0}
{s0,s1} {s0,s1} {s0,s2}
{s0,s2} {s0,s1} {s0,s3}
{s0,s3} {s0,s1} {s0}

s0 s0 s1 s0 s2 s0 s3

b

a b b

b

a

a

a
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Constructing a DFA from a regular expression

DFA

DFA

NFA

RE

minimized

movesε

RE!NFA w/e moves
build NFA for each term
connect them with e moves

NFA w/e moves to DFA
construct the simulation
the “subset” construction

DFA! minimized DFA
merge compatible states

DFA! RE
construct R

k

i j

= R

k�1
ik

(Rk�1
kk

)⇤Rk�1
k j

S
R

k�1
i j
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RE to NFA

N(e) ε

N(a)
a

N(A|B)
ε

AN(A)

N(B) B

ε

εε

N(AB) AN(A) N(B) B

N(A⇤)

ε

AN(A)

ε

ε ε
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RE to NFA: example

a|b 1

2 3

6

4 5

ε

ε ε

ε

a

b

(a|b)⇤ 0 1

2 3

6

4 5

7
ε

ε

ε ε

ε

ε

a

b

ε

ε

abb

7 8 9 10
a b b
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NFA to DFA: the subset construction

Input: NFA N

Output: A DFA D with states Dstates and transitions Dtrans such that L(D) = L(N)
Method: Let s be a state in N and T be a set of states, and using the following operations:

Operation Definition
e-closure(s) set of NFA states reachable from NFA state s on e-transitions

alone
e-closure(T ) set of NFA states reachable from some NFA state s in T on

e-transitions alone
move(T,a) set of NFA states to which there is a transition on input symbol

a from some NFA state s in T

add state T = e-closure(s0) unmarked to Dstates

while 9 unmarked state T in Dstates

mark T

for each input symbol a

U = e-closure(move(T,a))
if U 62 Dstates then add U to Dstates unmarked
Dtrans[T,a] =U

endfor
endwhile

e-closure(s0) is the start state of D

A state of D is final if it contains at least one final state in N
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NFA to DFA using subset construction: example 2

0 1

2 3

6

4 5

7
ε

ε

ε ε

ε

ε

a

b

ε

ε

8 9 10
a b b

A = {0,1,2,4,7} D = {1,2,4,5,6,7,9}
B = {1,2,3,4,6,7,8} E = {1,2,4,5,6,7,10}
C = {1,2,4,5,6,7}

a b

A B C

B B D

C B C

D B E

E B C

A B

C

D E

b

a b b

a

a

a

a

b

b
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Limits of regular languages

Not all languages are regular

One cannot construct DFAs to recognize these languages:

• L = {p

k

q

k}

• L = {wcw

r | w 2 S⇤}

Note: neither of these is a regular expression!

(DFAs cannot count!)

But, this is a little subtle. One can construct DFAs for:

• alternating 0’s and 1’s
(e | 1)(01)⇤(e | 0)

• sets of pairs of 0’s and 1’s
(01 | 10)+
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So what is hard?

Language features that can cause problems:

reserved words

PL/I had no reserved words
if then then then = else; else else = then;

significant blanks

FORTRAN and Algol68 ignore blanks
do 10 i = 1,25
do 10 i = 1.25

string constants

special characters in strings
newline, tab, quote, comment delimiter

finite closures

some languages limit identifier lengths
adds states to count length
FORTRAN 66! 6 characters

These can be swept under the rug in the language design
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How bad can it get?

1 INTEGERFUNCTIONA
2 PARAMETER(A=6,B=2)
3 IMPLICIT CHARACTER*(A-B)(A-B)
4 INTEGER FORMAT(10),IF(10),DO9E1
5 100 FORMAT(4H)=(3)
6 200 FORMAT(4 )=(3)
7 DO9E1=1
8 DO9E1=1,2
9 IF(X)=1
10 IF(X)H=1
11 IF(X)300,200
12 300 CONTINUE
13 END

C this is a comment
$ FILE(1)

14 END

Example due to Dr. F.K. Zadeck of IBM Corporation
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Scanning MiniJava

White space:

• ’ ’, ’\t’, ’\n’, ’\r’, ’\f’

Tokens:

• Operators, keywords (straightforward; I’ve done them for you)

• Identifiers (straightforward)

• Integers (straightforward)

• Strings (tricky for escapes)
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