
A Non-Fragmenting Non-Moving, Garbage Collector
Gustavo Rodriguez-Rivera Michael Spertus

Geodesic Systems
414 North Orleans Street, Suite 410

Chicago, IL 60610
Tel. (312) 832-1221

{grr, mps, cef}@geodesic.com

Charles Fiterman

1. ABSTRACT
One of the biggest disadvantages of non-
moving collectors compared to moving
collectors has been their limited ability to deal
with memory fragmentation. In this paper, we
describe two techniques to reduce
fragmentation without the need for moving
live data. The first technique reduces internal
fragmentation in BiBoP (Big-Bag-of-Pages)
like allocators. The second technique reduces
external fragmentation using virtual memory
calls available in most modern operating
systems. It can also reduce the size of the heap
after periods of great activity in long lived
applications. These techniques have been
successfully used in Geodesic Systems’ Great
Circle, a commercially-available conservative
garbage collector. This paper describes these
techniques, their implementation, and some
experimental results.

1.1 Keywords
Memory allocation, garbage collection, fragmentation,
conservative garbage collection, non-copying garbage
collection

2. INTRODUCTION
Moving garbage collectors (i.e. copying and compacting
garbage collectors [5, 8]) eliminate fragmentation by

moving live data and leaving all free space in consecutive
locations. Non-moving collectors are unable to move live
data, and therefore free memory is interleaved with holes
of live memory. This causes that some requests for free
memory will not be satisfied with the available free
memory because it is not in consecutive locations, even
though the total free memory could be greater than the
amount requested.

Moving-collectors can solve the fragmentation problem
[12]. Unfortunately, moving collectors can not be used in
environments where no accurate pointer information is
available, since pointers in live objects have to be updated
when the objects they point to, are moved. For example,
off-the-shelf C and C++ compilers do not give accurate
pointer information. Some work has been done to obtain
pointer information of C programs from the debugging
information [13], however their use is limited since C and
C++ can store pointer values in non-pointer types, and
keeping track of pointer information at execution time is
difficult.

Conservative garbage collection [4] also has some
problems when combined with moving garbage collection.
Conservative garbage collection considers every valid
memory address that is word-aligned and that points to a
valid object as a real pointer. Conservative garbage
collectors are safe because a superset of the pointers in live
objects is always used during the collections and no live
memory is ever reclaimed. However, an arbitrary sequence
of bytes that happens to be word-aligned and that points to
a valid object can be erroneously interpreted as a pointer
causing memory retention. This sequence of bytes, called a
false pointer, is not detrimental, since retention of garbage
is benign as long as it is not excessive. A moving garbage
collector needs to update the pointers in live objects to
reflect the new location of the moved objects they point to.
However, a moving garbage collector can not move live
objects detected by conservative garbage collection
scanning because false pointers may be erroneously
updated causing unpredictable results in the program.
Some moving collectors deal with this problem by pinning
objects that are pointed by pointers that were found using
conservative pointer finding [1, 6], i.e., objects found by
the conservative garbage collector are not moved, creating
fragmentation problems.

In this paper, we describe two techniques to reduce
fragmentation in non-moving garbage collectors. The first
technique is intended to reduce internal fragmentation in
allocators that use a BiBoP scheme (Big-Bag-of-Pages)
[4,12]. In a BiBoP allocator, the objects found in the same
page have the same characteristics. The second technique
is intended to reduce external fragmentation and uses
virtual memory primitives that can be found in most
modern operating systems.

Allocators such as the one used in Boehm’s collector [4]
divide the objects in two classes: small and large objects.
Small objects are obtained by dividing a single page in
small pieces, and large objects are the ones that use one or
more consecutive pages. In this paper, we show that by
dividing the objects in only two classes, the objects with
sizes around the page size have a large internal
fragmentation. To solve this problem, the first technique
introduces a third class called medium-objects. This class
of objects can be managed by dividing more than one
consecutive pages into small pieces, in the same way as
Boehm divides a single page, in order to reduce the
internal fragmentation. We have called this class of objects
medium-objects.

Most modern operating systems have virtual memory
operations that allow mapping of uncommitted memory
that only reserves address space, but do not reserve swap
space, and allow committing or de-committing swap space
at run-time.

The basic idea of the second technique is to de-commit
swap space for those sections of the free list that are too
fragmented to be used for allocations, and to reuse this
swap space in a consecutive area in the address space. In
effect, this technique provides many of the benefits of
moving garbage collection by virtually moving the free
data rather than the live data.

In addition, this technique allows returning to the
operating systems parts of the heap that were used during
periods of heavy allocation and that are no longer used.
We will refer to this technique as footprint reduction.

Both medium objects and footprint reduction have been
implemented in a variation of Boehm’s conservative
garbage collection library [4] called Great Circle. Great
Circle is a commercially-available garbage collection
library from Geodesic Systems.

The ideas presented here are explained in the context of
garbage collection. However, they can also be applied to
any general-purpose memory allocator that does not use
garbage collection.

The paper is organized as follows. The first section
introduces Great Circle and medium objects. The second
section explains the footprint reduction mechanism.
Finally, some experimental results are shown.

3. MEDIUM OBJECTS
The first technique, called medium objects, is designed to
reduce internal fragmentation. It is based on the
observation that small objects that do not fit evenly into a
page have high internal fragmentation, while large objects
that are slightly larger than a page boundary lead to
significant internal fragmentation in the page-based large
object allocator as well. The high internal fragmentation
associated with both large small objects and small large
objects suggest that one should create an intermediate class
of medium objects.

The memory allocator of Great Circle divides the objects
in three classes: small, medium, and large objects. Small
objects are objects that are obtained by dividing a single
page in small pieces. Medium objects are objects that are
allocated by dividing multiple consecutive pages in pieces.
Large objects are objects that are a multiple of a page-size.

The small and medium object allocator consists of buckets
of objects for each size, called segregated free lists [14].
Great Circle pre-computes the sizes of small and medium
objects and makes sure that the maximum fragmentation
for each object size is less than some pre-specified
constant. The large object allocator is a single list of
objects ordered by address to allow coalescing.

When a small or medium object is requested, an object is
returned from the corresponding bucket. If the
corresponding bucket is empty, the allocator will request
one or more pages from the large object allocator, divide
them into pieces and put the objects in the corresponding
bucket. The allocator satisfies requests for large objects by
returning the first block available in the free list. A search
for a block in the free list starts where the previous one
ended.

The allocator uses a BiBoP scheme to get the information
of the objects. Each page has a page information structure
that contains the size of the objects stored in that page. A
page stores only objects of the same size, and therefore,
given a pointer to the object, it is possible to find out the
starting address and the size of the object.

In Boehm’s allocator, objects are only divided in small and
large with no medium objects. The main drawback of this
approach is that the maximum internal fragmentation of
objects a few bytes larger than a page size, or a few bytes
larger than half a page size is very large. Since we found
that these allocation sizes happen to be the common case
for many applications, we decided to add medium objects
that result from dividing multiple consecutive pages in
small pieces.

For example, let us assume that there is a request to
allocate an object of 2050 bytes in a system that has a page
size of 4096. An allocator that uses only small and large
objects will return an object of 4096 bytes because it is the
next object size after 2048 bytes. An allocator that uses

medium objects can divide two consecutive pages in 3
objects of size 2730 bytes (plus 2 spare bytes that cannot be
divided), and return one of these objects. In the first case,
2046 bytes are wasted, and in the second case only 680

bytes are wasted.

The internal fragmentation is the percentage of wasted
space for a given object size. It can be computed by
subtracting the requested object size from the real size of
the object returned by the allocator and dividing the result
by the real size.

% Fragmentation =

100.0 * (realSize – requestedSize) /realSize

Figure 1 and 2 show the internal fragmentation for
different object sizes. Figure 1 shows the fragmentation
when only large and small objects are used, and figure 2
graph shows the fragmentation when besides large and

small objects, medium objects are also used. In both cases,
the page size is 4096 bytes. The object size axis uses
logarithmic scale. The internal fragmentation for small
objects is about the same in both graphs. The initial peaks
for the smallest objects are caused by the initial object sizes
that are four and eight bytes. These sizes are chosen
because of alignment limitations in the architecture used.
In the Sparc architecture, objects larger than 8 bytes have
to be aligned to 8 byte boundaries to make sure that they
can store double types. In the Sparc architecture, double

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000

Object Size (bytes)

%
 In

te
rn

al
 F

ra
g

m
en

ta
ti

o
n

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000

Object Size (bytes)

%
 In

te
rn

al
 F

ra
g

m
en

ta
ti

o
n

Figure 1. Fragmentation of allocator with only small and large objects

Figure 2. Fragmentation of allocator with small, medium, and large objects

types are aligned to 8 byte boundaries, and pointer types
are aligned to 4 byte boundaries. Nothing can be done to
reduce the fragmentation for these sizes.

For sizes around a page size, the fragmentation of the
allocator without medium objects is excessive and reaches
50%. Especially at sizes 2049 and 4097 bytes (one byte
after half the page size and one byte after the page size)
the fragmentation reaches 50%. With medium objects
however, the internal fragmentation for these sizes is
bounded to 20%.

The savings in space that medium-objects give is
important for applications that allocate objects around
these sizes. We have seen that this is the common case for
many applications.

4. FOOTPRINT REDUCTION
The second technique, called footprint reduction, is
designed to reduce external fragmentation. It is used to
reduce the fragmentation in the free list of large objects.
Notice that the small and medium object allocators are
relatively unaffected by external fragmentation, because
the free elements in a small or medium object allocator are
always large enough to satisfy an allocation request. In
addition, footprint reduction can decommit pages in the
free list, allowing long-running programs to reduce their
swap-space requirements when their memory requirements
decrease.

Footprint reduction is based on the observation that
moving collectors make the free data contiguous by
moving the live data. However, one can more easily make
the free data contiguous by moving the free data. This
provides a major defragmentation benefit of moving
collection without the complexity, restrictions, or expense
of moving data and updating pointers.

In footprint reduction, the swap space of the pages that
make the free list unusable is decommitted. Later this swap
space can be recommitted somewhere else in the address
space where these pages can be consecutive.

Figure 3 shows how footprint reduction works. On the left
side, there is a representation of the heap in virtual
memory and in physical memory. The heap consists of
four pages with live objects, three pages with free objects,

and three pages that are uncommitted, i.e., that do not
have swap space or physical memory assigned. The three
free pages are not consecutive, and therefore a request to
the allocator for a three-page object will not be able to be
satisfied with the available free pages. Footprint reduction
de-commits the three free non-consecutive pages and
commits the three uncommitted consecutive pages at the
end of the heap. In this way, the request can be satisfied
using the same amount of swap space. This is shown in the
right side of the figure.

To implement footprint reduction, the pages of the heap
are represented by an array of bytes called page-flags,

Pages of Heap in
Virtual Memory

Pages of Heap in
Virtual Memory

L

L

F

F

L

F

L

U

U

U

1

2

3

4

5

6

7

Pages of Heap in Physical
Memory/Swap Space

L

L

U

U

L

U

L

F

F

F

1

2

3

4

5

6

7

Pages of Heap in Physical
Memory/Swap Space

Footprint
Reduction

L Live F Free U Uncommitted

Figure 3. Footprint reduction example

where each byte represents a page. Every bit in a byte
represents a different characteristic of the page. For
footprint reduction, only three bits in each byte are used:
committed-bit, free-bit, and recently used-bit.

At initialization time, the allocator memory maps a large
sequence of pages, called arena, of uncommitted memory,
i.e. only address space in the arena is reserved but no swap
space is committed. This means that no other memory map
operation will return a page in this range since address
space is reserved. However, since no swap space is
reserved, a memory read/write operation to a word in this
range of pages at this point in the execution of the
program may result in a segmentation violation. Finally,
page-flags are cleared.

During a memory request of a large object, if the request
cannot be satisfied with the existing objects in the free list,
the allocator will do the following. It will search in page-
flags for a range of uncommitted pages large enough in the
arena to satisfy the request or some larger amount if the
requested size is too small. Then it will call a virtual
memory operation to commit swap space for this range of
pages. The reason a larger amount is committed if the
requested size is too small is to amortize the cost of the
virtual memory operation. This range of pages is returned
to the free list and the corresponding committed-bits and
free-bits updated. Finally, the request is satisfied. If the
number of consecutive uncommitted pages in the arena is
not enough, another large group of uncommitted memory
is mapped and added to the arena.

Whenever a group of pages is returned to the free-list, the
corresponding recently used-bits and the free-bits are set.
The recently used-bits tell the allocator that the
corresponding page has been recently used and that it is

not a good candidate for footprint reduction.

During a footprint reduction, the pages that have the
recently used-bit cleared are uncommitted, i.e., the swap
space they are using is returned to the operating system
and the heap shrinks. Finally, the recently used-bit is
cleared for all the pages.

The frequency footprint reduction is executed is linked to
the activity of the allocator. In our implementation, a
footprint reduction is performed after a pre-specified
number of garbage collections. A page that has not been
used during this pre-specified number of garbage
collections is uncommitted and returned to the operating
system. Programs that explicitly manage their memory will
run a footprint reduction after a pre-specified number of
bytes have been explicitly returned to the free-list.
Alternatively Great Circle supplies a footprint reduction
procedure that the program can explicitly call after periods
of heavy allocation.

Alternatives to the commit/uncommit operations are the
map/unmap operations. The difference is that the
uncommit memory operations return the associated swap
space to the operating system, however the address space
range is kept. The unmap operation returns to the
operating system both the address space and the swap
space. We have decided to use the commit/uncommit
operations over a contiguous uncommitted arena because it
allows recycling address space. The map operation can
return memory mappings that are not contiguous making
the heap have holes.

Another modification for footprint reduction is that during
the allocation of large objects every search in the free list
always starts from the first block in the list. This will
result in reusing the same large objects most of the time

Figure 4. Netscape heap size without footprint reduction

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50000 100000 150000 200000 250000

Memory Allocated (Kbytes)

H
ea

p
Si

ze
 (

K
by

te
s)

Heap Size Free List

and leaving the least used objects at the end of the list. If a
new search started where the previous one ended it would
reuse all the objects in the list and would not give the
opportunity for footprint reduction.

A good side effect of footprint reduction is that pages that
are black-listed [3], and therefore cannot be used because
they are being pointed by false pointers, are unmapped if
they continue black-listed for several consecutive
allocations.

5. EXPERIMENTS
In this section, we show the advantages of using footprint
reduction in a long-lived program that is subject to
changing loads.

The program used to show the advantages of the
techniques mentioned before is a web-browser called
Netscape. Netscape is a long-lived program that may run
for hours at a time and is subject to multiple loads. For
instance, HTML documents come in very different sizes
and may contain pictures with sizes that go from small
icons to very large GIF files. The allocation pattern of
Netscape depends of the documents requested by the user,
and the interaction with the browser.

The experiments shown here run in a Sparc Station 10
running the Solaris Operating System. The Great Circle
library is linked into Netscape and the X-server at run-
time using the injection technique described in [10], and
therefore no recompiling or linking is necessary. Great
Circle provides a substitute for the malloc/free operations.
In the experiments shown, explicit memory management is
enabled, and therefore the free operations really return
memory back to the free lists. The garbage collector only

runs to guarantee that the program will not run out of
memory because of memory-leaks.

Figure 4 shows the allocator behavior during a session of 5
minutes with Netscape. During this time, about 40
documents were loaded. The graph shows how the sizes of
the heap and the free list change. Without footprint
reduction, the heap increases monotonically after bursts of
allocation. However, it does not go back to its original size
when the periods of heavy allocation are over.

Figure 5 shows the behavior of the allocator in an
equivalent session with Netscape but now with footprint
reduction. The size of the heap now adapts to the
requirements of the application, returning free memory
back to the operating system when the memory is no
longer needed by the application, or when the memory is
too fragmented to satisfy requests for large objects. A
footprint reduction phase runs every time 100 Kbytes of
memory are returned to the free-list. This parameter can be
fine-tuned by the application. Additionally, Great Circle
gives to the application the possibility to call the footprint
reduction function after periods of heavy allocation.

6. CONCLUSIONS
Footprint reduction is useful for long-lived applications
because it reduces fragmentation and therefore reduces the
sizes of the heap. This is especially true for applications
that have changing workloads such as Netscape.

The advantages of medium objects are not obvious in the
previous experiments. Further experimentation with real
applications is necessary to show the impact of using
medium objects.

0

2000

4000

6000

8000

10000

12000

14000

0 50000 100000 150000 200000 250000 300000

Memory Allocated (Kbytes)

H
ea

p
Si

ze
 (

K
by

te
s)

Heap Size Free List

Figure 5. Netcape heap size with footprint reduction

At least in Netscape, footprint reduction does not seem to
have a great impact in the execution overhead. However, if
the execution overhead is a problem, the frequency
footprint reduction runs could be controlled in a way that
footprint reduction does not cause a great execution
overhead.

One drawback of footprint reduction is its coarse
granularity that may not seem adequate for applications
that use mostly small objects. More experimentation with
other real applications is necessary to see when that is the
case. Also the use of medium objects may conflict with
footprint reduction, especially when free memory used by
medium objects can not be uncommitted because there are
still live objects in the pages they share. More
experimentation is necessary to explore this problem. We
believe that every application has its own allocation
patterns and not all applications may benefit from the
techniques described. However, both these strategies have
performed well for us in a commercial garbage collection
implementation used in a wide variety of applications.

7. ACKNOWLEDGMENTS
We would like to give thanks to Hans Boehm for his
comments and for writing his conservative garbage
collection library. We also would like to give thanks to the
organizers of this event and to the reviewers for their
invaluable comments.

8. REFERENCES
[1] Joel F. Bartlett. Compacting garbage collection with

ambiguous roots. Technical Report 88/2, Digital
Equipment Corporation Western Research Laboratory,
Palo Alto, California, February 1988.

[2] Yves Bekkers and Jacques Cohen, editors.
International Workshop on Memory Management,
number 637 in Lecture Notes in Computer Science, St.
Malo, France, September 1992. Springer-Verlag.

[3] Hans-Juergen Boehm, Space-efficient conservative
garbage collection. In Proceedings of the 1993
SIGPLAN Conference on Programming Language
Design and Implementation [9], pages 197-206.

[4] Hans-Juergen Boehm and Mark Weiser. Garbage
collection in an uncooperative environment. Software

Practice and Experience, 18(9):807-820, September
1988.

[5] Jacques Cohen and Alexandru Nicolau. Comparison
of compacting algorithms for garbage collection.
ACM Transactions on Programming Languages and
Systems, 5(4):532-553, October 1983.

[6] David L. Detlefs. Concurrent, Atomic Garbage
Collection. PhD thesis, Dept. of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania,
November 1991. Technical Report CMU-CS-90-177.

[7] OOPSLA ’93 Workshop on Memory Management and
Garbage Collection, October 1993. Available for
anonymous FTP from cs.utexas.edu in
/pub/garbage/GC93.

[8] Richard E. Jones and R. Lins. Garbage Collection:
Algorithms for Automatic Dynamic Memory
Management. 1996. Wiley.

[9] Proceedings of the 1993 SIGPLAN Conference on
Programming Language Design and Implementation,
Albuquerque, New Mexico, June 1993. ACM Press.

[10] Gustavo Rodriguez-Rivera and Vincent Russo. Non-
intrusive cloning garbage collection with stock
operating system support. Software Practice and
Experience, 27(8), August 1997.

[11] Paul R. Wilson. Uniprocessor garbage collection
techniques. In Bekkers and Cohen [2], pages 1-42.

[12] Paul R. Wilson. Garbage Collection. Computing
Surveys, 1995. Expanded version of [11]. Draft
available via anonymous internet FTP from
cs.utexas.edu as /pub/garbage/bigsurv.ps.

[13] Paul R. Wilson and Mark S. Johnstone. Truly real-
time non-copying garbage collection. In OOPSLA ’93
Workshop on Memory Management and Garbage
Collection [7]. Expanded version workshop position
paper submitted for publication.

[14] Paul R. Wilson, Mark S. Johnstone. Michael Neely,
and David Boles. Dynamic Storage Allocation: A
survey and Critical Review. Available for anonymous
FTP from cs.utexas.edu in /pub/garbage/.

