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A problem that has become a staple in calculus textbooks is the box problem: De-
termine an open box of largest volume that we can form from a rectangular sheet by
cutting squares out of the corners, folding up the sides, and then gluing or soldering
the joints. Isaac Todhunter [19] included it as an exercise in his calculus textbook a
century and a half ago. The problem is a variation of a considerably older problem,
which corresponds to the task of forming one quarter of an open box. That older prob-
lem was posed by the seventeenth century French mathematician Pierre de Fermat [3]
and solved by the Dutch mathematician Frans van Schooten [20].

The box problem entered the mathematical puzzle literature when it appeared in
1903 in Henry Dudeney’s puzzle column in The Weekly Dispatch [S]. In 1908 he
rephrased it for his puzzle column in Cassell’s Magazine [6], adding a picturesque
illustration by Paul Hardy, before he included the revised puzzle in his book Amuse-
ments in Mathematics [7]. The original version is delightfully quaint:

No. 525.-HOW TO MAKE CISTERNS.

Here is a little puzzle that will elucidate a point of considerable importance
to cistern makers, ironmongers, plumbers, cardboard-box makers, and the public
generally.

Our friend the cistern-maker has an interesting task before him. He has a large
sheet of zinc, measuring eight feet by three feet, and he proposes to cut out square
pieces from the four corners (all, of course, of the same size), then fold up the
sides, join them with solder, and make a cistern.

So far, the work appears to be pretty obvious and easy. But the point that
puzzles him is this: What is the exact size for the square pieces that he must cut
out if the cistern is to contain the greatest possible quantity of water?

Call the feet inches, and take a piece of cardboard or paper eight inches long
and three inches wide. By experimenting with this you will soon see that a great
deal depends on the size of those squares. To get the greatest contents you have
to avoid cutting those squares too small on the one hand and too large on the
other. How are you going to get at the right dimensions?

I SHALL AWARD OUR WEEKLY HALF-GUINEA PRIZE.
for a correct answer. State the dimensions of the squares and try to find a rule
that the intelligent working man may understand.
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Figure 1. Illustration from Cassell’s Magazine

The illustration from the later version of the puzzle appears in Figure 1. Readers are
invited to guess why the two men look so unhappy. The solution to the original version
of the puzzle appeared two weeks later in The Weekly Dispatch [5]:

This was a little puzzle of a very practical and useful character. Given an ob-
long sheet of zinc, how should the workman cut out a square piece from each
corner so that the four sides fold up and make a cistern that shall contain the
largest possible quantity of water? The rule is simply this: (1) Deduct the prod-
uct of the sides from the sum of their squares; (2) find the square root of the
remainder; (3) deduct this square root from the sum of the sides; and (4) divide
the remainder by 6. The result is the side of the little square pieces to be cut
away.

Let us apply this rule to a sheet of zinc of the given dimensions, eight feet
by three feet. (1) The sum of the squares of these two numbers is 64 + 9 = 73,
from which deduct 8 x 3 = 24, and we get 49. (2) The square root of 49 is 7.
(3) Deduct 7 from 8 + 3 and we have 4. (4) Now, if we divide four feet by 6, we
get eight inches as the side of the square pieces.

This is the correct answer that we want. The intelligent working man is sup-
posed in these days to know that a number multiplied by itself is a square, and
that this number is called the “root” of such a square. Even if he does not know
how to find the square root of any number, there are always table books avail-
able. I therefore think it best to give the exact method instead of one of the many
approximations that have been suggested.
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Try the rule in the cases of sheets measuring 8 feet by 5 feet, 16 by 6, 16
by 10, and 21 by 16, and you will find that the answers work out 1, 1%, 2, and
3 respectively. Of course, it will not always come out exact (on account of that
square root), but you can get it as near as you like with decimals.

The prize has been awarded to Mr. W. Robins, Wanstead Cottage, New
Wanstead, Essex. Although the majority of competitors were considerably out in
their calculations, 34 correct answers were received. Some of these came from
persons who admittedly merely found by trial that it was “somewhere near eight
inches;” and then ventured a guess that it was eight inches exactly. Others may
have done the same, so there will be no honourable mention on this occasion.

It is simple to solve this problem using calculus: Let the dimensions of the rect-
angular sheet be a and b. Let x be the length of each square piece. First form the
volume of the cistern in terms of a, b, and x, which is (a — 2x)(b — 2x)x = 4x> —
2ax? — 2bx? + abx. Take the first derivative of the volume with respect to x, giving
12x2 — 4ax — 4bx + ab. Set the result to zero, and apply the quadratic formula, choos-
ing as x the smaller of the two roots, to ensure that botha — 2x > 0 and b — 2x > 0.
This gives

a+b—+a*+b*—ab
X =
6

The method that Dudeney describes in steps (1)—(4) corresponds exactly to the for-
mula that we have derived. (In fact, in the solution for the revised version of the puzzle,
Dudeney presented the method by giving this formula.) However, instead of discussing
how one would discover and justify the method, Dudeney simply asserted that intelli-
gent people ought to know what a square root is!

Figure 2 illustrates the method on a sheet of metal that is 3 x 4. In this case x =
(7 —/13) /6 ~ .5657. As directed, we cut out the four square corners in Figure 2. We

Figure 2. Traditional cuts and folds Figure 3. New millennium cuts, folds
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then use rectangle A as the base of the cistern and fold rectangles B, C, D, and E up
for the sides. The volume is (35 + 13+/13)/27 ~ 3.0323.

The box problem is a nice application of calculus and leads to a variety of interest-
ing related problems. Dick Stanley [18] and Wally Dodge and Steve Viktora [4] ob-
served that the optimal solution has an intriguing property, namely that for any shape
of rectangle, the total area of the sides of the box will equal the area of the bottom.
They also proved the same property for a corresponding approach applied to sheets of
metal whose boundaries are polygons. James Duemmel [8], Al Cuoco [2], and Philip
Hotchkiss [12] characterized pairs of integral dimensions for which x is a rational
number. Richard St. André [17] and Kay Dundas [9] identified variations in which the
box is self-bracing.

Several people have suggested that the problem is a bit silly from a practical point
of view. John Friedlander and John Wilker [11], Kay Dundas [9], and Donna Marie
Pirich [15] pointed out that the corners are wasted. Friedlander and Wilker used this
as an opportunity to apply the same technique recursively to the resulting squares,
producing an infinite succession of boxes whose total volume is to be maximized.

Although it might be nice to have a large collection of boxes and at the same time
to avoid waste, it might be nicer to have just one container to hold water. Who says
that a cistern must be in the shape of a rectangular solid? Thus I ask for a container
of any shape, open on the top, formed from a rectangular sheet of metal, using tin
snips and solder, that maximizes the volume. To retain the emphasis on folding that
is present in the original version of the problem, let’s require that all material to be
used in the container remain connected after the cutting. To make matters simpler,
let’s consider here only containers whose surfaces are parallel to the faces of a cube
and are of uniformly single thickness. The latter condition rules out the convoluted,
solder-intensive approach of Racine Carré [1].

We quickly discover that we can do better than soldering together the infinite num-
ber of boxes produced by Friedlander and Wilker. We need not form the sides that
would be soldered together. In fact, for each small square of side x we can fashion a
corresponding “bulge” in the cistern of volume 8x3/27. In Figure 3, I cut a sheet of the
same shape as before, using solid edges to denote cuts and dotted edges to show folds.
Suitably folded, this produces our cistern for the new millennium in Figure 4, with the
edges that we solder in bold and the folds shown with edges of normal thickness. We
can easily see that panels J and K are small squares, and panels G, H, and I are twice
as long as they are wide.

Since we no longer have small squares to discard, let’s now use x to denote the
height of the resulting cistern. The volume will be (a — 2x)(b — 2x)x + 4(8x3/27) =
140x3 /27 — 2ax? — 2bx?* + abx. Taking the first derivative of the volume with respect
to x gives 140x2/9 — 4ax — 4bx + ab. The optimizing value will be

x = (9/70)(a + b — /a? + b> — 17ab/9).

For a =3 and b = 4, we get x = (9/10)(1 — 4/1/21) = .7036, and a volume of
(9/25)(9 + /1/21) = 3.3185.

To compare with Friedlander and Wilker’s construction, let’s also consider the case
thata = b = 1 (a square sheet of metal). They optimize with x = sin 10° and a volume
of (2/3)(1 — 25sin 10°) sin 10° =~ .07556. By contrast, the textbook method, which Du-
deney described, would have x = 1/6 and a volume of 2/27 =~ .07407. My approach
has x = 3/14 and a volume of 4/49 ~ .08163, which beats Friedlander and Wilker
by 8% and Dudeney by 10%.
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Figure 4. Perspective view of a new millennium cistern

The new approach does the best against the standard method when a and b are
equal, and loses much of its advantage as these values grow apart. For the values that
Dudeney chose, namely 3 and 8, the standard method has x = 2/3 and a volume of
200/27 ~ 7.4074, whereas my method has x = (3/70)(33 — +/249) =~ .73801 and a
volume of approximately 7.8140. Even so, this a gain of over 5%. Is it too late to
collect that half-guinea?

Aside from any potential economic gain, it’s rewarding to discover that there is a
more clever approach to cutting and folding. Of course, my solution respects the con-
straint that the faces be parallel to the faces of a cube. Kay Dundas [9], Nick Lord [13],
Neville Reed [16], and Kenzi Odani [14] looked beyond the orthogonal world to pro-
duce even better solutions. And I have found a further wrinkle on Dundas’s approach,
which I describe in my book (in progress) on certain types of folding problems [10],
from which the material in this article is adapted.

Regarding the apparent unhappiness of the two men in the illustration, perhaps they
were so flustered by the square root that they cut the squares out of the wrong sheet of
zinc. Clearly, the sheet in the illustration was not originally 8 x 3. Furthermore, they
cut the squares with sidelength x = a/4, which cannot maximize the volume for any
value of b > a. As luck would have it, x = a/4 is the smallest value for which this is
regrettably true.
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How’s That Proportion Go?
From Brazzaville Beach by William Boyd (Morrow, 1990, p. 112):

Now, bear with me. I love the ring of this one, it sounds so good. Let’s see
what we can make of it. (I found it hard too: formulae have a narcoleptic
effect on my brain, but I think I’ve got it right.) Take this simple formula:
x2 4+ y? = z%. Make the letters numbers. Say: 3% + 42 = 52, All further
numbers proportional to these will fit the formula. For example: 9% + 122 =
152. Or, taking the proportionality downward: 122 + 5% = 132, Intriguing,
no? Another example of the curious magic, the severe grace of numbers.

“Severe grace” is good, but the proportion is obscure. In his latest novel, the
estimable Any Human Heart, Mr. Boyd includes no mathematics.
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