Robust 360° Video Streaming via Non-Linear Sampling

Mijanur Palash, Voicu Popescu, Amit Sheoran, Sonia Fahmy

360° Video Streaming and Virtual Reality

Multiple sources of 360° videos

37 million 360° video headsets in US^[1]

42.9 million users in US use virtual reality in a month ^[1]

[1] https://leftronic.com/virtual-reality-statistics/

Challenges in Streaming 360° Video

360° videos require high bandwidth

Conventional video

360° Video

State of the Art

360° videos require high bandwidth

- Users only watch a small portion of the video
 - User field of view (FoV)

State of the Art

Tiling

- XIE, X., AND ZHANG, X. POI360: Panoramic mobile video telephony over LTE cellular networks. In Proceedings of CoNEXT (2017).
- HE, J., QURESHI, M. A., QIU, L., LI, J., LI, F., AND HAN, L. Rubiks: Practical 360-degree streaming for smartphones. In Proceedings of MobiSys (2018).
- QIAN, F., HAN, B., XIAO, Q., AND GOPALAKRISHNAN, V. Flare: Practical viewport-adaptive 360-degree video streaming for mobile devices. In Proceedings of MOBICOM (2018).
- ZHOU, C., XIAO, M., AND LIU, Y. ClusTile: Toward minimizing bandwidth in 360-degree video streaming. In IEEE INFOCOM (2018).
- GUAN, Y., ZHENG, C., ZHANG, X., GUO, Z., AND JIANG, J. Pano: Optimizing 360° video streaming with a better understanding of quality perception. In Proceedings of SIGCOMM (2019).
- Rate adaptation over time
 - e.g., MPC: Yin et al, SIGCOMM 2015.

Observations

- Accurately predicting user FoV is not always possible
 - Errors in prediction can lead to
 - Missing pixels
 - Abrupt changes in quality
 - Re-fetching the video after correcting FoV prediction is difficult
 - Cellular networks can have high uplink/downlink latency [1]

360° video streaming solutions must be robust to view prediction error

[1] Zhaowei Tan, Yuanjie Li, Qianru Li, Zhehui Zhang, Zhehan Li, and Songwu Lu. 2018. Supporting Mobile VR in LTE Networks: How Close Are We? Proc. ACM Meas. Anal. Comput. Syst. 2, 1, Article 8 (March 2018)
6

Observations

- Bandwidth fluctuation is common
 - Bandwidth disruption during handovers
- When to pre-fetch?
 - Fetching too early can lead to large view prediction errors
 - Fetching too late can lead to stalls

360° video streaming solutions must be robust to bandwidth fluctuation

Objectives

- Robustness to view prediction error
- Robustness to transient bandwidth fluctuation
- Decoding and rendering efficiency
 - Support thinner clients without GPUs
- Compatibility with current protocols (H.264 and DASH)

Compressed Rotated Equirectangular (CoRE) 360° Video Streaming

CoRE Encoding: Rotate to center predicted FoV

CoRE Encoding: Compress frame periphery

CoRE Encoding: Compress frame periphery

CoRE Frame

Predicted FoV

CoRE Encoding

Extension for robustness to bandwidth fluctuation

CoRE Encoding

Extension for robustness to bandwidth fluctuation

4s of additional data (1.3x) 6s of additional data (1.44x) TCP RTO-like adaptive prefetching

CoRE Decoding

Demonstrations

Experimental Evaluation

Objectives

- How does CoRE compare to other methods?
 - 4 bandwidth traces
 - 6 videos
 - 25 to 60 head movement traces per video

Method	Explanation
FoV only	Field of View only (90° x 48°)
FoV+ 1QL	FoV and padding (20%) of high quality
FoV+ 2QL	FoV high quality, with padding (20%) in lower quality
FoV 360	FoV (high quality) and all remaining tiles in lower quality
FoV+ 360	FoV+padding (high quality) and all remaining tiles in lower quality
CoRE	4s main part (high quality (90°x48°)) and 6s extension part

Data Transferred

Stalls

CoRE has significantly fewer stalls

Average Frame Rate

CoRE has significantly higher frame rate

30 ■ FoV only ■ FoV+ 1QL ■ FoV+ 2QL ■ FoV+ 360 ■ CoRE

User Study

Compare CoRE and FoV+ 1QL tiling with 3 videos

Conclusions

- CoRE is a new approach for 360° video streaming
 - Robust to view prediction errors
 - Robust to bandwidth fluctuation
- CoRE has significantly lower resource requirements
 - Lower energy consumption
- User study shows that CoRE enhances user experience

Much more in the paper ...

- Results with more videos
- Results with more bandwidth traces
 - AT&T, Verizon, and T-Mobile bandwidth traces
- Additional evaluation metrics such as missing pixels
- Comparison of decoding overhead
 - Energy/Time comparison to tiling
- Impact of view misprediction
- Cost/benefit analysis

Thank you

Questions?

