Predicting Prefix Availability in the Internet

Ravish Khosla, Sonia Fahmy, Y. Charlie Hu, Jennifer Neville Purdue University INFOCOM 2010

Background

- Border Gateway Protocol (BGP)
 - Inter-domain policy based routing protocol
 - Advertises IP prefixes belonging to Autonomous Systems (ASes)

Motivation

- Prefix Availability: Time prefix is reachable Total Time Period
- Availability from various vantage points in Internet should be high, especially for popular websites/services
 - Continuous BGP advertised reachability is a key ingredient
- Measuring availability : non-trivial
 - Measurement infrastructure
- This work: Predictive approach of BGP (control-plane) availability

Predicting Future Availability

- Is future availability = past availability?
 - Can we observe prefix's updates for some time and predict its availability?
- Fairly true if observation duration equal to prediction duration
- Often prediction desired for much longer duration than observation period
- Contribution: Build statistical prediction models to predict availability
 - Prefixes convey information about other "unrelated" prefixes

Methodology

- Datasets from RouteViews
 - Jan. 05, Jan. 07, Feb. 08 and Mar. 09
- Predict availability classes of a *combination*: (peer, prefix) tuple
 - Classes: High/Low with 0.99999 threshold

Availability Range	Frequency
0.9-1.0	94.1 %
> 0.99	94.63 %
> 0.99999	68.75 %

Methodology (Contd.)

- Prefix attributes
 - Prefix length, Update Frequency, Mean Time to Failure (MTTF) and Mean Time to Recovery (MTTR)
- Applying prediction models
 - Learn using attributes and availability of combinations for training period
 - Apply on other combinations with attributes computed from training period e.g. 1 week of a month
 - Predict availability for test period e.g. remaining 3 weeks
 - Validate prediction results using known availability, computed from RouteViews

Methodology (Contd.)

- Models studied
 - Simple Model
 - Predict availability of combination as its past availability
 - Naïve Bayes
 - Decision trees with and without bagging
- Prediction metrics
 - Accuracy
 - Area under Receiver Operating Characteristic (ROC) Curve (AUC)

Prediction Results

 Bagged decision trees learned from one week (~25%) of the month

Month	Accuracy (%)	AUC
Jan. 05	67.83	0.7005
Jan. 07	72.50	0.7094
Feb. 08	77.80	0.7483
Mar. 09	83.24	0.7605

- Bagged decision trees perform the best in terms of AUC and good accuracy
- Recent months are more predictable

Effect of Learning Duration

 Bagged decision trees also perform best for all learning durations

Conclusions and Future Work

- Availability prediction
 - Future availability = Past availability works fairly well when training period = prediction period
 - For shorter learning periods, use statistical learning based prediction models
 - Bagged decision trees work the best
 - Prediction models can be built using random Internet prefixes
- Future Work: Study potential improvement in prediction accuracy using prefixes in the same AS or BGP Atom

Backup: Importance of attributes

- Studied effect on performance by considering various attribute subsets
- Results
 - Past availability used alone is a bad predictor of future availability
 - Prefix length and update frequency are weaker prediction attributes
 - MTTF and MTTR are the strongest attributes for prediction

Backup: Naïve Bayes prediction

- Assumption: Attributes are conditionally independent given the class label
- P(Class Label|Attributes) computed using Bayes rule
- Individual probabilities are learned using information from the training set

Backup: Decision Trees

- Bootstrap Aggregating (Bagging):
 - Take many bootstrap samples with replacement
 - Learn various trees from the samples
 - Apply all of them and take majority vote

Backup: All Prediction Results

