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ABSTRACT
This report gives a brief overview of how to monitor a link in an
emulation testbed (e.g., DETER or Emulab) using a software-only
approach, without the use of span ports or other hardware solu-
tions.
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1. INTRODUCTION
Link monitoring is important when conducting experiments with

denial of service (DoS) attacks, worms, congestion control proto-
cols, and several other networking experiments. In a simulator, link
monitoring can be trivially accomplished, without any performance
repercussions. Real networks require a more sophisticated solu-
tion. An easy monitoring approach is to place a hub between the
two endpoints of the link being monitored, and attach a third node
to this hub to perform packet logging viatcpdump. If the nodes
are connected by a switch or a router that provides a span port
capability, then it is easy to mirror traffic between the two nodes
to a third node. Such hardware solutions, however, are inflexible
and have to be set up on an experiment by experiment basis. This
is especially cumbersome in an emulation testbed such as Emulab
(www.emulab.net), which is highly time- and space-shared.

In Spring 2004, we experimented with a hardware solution on the
DETER testbed (www.isi.deterlab.net). Specifically, the DETER
team set up a 100 Mbps hub between three test machines, in order
to provide a link monitoring capability for an Intrusion Detection
System (IDS) that we were evaluating with DoS attacks. The Emu-
lab team has also reported that the Emulab testbed has a span port
capability between any two nodes. However, using this capability
requires manual setup before the experiment can be swapped in.
Testbeds like Emulab and DETER, however, derive their strength
from their flexibility and the minimal intervention required from
their staff to aid with experiments. One should therefore be able to
create a software-only link monitor that is easy to use and does not
require special attention.

A naive software-only link monitoring solution is to runtcpdump
on the receiver node or any node that is between the sender and re-
ceiver. As long as packet flows are not arriving at extremely high
rates, and the test machines have ample capacity, this solution is the
easiest to use. However, this solution becomes problematic when
there is not enough capacity to log and process/forward arriving
packets. In this case, the monitoring result will be a log file that
does not contain all the arriving packets. In the worst case, the log-
ging can interfere with forwarding, thus leading to packet drops and

the introduction of artifacts into the experiment. In the next section,
we will describe a simple approach that works well under high traf-
fic loads, and retains the flexibility of the emulation environment.

2. SOFTWARE SOLUTION
Our approach is based upon the distribution of the forwarding

and logging tasks. We observe that a machine that performs traffic
forwarding should not runtcpdump; however, that machine will
typically have enough capacity to duplicate and forward the traffic.
Figure 1 depicts a logical view of how tasks are distributed. In order
to monitor a link between two test nodes, two additional nodes are
required. One node will act as a bridge/duplicator and the other
node will log packets to a file.
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Figure 1: Anatomy of a software link monitor

Figure 2 demonstrates our setup on the DETER testbed. If the
node performing logging is incapable of handling high loads but
the bridge node is, then the measurements will be incomplete, but
there will be no loss on the link itself. Loss at the bridging node is a
more severe problem, and will introduce significant artifacts in the
experiment. To address both concerns, it is essential that both the
bridge and logging nodes be much faster than the sending nodes.
On the DETER testbed, all of the test nodes have dual CPUs, but
the default OS images use only one CPU.

To utilize this solution, our first step was to create a new OS
image that was SMP capable and had a bridge module installed.
The next step required modification of the bridge code to ensure
that our solution worked on DETER and Emulab. The modification
allows us to specify a mirrored interface which would receive all
the traffic that passes through other interfaces. The switch will drop
incoming packets if itsdstMAC address is not in the set of MACs
that can be reached by a port on which the packet arrives. To avoid
packet drops by the backend switch, all of the mirrored packets
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Figure 2: Validation topology used on the DETER testbed

must therefore have their destination MAC address modified to that
of the logging node.

3. VALIDATION EXPERIMENT
Our baseline experiments have demonstrated that whenttcp

(http://ftp.arl.mil/∼mike/ttcp.html) is used for file transfer over TCP,
our link monitor can successfully log all of the packets at 11 Megabytes
per second. Since file transfer over TCP is not as aggressive as a
persistent UDP flood, we have devised UDP-based stress tests for
our link monitor. Our “UDP flooder” sends UDP packets using a
raw socket as fast as possible. We vary the packet payload size.
The packet payload size is inversely proportional to the sending
rate. High packet rates do not necessarily use up the entire band-
width, but they impose high loads on the machines. This is because
there is a certain overhead required for processing each individual
packet.

To test the performance of our link monitor, we have created an
experiment on DETER using the topology illustrated in Figure 2.
We usetcpdumpon the logging node and then usetcptraceto count
the number of packets in the dump file. The reported packet count
is compared to the number ofsend()calls that the flooding tool has
made. The experiments are repeated for packet payload sizes of
10, 100, 500, 700, 1000, and 1400 bytes. For each payload size,
the experiment is run 10 times and the average of the packet loss
value recorded in the 10 runs is reported. Packet loss is computed
as ((number of packets received by logging node− number of sent
packets)× 100) / number of sent packets.

4. EXPERIMENTAL RESULTS
As expected, the highest packet losses occur when the packet

sizes are the smallest. Figure 3 shows that for packet sizes closest
to the MTU size, the percentage loss is minimal: for a payload size
of 1400 bytes, the flooder can send 514691.5 packets per minute on
the average, and the logger can receive 514681.3 packets per minute
on the average. This implies that the logger was able to capture
packets at just over 12 Megabytes a second (computed as number
of packets× (packet payload size+ header size) / 60 seconds per
minute / 1,000,000).

At the other extreme, when the packet payload size is 10 bytes,
the flooder was able to send 8978569.5 packets per minute on the
average, and the logger could only capture 8908384.7 packets per
minute on the average. Even though the packet rates are higher
than in the case of a 1400-byte-payload, the logged throughput was

only approximately 5.6 Megabytes per second since packet sizes
are smaller. The loss was higher: approximately 0.8% in this case.
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Figure 3: Tcpdump packet loss

5. CONCLUSIONS AND FUTURE WORK
Our results indicate that our software link monitoring mechanism

can reasonably cope with the 100 Mbps transfer rates in our exper-
iment. Experiments that do not expect to see extremely high packet
rates can easily use the bridging solution to “tap” the links. If ex-
tremely high packet rates are expected in an experiment, additional
tuning must be performed to eliminate packet loss. We have ob-
served thattcpdumpdoes receive all of the packets in our experi-
ments, but does not log all of them. Packet logging fails when the
CPU load is significant or the receive buffer overflows. As a result,
the difference between received and logged packets increases as the
packet rates increase.

Linux kernels 2.6.x support NAPI for the NIC device drivers.
Using polling can decrease the CPU load as IRQ livelock will be
eliminated. To compensate for delays in polling, the receive buffers
must be configured to be large enough so as not to overflow before
the next polling round. Our future work will include installation of
the latest Linux kernel and creating a NIC driver configuration to
eliminate packet loss during logging, even at extremely high packet
rates.


