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Abstract— In wireless networks, the implicit assumption
which TCP makes that losses indicate network congestion is
no longer valid. Losses in wireless networks can result from
bit errors, fading and handoffs. There are two different ap-
proaches to improve TCP performance in case of wireless
losses: (1) hide non-congestion-related losses from the TCP
sender, using either TCP-aware or TCP-unaware reliable
link layer protocols, or using split connections with separate
wireline and wireless TCP connections, or (2) adapt the TCP
sender to realize that some losses are not due to congestion,
e.g., using selective acknowledgments or explicit loss notifi-
cation. In this paper, we classify popular mechanisms that
have been recently proposed to solve the wireless transport
problem, and contrast them according to their complexity,
ease of deployment, and performance in different scenar-
ios. We conclude that some TCP sender adaptations work
well for certain environments only, while others are gener-
ally useful. Local recovery works best when the wireless link
delay is small, and split connection schemes allow applica-
tion/transport level optimizations, but exhibit overhead and
lack robustness.
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I. INTRODUCTION

Due to the low loss nature of wired links, TCP assumes
that packet losses mostly occur due to congestion. TCP re-
acts to congestion by decreasing its congestion window [1]
thus reducing network utilization. In wireless networks,
however, losses may occur due to the high bit-error rate
of the transmission medium or due to fading and mobil-
ity. TCP still reacts to losses according to its congestion
control scheme, thus unnecessarily reducing the network
utilization. This paper focuses on proposals that attempt
to address this problem.

The typical wireless network system model is shown in
figure 1. This model can represent both wireless local area
networks (WLANS) such as 802.11 networks, and wireless
wide area networks (WWANS) such as CDPD and GPRS
networks. In ad hoc networks, on the other hand, there

is no required infrastructure (such as base stations (BSSs)),
and nodes can organize themselves to establish communi-
cation routes. Satellite networks allow various configura-
tions with potentially several wireless hops. In this paper,
we mostly examine the configuration where the wireless
link is the last hop, though we also classify approaches
where this is not necessarily the case.
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Fig. 1. Typical model of a TCP-wireless connection

Handling wireless losses may or may not be transpar-
ent to the sender. In other words, the sender implementa-
tion may be modified to be aware of losses due to wireless
links, or local recovery can be used to handle such losses.
The latter method shields the sender from knowing about
the wireless link. A special case of this method terminates
the TCP connection at the wireless interface, namely, the
base station, which in turn uses some other reliable con-
nection to connect to the destination. This solution is re-
ferred to as split-connection.

In this paper, we compare and contrast a number of
wireless TCP mechanisms that have been recently pro-
posed. We find that some TCP sender adaptations work
well for certain environments only, while others are gen-
erally useful. Local recovery works best when the wire-
less link delay is small, and split connection schemes allow
application/transport level optimizations, but exhibit high
overhead and lack flexibility and robustness.

The remainder of this paper is organized as follows.
Section 1l briefly reviews TCP congestion control. Sec-
tion 111 discusses characteristics of wireless media that af-



fect the performance of TCP. Section IV classifies the main
mechanisms proposed to solve the wireless transport prob-
lem. Section V presents a comparative study of the vari-
ous mechanisms and their implications. Section VI sum-
marizes standardization efforts at the IETF. Finally, sec-
tion VII concludes this survey.

II. RENO TCP CONGESTION CONTROL

A TCP connection starts off in the slow start phase [2].
The slow start algorithm uses a variable called congestion
window (cwnd). The sender can only send the minimum
of cwnd and the receiver advertised window which we call
rwnd (for receiver flow control). Slow start tries to reach
equilibrium by opening up the window very quickly. The
sender initially sets cwnd to 1 (RFC 2581 [1] suggests an
initial window size value of 2 and RFC 2414 [3] suggests
min(4xMSS,max(2x MSS,4380 bytes))), and sending one
segment. (MSS is the maximum segment size.) For each
ACK that it receives, the cwnd is increased by one seg-
ment. Increasing by one for every ACK results in expo-
nential increase of cwnd over round trips, as shown in fig-
ure 2.
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Fig. 2. TCP congestion control

TCP uses another variable ssthresh, the slow start
threshold. Conceptually, ssthresh indicates the “right”
window size depending on current network load. The slow
start phase continues as long as cwnd is less than ssthresh.
As soon as it crosses ssthresh, TCP goes into congestion
avoidance. In congestion avoidance, for each ACK re-
ceived, cwnd is increased by 1/cwnd segments. This is
approximately equivalent to increasing the cwnd by one
segment in one round trip (an additive increase), if every
segment is acknowledged, as shown in figure 2.

The TCP sender assumes congestion in the network
when it times out waiting for an ACK. ssthresh is set to
max(2, min(cwnd/2, rwnd)) segments, cwnd is set to one,
and the system goes to slow start [1]. If a TCP receiver re-
ceives an out of order segment, it immediately sends back
a duplicate ACK (dupack) to the sender. The fast retrans-
mit algorithm uses these dupacks to make retransmission
decisions. If the sender receives n dupacks (n = 3 was
chosen to prevent spurious retransmissions due to out-of-
order delivery), it assumes loss and retransmits the lost

segment without waiting for the retransmit timer to go
off. It also updates ssthresh. Fast recovery keeps track
of the number of dupacks received and tries to estimate the
amount of outstanding data in the network. It inflates cwnd
(by one segment) for each dupack received, thus maintain-
ing the flow of traffic. The sender comes out of fast recov-
ery when the segment whose loss resulted in the duplicate
ACKSs is acknowledged. TCP then deflates the window by
returning it to ssthresh, and enters the congestion avoid-
ance phase. Variations on TCP congestion control include
NewReno, SACK, FACK and Vegas, presented in [4], [5],

61, [7]. [8].

I11. CHARACTERISTICS OF WIRELESS MEDIA

A number of inherent characteristics of wireless media
affect TCP performance including:
« Channel Losses. Signals carried by wireless media
are subject to significant interference from other signals,
and subsequently, losses due to modification of bits while
frames are being transmitted. These losses are difficult to
recover from at the link layer despite the presence of error
correction techniques and typically require retransmission.
Retransmission can be performed at the link layer or at the
transport layer (TCP). TCP performance is affected by the
frequent losses occurring at the link layer, because TCP
inherently assumes all losses occur due to congestion and
invokes the congestion control algorithms upon detecting
any loss.
« Low Bandwidth: Bandwidth of wireless links may be
low, which can sometimes result in excessive buffering at
the base station. This could lead to packets being dropped
at the base station, or transmitted back-to-back on the
wireless link, which in turn results in high observed round
trip times [9].
« Signal Fading: Fading typically occurs when a wire-
less host is mobile. Interference from physical factors like
weather, obstacles, unavailability of channels, overlapping
areas of different cells, could result in signal fading and
blackouts. Such blackouts can exist for prolonged periods
of time.
« Movement across Cells: Mobility of a wireless host in-
volves addressing connection handoff. In addition to the
link layer state that has to be handed off, the base station
may maintain connection state about the transport layer
which might need to be handed off. Other problems like
signal fading as mentioned above occur with a high prob-
ability when a host moves across cells.
« Channel Asymmetry: Resolving channel contention is
usually asymmetric. The sending entity gets more trans-
mission time than the receiving entity. This could lead to
TCP acknowledgments being queued for transmission at



the link layer of the receiving entity and sent back to back
when channel access is permitted. This can lead to larger
round trip times measured by the TCP sender and to bursty
traffic, which subsequently reduces the throughput of the
TCP connection.

« Link Latency: Wireless links may exhibit high laten-
cies and when such delays are a significant fraction of the
total round trip times observed by TCP, the retransmission
timeouts of TCP are set to high values, which subsequently
affects TCP performance. Such conditions occur in wire-
less WANSs and satellite networks. In addition, high vari-
ance in the measured round trip times have been observed,
which impact the TCP round-trip-time (RTT) estimation
algorithm [9].

IV. WIRELESS TCP MECHANISMS

Several mechanisms have been proposed to enhance the
performance of TCP over wireless links. The proposed
approaches can be classified as end-to-end, local recovery
or split connection. We briefly discuss the various mecha-
nisms below and compare them in later sections. Figure 3
illustrates the three categories and sample schemes in each
category.
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Fig. 3. Categorization of mechanisms for TCP over wireless
links

A. End-to-End Mechanisms

End-to-end mechanisms solve the wireless loss prob-
lems at the transport layers of the sender and receiver. We
examine the main proposals in this section. Other alterna-
tives being standardized are discussed in section VI.

A.1 Selective Acknowledgments

TCP Selective Acknowledgments (SACK) [10], [6], [7]
uses the options field of TCP to precisely inform the sender
which segments were not received. This enables the sender
to retransmit only those segments that are lost, thereby not
unduly wasting network bandwidth. TCP SACKs were
proposed as a solution to recover from multiple losses in
the same window without degrading the throughput of the
connection. The same idea can be applied to networks with

wireless hops to aid the sender in better recovering from
non-congestion related losses. TCP still performs conges-
tion control as in [6] or as in [7] upon detecting packet
loss even if it is on the wireless link as there is no way to
deduce where the loss occurred.

A.2 SMART Retransmissions

A Simple Method to Aid ReTransmissions (SMART)
[11] decouples flow and error control. Each ACK packet
from the receiver carries both the standard cumulative
ACK and the sequence number of the packet that initi-
ated the ACK. This informs the sender of the packets that
are lost, so that the sender can selectively retransmit. The
scheme uses a different heuristic to detect lost retransmis-
sions. It also avoids the dependence on timers for the
most part except for the worst case when all packets and
all ACKs are lost. The scheme uses two different win-
dows, one called the error-control window at the receiver
for buffering the out-of-sequence packets, and another one
called the flow-control window at the sender for buffer-
ing unacknowledged packets. Thus, error control and flow
control are decoupled.

A.3 TCP Probing

With TCP probing [12], when a data segment is delayed
or lost, the sender, instead of retransmitting and reduc-
ing the congestion window size, enters a probe cycle. A
probe cycle entails exchanging probe segments between
the sender and receiver to monitor the network. The probes
are TCP segments with header options and no payload.
This helps alleviate congestion because the probe seg-
ments are small compared to the retransmitted segments.
The cycle terminates when the sender can make two suc-
cessive RTT measurements with the aid of receiver probes.
In cases of persistent errors, TCP decreases its congestion
window and threshold. But for transient random errors,
the sender resumes transmission at the same window size
it used before entering the probe cycle.

A.4 TCP Santa Cruz

TCP Santa Cruz [13], like TCP probing, makes use of
the options field in the TCP header. Its congestion con-
trol algorithm is based on relative delays that packets ex-
perience with respect to one another in the forward direc-
tion, an idea that was first introduced in TCP Vegas [8].
Therefore, ACK losses and reverse path congestion do not
affect the throughput of a connection. The scheme also
improves the error recovery mechanism by making bet-
ter RTT estimates than other TCP implementations. Re-
transmissions are included in making RTT estimates to
take into consideration the RTT during congestion periods.



TCP Santa Cruz uses selective acknowledgments (SACK)
as discussed earlier.

A.5 Negative Acknowledgments

Negative ACKs (NAKS) can be included in the options
field of TCP header to explicitly indicate which packet
has been received in error so that retransmission of that
packet can be initiated quickly. It works only under the
assumption that a corrupted packet can still reach the des-
tination and that the source address of the packet is still
known. The sender, on receiving a NAK, can retransmit
the packet without modifying the congestion window size.
RTT measurement from the retransmitted packets is ig-
nored to avoid inflating the RTT estimate.

A.6 Wireless TCP (WTCP99)

Wireless TCP (WTCP99) [9] uses rate-based transmis-
sion control and not a self-clocking window-based scheme
like TCP. (We call this WTCP99 to distinguish it from
a number of earlier proposals which also used the name
WTCP.) The transmission rate is determined by the re-
ceiver using a ratio of the average inter-packet delay at
the receiver to the average inter-packet delay at the sender.
The sender transmits its current inter-packet delay with
each data packet. The receiver updates the transmission
rates at regular intervals based on the information in pack-
ets, and conveys this information to the sender in ACKSs.
WTCP99 computes an appropriate initial transmission rate
for a connection based on a packet-pair approach rather
than using slow-start. This is useful for short lived con-
nections in wireless wide area networks (WWANS) where
round trips are large. WTCP99 achieves reliability by us-
ing selective ACKs [10]. No retransmission timeouts are
triggered as it is difficult to maintain good round trip time
estimates. Instead, the sender goes into “blackout mode”
when ACKs do not arrive at sender-specified intervals. In
this mode, the sender uses probes to elicit ACKs from the
receiver, similar to probing TCP [12].

A.7 ACK Pacing

ACK pacing [14] is a rate based approach to ACK gener-
ation at the receiver. ACK pacing results in rate-controlled
sender packets, and hence avoids bursty traffic that can re-
sult in packet losses, delays and lower throughput. Pacing,
however, does not distinguish between congestion losses
and wireless losses.

A.8 Explicit Bad State Notification (EBSN)

Losses on the wireless link of a connection may cause
timeouts at the sender, as well as unnecessary retransmis-
sions over the entire wired/wireless network. The Ex-

plicit Bad State Notification (EBSN) scheme [15] pro-
poses sending EBSN messages from the base station to the
sender whenever the base station is unsuccessful in trans-
mitting a packet over the wireless network. This scheme
is not entirely end-to-end, but we discuss it here because it
requires sender support like most end-to-end schemes.

EBSN receipt at the sender re-starts the TCP timer and
prevents the sender from decreasing its window when there
is no congestion. Although this scheme requires modifica-
tions to the TCP implementation at the sender, the required
changes are minimal, no state maintenance is required, and
the clock granularity (timeout interval) has little impact on
performance.

A.9 Explicit Loss Notification (ELN) Strategies

Like EBSN, Explicit Loss Notification (ELN) is not
purely end-to-end. ELN has been proposed to recover
from errors that occur when the wireless link is the first
hop [16]. A base station is used to monitor TCP packets
in either direction. When the receiver sends dupacks, the
base station checks if it has received the packet. If not,
then the base station sets an ELN bit in the header of the
ACK to inform the sender that the packet has been lost on
the wireless link. The sender can then decouple retrans-
mission from congestion control, i.e., it does reduce the
congestion window. In contract to snoop [17] (discussed
below), the base station need not cache any TCP segments
in this case, because it does not perform any retransmis-
sions.

B. Split Connection Mechanisms

In this class of mechanisms, the TCP connection is split
at the base station. TCP is still used from the sender to
the base station, whereas either TCP or some other reliable
connection-oriented transport protocol is used between the
base station and the receiver. The TCP sender is only af-
fected by the congestion in the wired network and hence
the sender is shielded from the wireless losses. This has
the advantage that the transport protocol between the base
station and mobile node can make use of its knowledge of
the wireless link characteristics, or even of the application
requirements. The problem with these proposals, however,
is their efficiency, robustness, and handoff requirements.

B.1 Indirect TCP (I-TCP)

Indirect TCP (I-TCP), developed in 1994-1995, was
one of the earliest wireless TCP proposals. With I-TCP,
a transport layer connection between a mobile host and a
fixed host is established as two separate connections: one
over the wireless link and the other over the wired link
with a “mobile support router” serving as the center point



[18]. Packets from the sender are buffered at the mobile
support router until transmitted across the wireless connec-
tion. A handoff mechanism is proposed to handle the situ-
ation when the wireless host moves across different cells.
A consequence of using I-TCP is that the TCP ACKs are
not end-to-end thereby violating the end-to-end semantics
of TCP.

B.2 Mobile TCP (M-TCP)

Mobile TCP (M-TCP) also uses a split connection based
approach but tries to preserve end-to-end semantics [19].
M-TCP adopts a three level hierarchy. At the lowest level,
mobile hosts communicate with mobile support stations in
each cell, which are in turn controlled by a “supervisor
host.” The supervisor host is connected to the wired net-
work and serves as the point where the connection is split.
A TCP client exists at the supervisor host. The TCP client
receives the segment from the TCP sender and passes it to
an M-TCP client to send it to the wireless device. Thus,
between the sender and the supervisor host, standard TCP
is used, while M-TCP is used between the supervisor host
and the wireless device. M-TCP is designed to recover
quickly from wireless losses due to disconnections and to
eliminate serial timeouts. TCP on the supervisor host does
not ACK packets it receives until the wireless device has
acknowledged them. This preserves end-to-end semantics,
preserves the sender timeout estimate based on the whole
round trip time, and handles mobility of the host with min-
imal state transformation.

B.3 Mobile End Transport Protocol (METP)

The mobile end transport protocol proposes the elimi-
nation of the TCP and IP layers from the wireless hosts
and replacing them with a Mobile End Transport Proto-
col designed specifically to directly run over the link layer
[20]. This approach shifts the IP datagram reception and
reassembly for all the wireless hosts to the base station.
The base station also removes the transport headers from
the IP datagram. The base station acts as a proxy for TCP
connections. It also buffers all the datagrams to be sent to
the wireless host. These datagrams are sent using METP
and a reduced header, thus providing minimal information
about source and destination addresses and ports, and con-
nection parameters. In addition, it uses retransmissions at
the link layer to provide reliable delivery at the receiver.
It does not require any change in the application programs
running on the wireless host as the socket API is main-
tained as in a normal TCP/IP stack. However, when hand-
off occurs, all the state information needs to be transferred
to the new base station.

B.4 Wireless Application Protocol (WAP)

In 1997, the Wireless Application Protocol (WAP) fo-
rum [21] was founded by Ericsson, Nokia, Motorola, and
Phone.Com (formerly Unwired Planet). Like METP, WAP
includes a full protocol stack at the receiver, as well as
gateway support, as shown in figure 4. The WAP protocol
layers are shown in figure 5.
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Fig. 5. Wireless application protocol layers

The top WAP layer, the Wireless Application Environ-
ment (WAE) establishes an environment to allow users to
build applications that can be used over a wide variety
of wireless systems. WAE is composed of user agents
such as browsers, text editors, date book or phone book.
WAE also includes scripting, higher-lever programming
languages and image formats. WAE uses languages such
as WMLScript (similar to JavaScript) and WML (similar
to HTML).

The Wireless Session Protocol (WSP) handles commu-
nication between the client and proxy or server. WSP
opens a session of communication between client and
server, exchanges encoded data, exchanges requests and
replies, and supports several asynchronous transmission
modes of data.

The Wireless Transaction Protocol (WTP) handles



transactions, re-transmission of data, and separation and
concatenation of data. This particular protocol has a sep-
arate interface that manages and referees the WTP layer
and the settings of the handheld device. This management
application is known as the WTP Management Entity. For
WTP to work, the following factors are important: (1) The
handheld device is within the coverage area of base agent;
(2) The handheld device is turned on and is reliable; (3)
Resources are adequate, e.g., CPU and memory; (4) WTP
settings are correctly input.

The Wireless Transport Layer Security (WTLS) is the
layer that handles security of data and validity of data
between two communicating entities. To transport data,
WTLS needs the source address and port number to iden-
tify the message creator, and from where the message is
being sent, the destination address and port number to
which data is being sent, and of course, the data itself.
WTLS has a connection interface which provides a con-
nection protocol between client and server.

The Wireless Data Protocol (WDP) acts as the commu-
nication layer between the upper level protocols (WTLS,
WTP, and WSP), and the bearer services. The function of
WODP is to provide a stable environment so that any of the
underlying bearers can operate using WAP. WDP can be
adapted to different bearers with different services. How-
ever, the services offered by WDP remain constant thus
providing a continuous interface to the upper layers of the
WAP stack.

C. Local Recovery Mechanisms

The motivation behind this approach is that wireless
losses are local and hence recovery from them should be
local. The mechanisms discussed below entail detecting
wireless losses at the base station or at the receiver and
using local retransmissions and sometimes forward error
correction for recovery. This class of mechanisms can be
considered as a compromise between the above two cate-
gories (end-to-end and split connections) [22].

C.1 The Snoop Protocol

The Snoop protocol caches TCP packets at the base sta-
tion [17]. State is maintained for all the TCP connections
passing through the base station to the wireless device.
The link layer is TCP-aware, thereby making it possible to
monitor TCP segments and infer packet losses on the wire-
less link from duplicate ACKSs (dupacks). Packet losses are
also inferred through local timeouts. Lost TCP segments
are retransmitted on the wireless link. This is possible be-
cause all TCP segments are cached until ACKs for them
arrive from the wireless device. Additionally, the dupacks
are suppressed at the base station in order to prevent the

sender from unnecessarily invoking congestion control al-
gorithms. This method works well [22] especially in wire-
less local area networks (WLANS).

C.2 Delayed Duplicate ACKs (DDA)

Delayed duplicate ACKs (DDA) recovers from wireless
losses using link level retransmissions, while delaying the
dupacks at the receiver to prevent the sender from retrans-
mitting [23]. If the retransmitted packets are received after
atime interval d, the dupacks are discarded; otherwise they
are allowed to return to the sender. DDA, unlike snoop, is
TCP-unaware in that it relies on link level (not TCP-level
like snoop) segments and ACKSs. This has the advantage
that it can work even when the IP payload is encrypted,
such as with IPSEC. However, due to the delaying of all
receiver dupacks by a time d, the sender may not invoke
congestion control algorithms like fast retransmit and re-
covery (see section Il) and time-out with both congestion
and wireless losses. Thus DDA only works well when con-
gestion losses are minimal.

C.3 Transport Unaware Link
(TULIP)

Like DDA, TULIP recovers from wireless losses by link
level retransmissions [24]. The protocol is TCP-unaware
(though it is aware of reliability requirements). Dupack
generation at the receiver is avoided by only delivering
in-order frames to the receiver TCP/IP. Lost packets are
detected through a bit vector that is returned as a part of
the link layer ACK, which helps immediate loss recov-
ery. TULIP is designed for efficient operation over half-
duplex radio channels. It introduces a media access con-
trol (MAC) acceleration feature to accelerate the return of
link layer ACKSs in order to improve throughput.

Improvement Protocol

C.4 TCP interaction with MAC layer (MACAW)

MACAW [25] investigates the interaction between TCP
and MAC layer backoff timers, which may cause unfair-
ness and capture conditions. The authors show these ef-
fects are very pronounced in CSMA and FAMA MAC pro-
tocols. They propose adding link layer ACKs and a less
aggressive backoff policy to improve performance of TCP
over these MAC protocols. The new MAC layer protocol
is called MACAW.

C.5 AIRMAIL

AIRMAIL [26] is a popular link layer protocol designed
for indoor and outdoor wireless networks. It provides a re-
liable link layer by using local retransmissions and forward
error correction (FEC) at the physical layer. The mobile
terminal combines several ACKSs into a single event-driven



ACK, and the base station sends periodic status messages.
However, this entails that no error correction can be done
until the ACKs arrive which can cause TCP to time out if
the error rate is high.

V. COMPARISON OF WIRELESS TCP MECHANISMS

In this section, we compare and contrast the various
wireless TCP mechanisms based on interaction among
protocol stack layers, division of responsibilities among
entities, complexity, and performance in various condi-
tions.

A. Interaction between TCP and the Link Layer

End-to-end mechanisms typically do not need any sup-
port from the link layer. On the other hand, approaches
based on recovering from a wireless loss locally need sub-
stantial support at the link layer. The snoop protocol [27]
monitors and caches TCP segments and performs local re-
transmissions of the TCP segments which necessitates the
link layer to be TCP aware. TULIP [24] relies on link
layer retransmission and MAC acceleration to improve the
throughput of the wireless link. Both TULIP and DDA
do not require base station TCP-level support. AIRMAIL
[26] relies on event-driven acknowledgments and reliable
retransmissions at the link layer. Mobile End Transport
Protocol (METP) [20], which uses a split connection, also
relies on a reliable retransmission and efficient demulti-
plexing of the reduced header at the link layer. MACAW
[25] uses link layer ACKs and a less aggressive backoff
policy to improve the performance of TCP over the link
layer.

B. Interaction between TCP and the Network Layer

Typically, mechanisms to improve TCP in wireless net-
works do not need support from the IP layer. With METP
[20], however, the IP and TCP layers are transferred from
the wireless device to the base station. METP is directly
implemented over the link layer and uses link layer reli-
ability mechanisms and reduced headers to improve the
throughput in the wireless link. Hence, this requires modi-
fying the network layer at the base station and the wireless
device. WAP [21] also modifies the protocol stack on the
mobile device, as well as the gateway.

C. Retransmission Approaches and ACKs

End-to-End mechanisms perform retransmissions at the
TCP sender. TCP SACKSs [10] are used by the TCP sender
to selectively retransmit lost segments. SMART retrans-
missions [11] infer the packets lost from the additional
(receiver-transmitted) sequence number of the packet that
caused the cumulative ACK. This eliminates the need for

a bit vector in the ACK to specify lost packets. TCP prob-
ing [12] enters a probe cycle upon detecting a lost packet
instead of retransmitting. This helps in alleviating conges-
tion while continuing to obtain round trip measurements.
TCP Santa Cruz [13] uses an ACK window from the re-
ceiver, similar to SACK. In addition, it uses retransmitted
packets to obtain the more accurate round trip time mea-
surements.

Local recovery mechanisms perform retransmissions
only on the wireless link. The snoop protocol [27] per-
forms retransmissions of the whole TCP segments on the
wireless link upon receipt of dupacks at the base station.
TULIP [24], delayed dupacks [23], and AIRMAIL [26]
depend on link layer retransmissions as the base station
used need not be TCP-aware. TULIP uses a bit vector in
link layer ACKs, similar to SACK at the transport layer.

Split connection mechanisms like I-TCP [18] and M-
TCP [19] use a separate connection between the base sta-
tion and the wireless device. So the retransmissions are
done by the transport protocol between the wireless device
and the base station as appropriate. Mobile End Trans-
port Protocol [20] uses link layer retransmissions to re-
cover from losses.

D. Flow Control

Among the approaches we have examined, only
WTCP99 [9] and ACK pacing (to some extent) [14] use
rate based flow control. In WTCP99, the transmission rate
is controlled by the receiver using inter packet delay. The
motivation behind this idea is that the round trip time cal-
culation for a wireless WAN is highly susceptible to fluctu-
ations. All the other schemes use window based flow con-
trol. With ACK pacing, the sender transmission of packets
is controlled by the rate at which ACKSs arrive. This avoids
bursty traffic and reduced throughput.

E. Loss Detection and Dependence on Timers

SMART [11] tries to avoid timeouts. The sender discov-
ers lost packets by the additional cumulative ACK infor-
mation. SMART uses RTT estimates to detect loss of re-
transmissions. Timers are used only to deal with the worst
case where all packets and all ACKs are lost. In schemes
like EBSN [15], NAK and ELN [16], where the wireless
channel state is explicitly conveyed to the sender, the time-
out for the transmitted packets can be reset on the arrival
of loss notification. TCP Santa Cruz [13] measures RTTs
for retransmissions to provide better RTT estimates. This
eliminates the need for timer-backoff strategies where the
timeout is doubled after every timeout and retransmission.

In the Snoop approach [17], the base station detects
wireless losses from dupacks on the reverse path. In sit-



uations when wireless channel losses are very high and
loss detection is hampered, it uses a timer, set to a frac-
tion of the wireless RTT to perform local retransmissions.
Using coarse TCP timers and fine link layer timers avoids
retransmission contention between the two layers. How-
ever, unnecessary link layer transmissions may result in
out-of-order packets at the receiver which generates du-
packs, resulting in retransmissions.

F. Effect of Reverse Path Asymmetry

Cumulative ACK schemes used in most TCP implemen-
tations offer robustness from ACK losses occurring on the
reverse path from the receiver to the sender. In cases where
ACK:s follow slower or more congested links, RTT esti-
mates at the sender may be inflated and do not reflect the
forward path state. TCP Santa Cruz [13] avoids this prob-
lem by making use of only forward delay measurements
for congestion control. WTCP99 [9] makes use of the ra-
tio of inter packet delay at the receiver and the sender for
congestion control and, therefore, avoids the RTT inflation
problem.

G. Effect of Wireless Link Latency on RTT

Local recovery schemes like [17] that use either TCP
or link layer retransmissions work under the assumption
that the wireless link latency is small compared to latency
of the entire connection. But in cases where the wireless
link latency is considerably high, there will be contention
between TCP retransmissions from the sender and local
retransmissions resulting in reduced throughput.

H. State Maintained

End-to-end mechanisms do not need any state at any in-
termediate node. Some local recovery mechanisms need
to maintain state while others do not. The Snoop proto-
col [27] places the complexity at the base station, so TCP
segments need to be cached until acknowledged by the re-
ceiver. In Explicit Loss Notification strategies for recover-
ing from wireless losses when the wireless link is the first
hop [16], the TCP segments need not be maintained by the
base station as no retransmission is performed. However,
information like sequence numbers of the packets that pass
through the base station need to be maintained to detect the
losses. Other protocols like TULIP [24], Delayed Dupacks
[23], and AIRMAIL [26] rely on link level retransmissions
and state, as the protocols are TCP-unaware. Split con-
nection mechanisms require the TCP packets be stored at
the base station to be transmitted on a separate connection
across the wireless link.

I. Robustness and Overhead

Copying is required in split connection based ap-
proaches. This is because the connection is terminated
at the base station and hence the packets destined for the
wireless host need to be buffered at the base station un-
til they are transmitted on the wireless link. Overhead is
incurred by the kernel when copying the packets across
buffers for different connections [22]. The difference be-
tween this and TCP state in snoop, for example, is that in
the latter, the state is soft. A failure of the base station in
snoop only temporarily affects the throughput of the con-
nection. However, if the base station fails in split connec-
tion based approaches, the receiving TCP entity might not
receive the packets that have been transmitted by the send-
ing entity, and subsequently ACKed by the base station.
M-TCP avoids this through delaying ACKs to the sender
until packets are received at the mobile node. However,
split connection approaches generally suffer from robust-
ness, efficiency and flexibility problems.

J. Preserving End-to-End Semantics

End-to-end mechanisms clearly preserve end-to-end se-
mantics. Local recovery mechanisms also preserve end-
to-end semantics except that dupacks are suppressed as in
the Snoop protocol [27] or delayed as in DDA [23]. Split
connection approaches typically terminate the connection
at the base station [28], [20], thereby violating the end-
to-end semantics of TCP in the strict sense. The M-TCP
approach [19], however, attempts to maintain end-to-end
semantics while splitting the connection at the base station
by acknowledging packets back on the wired network only
when the ACKs arrive on the wireless link.

Another important point is that TCP-aware local recov-
ery, such as snoop [17] reads TCP headers and thus needs
to be adapted when the IP payload is encrypted such as
with IPSEC. DDA and TULIP, as well as approaches like
MACAW and AIRMAIL, are not TCP aware, and can
work with encrypted IP payloads.

K. Suitability to different Network Environments

Some protocols work very well for certain types of net-
work environments. TULIP [24] is tailored for the half-
duplex radio links and provides a MAC acceleration fea-
ture to improve the throughput in wireless links. The
Snoop protocol [27] and delayed duplicate ACKs work
best in local area network environments where wireless
round trip times are small and fading losses do not occur
frequently. In fact, snoop [27] has little benefit if the link
layer already provides reliable in-order delivery, or if the
wired link delay is small. WTCP99 [9] is tuned to perform



well in wireless WANSs with low bandwidths, large round
trip times, asymmetric channels, and occasional blackouts
and signal fading.

L. Adaptation to Long Fading Periods

WTCP99 [9] adapts to long fading periods effectively.
This is because the motivation for its design stems from
wireless WANs which exhibit fading. WTCP99 uses rate
based control, inter-packet delay as a congestion metric,
and blackout detection to adapt to long fading periods.
Snoop [27] and similar protocols adapt to fading by mak-
ing use of local timers in absence of dupacks. TCP probing
[12] also adapts to long fading periods because it enters a
probe cycle upon detection of a packet loss. The cycle ter-
minates only after the sender makes two successive RTT
measurements.

VI. THE INTERNET ENGINEERING TASK FORCE
(IETF) EFFORTS

Recently, the performance implications of link charac-
teristics (PILC) working group at the IETF has recom-
mended certain changes to help TCP adapt to (1) asym-
metry, (2) high error rate, and (3) low speed links.

Asymmetry in network bandwidth can result in variabil-
ity in the ACK feedback returning to the sender. Several
techniques can mitigate this effect, including using header
compression [29]; reducing ACK frequency by taking ad-
vantage of cumulative ACKSs; using TCP congestion con-
trol for ACKs on the reverse path; giving scheduling pri-
ority to ACKs over reverse channel data in routers; and
applying backpressure with scheduling.

The TCP sender must also handle infrequent ACKSs.
This can be done by bounding the number of back-to-back
segment transmissions. Taking into account cumulative
ACKs and not number of ACKs at the sender can also
improve performance. This scheme is called byte (ver-
sus ACK) counting [30] because the sender increases its
congestion window based on the number of bytes covered
(ACKed) by each ACK.

In addition, reconstructing the ACK stream at the
sender; router ACK filtering (removing redundant ACKs
from the router queue); or ACK compaction/expansion
(conveying information about discarded ACKs from the
compacter to the expander) can be used.

For high error rate links, experiments show that
approaches such as explicit congestion notification
(ECN) [31], fast retransmit and recovery and SACK are es-
pecially beneficial. Explicit loss notification, delayed du-
plicate acknowledgments (section 1V-C.2), persistent TCP
connections, and byte counting are a few of the open re-
search issues in this area. TCP-aware performance en-

hancing proxies (PEPS), such as split connection mecha-
nisms and snoop can also be used.

For low speed links, in addition to compressing the TCP
header and payload [29], [32], several changes to the
congestion avoidance algorithm are recommended. First,
hosts that are directly connected to low-speed links should
advertise small receiver window sizes to prevent unpro-
ductive probing for non-existent bandwidth.

Second, maximum transmission units (MTUs) should
be carefully selected to not monopolize network interfaces
for human-perceptible amounts of time (e.g., 100-200 ms)
and to allow delayed acknowledgments. Large MTUs
which monopolize the network interfaces for long periods
are likely to cause the receiver to generate an ACK for ev-
ery segment rather than delayed ACKs. Using a smaller
MTU size will decrease the queuing delay of a TCP flow
compared to using larger MTU size with the same number
of packets in the queue.

Third, the receiver advertised window size, rwnd,
should be carefully selected. Dynamic allocation of TCP
buffers (or buffer auto-tuning) [33] based on the current
effective window can be used.

Finally, binary encoding of web pages, such as with
WAP (section IV-B.4) can be used to make web trans-
missions more compact. Many of the suggested solutions
mentioned in this section are still in the research phase.

RFC 2757 [34] provides a good summary of various
TCP over wireless WAN proposals.

A. TCP over Satellites

In addition to bandwidth asymmetry, restricted avail-
able bandwidth, intermittent connectivity, and high error
rate due to noise, Geostationary Earth Orbit (GEO) satel-
lite links are characterized by very high latency. This is
because such satellites are usually placed at an altitude
of around 36,000 km, resulting in a one-way link de-
lay of around 279 ms, or a round trip delay of approxi-
mately 558 ms. This results in a long feedback loop and
a large delay bandwidth product. For Low Earth Orbit
(LEO) and Medium Earth Orbit (MEQ) satellites, the de-
lays are shorter, but inter-satellite links are more common
and round trip delays are variable.

Allman et al recommend in RFC 2488 [35] several tech-
nigques to mitigate the effect of these problems. These tech-
niques include using path MTU discovery; forward error
correction (FEC); TCP slow start, congestion avoidance,
fast retransmit, fast recovery, and selective acknowledg-
ments (SACK). The TCP window scaling option must also
be used to increase the receiver window (rwnd) to place
a larger upper bound on the TCP window size. The algo-
rithms companion to window scaling, including protection
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against wrapped sequence space (PAWS) and round trip
time measurements (RTTM) are also recommended.

A number of additional mitigations are still being re-
searched, and are summarized in RFC 2760 [36]. These
include using larger initial window sizes (to eliminate the
timeout observed with delayed ACKs at startup and reduce
transmission time for short flows); transaction TCP (elim-
inates the TCP 3-way handshake with every connection);
using multiple TCP connections for a transmission; pacing
TCP segment transmissions; persistent TCP connections;
byte counting at the sender; ACK filtering; ACK conges-
tion control; explicit loss notification; using delayed ACKs
only after slow start; setting the initial slow start thresh-
old (ssthresh) to the delay bandwidth product as in [5];
header compression; SACK, FACK, random early detec-
tion (RED) at routers, ECN and TCP-friendly control.

Table | summarizes the current research issues with link
characteristics. A blank entry means the technique was not
mentioned in the relevant RFC/draft. Note that slow start,
congestion avoidance, fast retransmit and fast recovery are
required and SACK is recommended for all cases. Table 1l
summarizes the RFCs describing TCP congestion control
and their contents.

VII. SUMMARY AND OPEN ISSUES

Table 111 gives a brief summary of the mechanisms dis-
cussed in this paper and their requirements and implica-
tions.

Providing reliable transport for wireless networks has
been an active topic of research since 1994. Many new
protocols and TCP maodifications have been proposed to
improve performance over wireless links. We have pre-
sented a taxonomy of these approaches and compared
them in terms of complexity, ease of deployment, and per-
formance in different conditions.

Local recovery mechanisms work well when the wire-
less link latency is small compared to the RTT of the con-
nection. For local recovery mechanisms that use link layer
retransmissions, it is important that the granularity of the
link layer timers be very fine compared to the TCP timers.
Otherwise, contention between the two timers can reduce
throughput. Another important observation is that out-of-
order delivery of link layer retransmissions at the receiver
[22] may trigger duplicate ACKs and TCP retransmissions
by the sender. TULIP [24] avoids this problem by pre-
venting out-of-order delivery. In addition, hiding wireless
losses from the sender by suppressing dupacks may cause
inaccurate RTT measurements at the sender. This is espe-
cially important in cases where the wireless link latency is
comparable to the RTT.

Split connection schemes shield the sender from wire-

less losses, and allow application and transport level opti-
mizations at the base station which is aware of the wireless
link characteristics. However, split connection schemes do
not preserve end-to-end semantics, and hence they are not
robust to base station crashes. Moreover, the schemes are
inefficient and involve significant copying overhead and
handoff management.

A few of the TCP sender adaptations work well for
certain environments only, while others, such as selective
ACKs, are generally useful. Modifications proposed to
TCP for lossy, asymmetric, low speed or high delay links
are being standardized by IETF. It is important to study
the interactions between these mechanisms to ensure no
adverse effects occur. For example, some straightforward
mechanisms, such as byte counting, result in bursty traffic,
and should be used with caution even though they are very
useful for satellite environments. Many of the proposed
approaches have been designed for specific environments
and must be carefully examined if they are to be univer-
sally deployed. For example, WTCP99 [9] is well suited
for wireless wide area networks. TULIP [24] is tailored for
half-duplex radio links, while MACAW [25] is designed
for CSMA and FAMA links.
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3042 limited transmit option (recovery with a small window or multiple losses)
TABLE I
SUMMARY OF MECHANISMS FOR TCP OVER WIRELESS LINKS
Scheme Type | Sender | Receiver BS State Retrans— LL Flow | BS Crash | Preserves
Support | Support | Support at BS mitat | Support | Control Impact E2E
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TCP-P = TCP Probing, TCP-SC = TCP Santa Cruz, Byte-C = Byte Counting, ACK-P = ACK Pacing, WB =

Window Based, RB = Rate Based, AL = application level, TL = transport level, and LL = link level
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