
1

Dynamics of the “pgmcc” Multicast Congestion
Control Protocol
Chin-ying Wang and Sonia Fahmy

Department of Computer Sciences, Purdue University, West Lafayette, IN 47907–1398, USA
E-mail: fahmy@cs.purdue.edu

Abstract—Fairness to current unicast (point-to-point) Internet traffic is
an important requirement of multicast (group communication) protocols.
In this paper, we investigate the fairness (in terms of bandwidth use rel-
ative to TCP/UDP traffic) of the “pgmcc” protocol. Pgmcc is a promis-
ing multicast congestion control proposal, but it has not been extensively
stress-tested. We investigate the performance of pgmcc when competing
with bursty TCP and UDP flows in a scenario with multiple time-varying
bottlenecks and round trip times. Our results indicate that pgmcc is a ro-
bust protocol, but is missing an algorithm for dynamically determining the
timeout value, and an algorithm for smoother handling of switches among
receiver representatives.

Keywords—multicast, congestion control, pgmcc, fairness, feedback ag-
gregation

I. INTRODUCTION

Multicasting allows efficient information exchange among
multiple senders and multiple receivers. Popular multicast ap-
plications include audio/video conferencing, distance learning,
and distributed games. Pgmcc [1] is a single rate, representative-
based multicast congestion control protocol designed to be fair
to competing TCP flows. Pgmcc sets its transmission window
size according to a representative called the “acker.” The acker
is the receiver with the lowest rate (throughput) among all re-
ceivers within a group. A tight control loop is run between the
acker and the sender [1].

Although pgmcc is one of the most promising multicast con-
gestion control proposals, it has not been extensively tested. In
this paper, we examine the pgmcc protocol as implemented ac-
cording to the standard being discussed by the IETF [2]. In
our first set of experiments, we demonstrate the feedback aggre-
gation problem caused by the NAK suppression at routers and
show its effect on acker selection. In the second set of experi-
ments, the performance of pgmcc is evaluated when competing
with TCP and UDP flows in a realistic scenario. The fairness of
pgmcc to TCP flows is examined with different bottleneck link
bandwidths. Simulation results show pgmcc may achieve higher
throughput than competing TCP flows during acker switching,
especially during the first few acker switches. In other cases,
pgmcc performance degrades due to the fixed timeout interval
used in pgmcc. Experiments are performed using ns 2.1b5, and
pgmcc is implemented on top of the PGM [3] multicast transport
protocol.

The remainder of this paper is organized as follows. Sec-
tion II discusses reliable multicast protocols, specifically PGM
and pgmcc. Section III examines the effect of feedback aggrega-
tion. Section IV discusses simulation results of fairness among
pgmcc and TCP. Future work is discussed in section V.

—-This research is sponsored in part by Tektronix, and the Schlumberger
Foundation technical merit award.

II. RELATED WORK

This section discusses reliable multicast protocols, including
detailed descriptions of PGM and pgmcc.

A. Reliable Multicast Protocols

Figure 1 illustrates the operation of reliable multicast proto-
cols. S represents a sender host, and each R represents a receiver
host in a multicast group. S sends a single copy of every packet
into the network. As the packet is forwarded by a router (the
rectangles in figure 1 represent network routers), it is replicated
when needed and forwarded via multiple outgoing links of the
router. The packet should reach all the receivers in a group. In
order to enforce reliability, each receiver has to provide some
form of feedback to notify the sender whether the packet has
been received. A receiver may send an ACK if it receives pack-
ets successfully, or it may send a NAK if a packet is assumed to
be lost.

S Router Router

R

R

R

data
feedback

Feedback
implosion

Fig. 1. Reliable multicast protocol operation and the feedback implosion prob-
lem

Two important problems with reliable multicast protocols are
depicted in figure 1 and figure 2. Since each of the receivers
sends feedback to the sender, the sender may be overwhelmed
by the implosion of ACKs/NAKs when the number of receivers
becomes very large. Feedback uses bandwidth unnecessarily,
and the sender is burdened with processing all the feedback
packets.

Determining the appropriate sending rate at the multicast
sender is the second problem (shown in Figure 2). Each of
the receivers in a multicast group may have a different capac-
ity. The problem of determining the sending rate to achieve the
“optimal” bandwidth usage depends on the application reliabil-
ity semantics.

B. Pragmatic General Multicast (PGM)

PGM is a single-sender multicast protocol, providing a re-
liable service by using NAK-based retransmission requests.

2

���
���

��

��

��

��

���������������
���������������

S
?

R

R

R

Router Router

J

L

RI

K

current
acker

newly joined receiver whose
throughput T(I) < T(J)

500kb/s

500kb/s

1000kb/s

300kb/s

750kb/s

Fig. 2. Acker selection in pgmcc

Feedback suppression allows PGM routers to only forward the
first NAK to arrive at a router for each missing or corrupted
packet [4]. An example data/feedback packet flow in PGM is
depicted in figure 3. Each original data packet (odata) sent from
the PGM sender is replicated at each router, and forwarded to
each of the receivers in a group. If a receiver does not receive
odata, it sends a NAK upstream. When the upstream router re-
ceives a NAK, it sends an NCF packet to the receiver indicating
the reception of the NAK, and forwards only one NAK out of all
the NAKs sent from different receivers in the same subtree for
each of the lost/corrupted packets. Eventually, the sender will
receive the NAK, and repair of the data (rdata) is transmitted
only to the receivers who requested the retransmission.

	
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	

�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
� �
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�

!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!!
!
!
!
!
!
!
!

"
"
"
"
"
"
"
"
""
"
"
"
"
"
"
"
""
"
"
"
"
"
"
"
""
"
"
"
"
"
"
"
"
#
#
#
#
#
#
#
#
##
#
#
#
#
#
#
#
##
#
#
#
#
#
#
#
##
#
#
#
#
#
#
#
#

S Router

Router

Router

R1

R3

R2

NCF
ODATA
RDATA

NAK

NAK

NAK

NAK

NAK

NAK

NCF

NCF

NCF

NCF

NCF

Fig. 3. PGM protocol operation

C. Pgmcc Congestion Control

One method of adjusting the sending rate at the PGM sender
is to pace the sender according to the “slowest” PGM receiver.
Pgmcc paces the sending rate according to the receiver with the
worst throughput, which serves as the group representative. This
receiver is called the “acker.” The acker can change at any time
since receivers are continuously joining and leaving the multi-
cast group, and bottlenecks vary over time. A tight control loop
is run between the acker and the sender. Only the acker sends
ACKs to the sender to adjust the sender transmission window
and token bucket. Other receivers may send NAKs when they
lose packets. Both the loss rate and the round trip time (RTT) are
needed to calculate the throughput of each of the receiver. This
information is carried in both NAK and ACK packets, and the
sender uses the throughput equation as specified in [1] to com-
pute the throughput of each receiver. The acker is switched from
one receiver to another if a receiver with a lower throughput is
found. An example of acker switching is illustrated in figure 2.

A window based congestion control protocol similar to that
used by TCP is run between the acker and the sender. In the pro-

tocol specified in [1], the sender maintains two state variables:
a window

$
, and a token count % .

$
represents the number

of packets in flight, while % is used to regulate the generation
of data packets. One token is needed and consumed in order to
transmit one data packet. Initially, both

$
and % are initialized

to one. The values of
$

and % are updated with every ACK,
NAK, timeout, and packet transmission [1].

III. FEEDBACK AGGREGATION

In this section, we illustrate the effect of feedback aggregation
on pgmcc performance. Due to the suppression of PGM NAKs
containing RTT and loss rate information needed by the pgmcc
sender to select the acker, incorrect acker switches may occur
in certain cases. An example is shown in figure 4, where one
PGM session runs pgmcc at the sender PS, and each of the four
receivers PR*. There are two PGM routers, and all the links
in this topology have the same bandwidth and delay. Among
the four PGM receivers, we are interested in receivers PR1 and
PR3. PR1 is closer to the sender and has a lower loss rate; PR3
is further away from the sender and exhibits a higher loss rate.

Suppose the PGM sender begins to send data to all its re-
ceivers, and both PR1 and PR3 lose packet number 5. Due to the
shorter delay to PR1, the router closest to the sender will receive
the NAK from PR1 before receiving one from PR3. Hence, the
router forwards the NAK sent from PR1 to the sender, and the
NAK sent from PR3 is suppressed. Since pgmcc needs the loss
rate and RTT carried in NAK packets to perform acker switch-
ing, the sender may select PR1 as the acker instead of PR3 at
certain instances, even though PR3 clearly has lower through-
put.

PS Router Router

PR2 PR3

PR4PR1

20% loss

25% loss

All links are 10Mb/s with 5ms delay

Fig. 4. Simulation topology to examine feedback aggregation problems

To verify this scenario, we simulate the scenario depicted in
figure 4 (except PR3 and PR4 are switched) for 50 seconds. We
plot the sequence numbers and acker switches in figure 5. In
the figure, “data” is sent from the sender to the receivers, “ack”
is the acknowledgment sent from the acker upon receiving a
packet, “nak1” is the NAK sent from PR1, etc. “Acker1” shows
that the current acker is PR1 at the specified time and “acker2”
and “acker4” denote PR2 and PR4 are the ackers respectively.
From the simulation results, we can see that PR2 is selected as
the acker at the beginning of the simulation. About 4 seconds
later, the sender receives a NAK from PR4, and it switches the
current acker to PR4. The acker is switched to PR1 because
the sender receives a NAK from PR1, and the one possibly sent
from PR4 is suppressed. Thus, the acker is switched back to PR4
again at the 8th second. The sender switches the acker between
PR1 and PR4 a number of times. Unnecessary acker switches
occur between PR1 and PR4 although the acker should (on a

3

larger time scale) always be PR4 which has a higher loss rate
and higher RTT. Thus the time scale of pgmcc may be too fine,
and coarser time scales may enhance stability.

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50

se
qu

en
ce

 n
um

be
r

(p
ac

ke
t)

time (second)

Feedback Aggregation

"data"
"ack"

"nak1"
"nak4"

"acker1"
"acker2"
"acker4"

Fig. 5. Simulation results depicting feedback aggregation effects

IV. PGMCC FAIRNESS DYNAMICS

In this section, we simulate pgmcc in more complex con-
figurations. The objective of our experiments is to determine
whether pgmcc is fair to TCP (i.e., is TCP friendly) in realistic
scenarios. Figure 6 shows our simulation topology which in-
cludes 22 source nodes (S*) and 22 destination nodes (D*). The
link between each node and router has a bandwidth of 150 kbps
with 1 ms delay. The link bandwidths and link delays between
routers are specified in table I. 22 TCP flows run between source
and destination nodes. TCP NewReno is used because NewReno
and SACK are being deployed in the majority of web servers to
provide better congestion control compared to other TCP ver-
sions [5]. We investigate the performance of the TCP flow from���

to � � , which runs across the same links and nodes as the
PGM receiver with the longest RTT. One UDP flow sending
Pareto traffic runs across “Link 4” with a 500 ms on/off interval.
All the routers use simple drop tail queues of size 120 packets.
The PGM sender and receivers are located in the nodes labeled
“PS” and “PR*” in Figure 6. All the simulations were run for
900 seconds.

router
 0

router
 1

router
 2

router
 3

router
 4

router
 5

router
 6

S0
S8

S13

S18

S19

D0

D1

D2
D3

D5

S3 S9 S1 S4 S10
S11 S2 S12 S5 S20 S21 S6 S7

S14

S15 S16
S17

D19
D18 D17

D16

D15

D14

D13

D4

D8

D7
D6

D20 D21D12D11D10D9

PS

PR1 PR2 PR3 PR4

PR5

link3 link4 link5link2link1link0

Fig. 6. Simulation topology to investigate fairness

In each of the following experiments, we measure the goodput
(as defined in [6]) which indicates bandwidth achieved at the
receiver excluding duplicate packets. In all the experiments, the
goodput for TCP flows from

���
to � � , from

�����
to � ��� , and

from
�
	��

to � 	�� is almost 2/3 of the link bandwidth because
the RTT of each of them is fairly short [7].

A. Experiment I: Highly Congested Network

The goodputs of the PGM session and the TCP session from���
to � � are shown in figure 7, and the sizes of their conges-

tion windows are depicted in figure 8. Figure 7 shows that for
the first 50 seconds of the simulation, PGM has a much higher
throughput than TCP. After 50 seconds, the slopes of the PGM
flow and the TCP flow are similar. Both of the flows have low
throughput. The reason for this is that the PGM window (fig-
ure 8) increases only during the first 50 seconds of the simula-
tion. The size of the PGM window drops to one several times in
the first 100 seconds, and it remains one till the end of the sim-
ulation. On the other hand, the congestion window at the TCP
sender increases slowly due to slow start at the beginning, but
the TCP sender is able to send more data afterwards compared
to the PGM sender due to a larger window throughout the rest
of the simulation.

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900

se
qu

en
ce

 n
um

be
r

(p
ac

ke
t)

time (second)

1PGM/TCP(src4 ~ dst4)

"pgmdata"
"pgmack"
"pgmnak"

"pgmacker"
"tcpdata"
"tcpack"

Fig. 7. PGM/TCP throughput in highly congested network

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800 900

w
in

do
w

 s
iz

e
(p

ac
ke

t)

time (second)

PGM cc_window && TCP cc_window

"pgmccwin"
"tcpwin"

Fig. 8. PGM/TCP sender congestion window in highly congested network

Observe that the PGM sender always chooses the receiver
who is closest to it as the acker at the beginning of the simu-
lation (since it is the first receiver it receives feedback from).
Hence, �� � is elected as the initial acker. Later, several pack-
ets are dropped at router 4 causing PR4 and PR5 to send NAKs
for the same lost packets. The NAKs from PR5 are suppressed
and only the NAKs sent from PR4 are forwarded to the sender.
Hence, the acker is switched from PR1 to PR4 due to the higher
loss rate of PR4 over PR1 perceived by the PGM sender. Finally,
more packets are dropped at router 5 causing PR5 to send NAKs
for the lost packets, so the acker is switched to PR5, which has
the longest RTT and the highest loss rate. The receiving rate at
each PGM receiver is shown in the first line (labeled “Highly
Congested”) in table II.

We now investigate why initial acker switches cause steep in-
crease of the window at the PGM sender. Figure 9 illustrates
the time that data packets (represented by the diamond shape)
are sent and the acks are received by the PGM sender in this ex-
periment. Each ack (sent from the current acker) is represented

4

TABLE I

LINK BANDWIDTHS AND DELAYS BETWEEN ROUTERS

Link Link 0 Link 1 Link 2 Link 3 Link 4 Link 5

Bandwidth (kbps) 50 100 50 150 150 50
Delay (ms) 20 10 5 5 5 10

TABLE II

RECEIVING RATE OF EACH PGM RECEIVER

Experiment PR1 PR2 PR3 PR4 PR5

Highly Congested 100% 100% 100% 97% 92.5%
Medium Congestion 100% 100% 99.48% 100% 97.14%
Uncongested 100% 99.9% 98.39% 99.9% 98.03%

0
5

10
15
20
25
30
35
40
45
50

0 100 200 300 400 500 600 700 800 900

se
qu

en
ce

 n
um

be
r

(p
ac

ke
t)

time (second)

1PGM

"pgm data mod 50"
"pgm ack mod 50"

Fig. 9. PGM odata/ack sent/received at the sender in congested network

by a plus sign in the figure. The packet number (modulo 50 to
make the figure more readable) is given on the y-axis. At the
beginning of the simulation, PR1 is selected as the acker be-
cause it is closest to the sender. After sending packet number
173, the acker switched from PR1 to PR4 at time 50.222 sec-
ond (the overlapped diamond and plus sign in Figure 9 at time
76.9 seconds indicates the acker switch). Because the RTT of
PR4 is much longer than PR1, it takes longer for PR4 to receive
data packets sent from the sender than it does for PR1. More-
over, each data packet is marked with the current acker address
in pgmcc. Hence, even though an acker switch occurs early, the
previous acker (PR1) continues sending ACKs to the sender un-
til reception of packet number 173. As a result, the new acker
(PR4) only sends ACKs after the reception of packet number
174. In this experiment, PR4 began sending ACKs after 76.9292
seconds even though the acker switch occurred at time 50.222
seconds.

There are two consequences of this behavior. First, when an
acker switch occurs, it means there is a receiver with a lower
throughput than the current acker. However, as discussed above,
the previous acker keeps on sending ACKs till the packet num-
ber is equal to the trail of the sender window at the time of the
acker switch. For each ACK received at the sender side, the
sender increases the token count % by one and increases the
window accordingly. Thus, more data packets are sent by the
sender. This leads to the second consequence which is that the
network becomes even more congested. We observed the same
behavior when the acker switched from PR4 to PR5.

The delay of sending ACKs from the new acker observed in
this experiment is one of the causes of the sudden drop of the
window size to one. Because pgmcc uses a fixed timeout inter-

val to detect congestion, if the sender does not receive an ACK
from the acker within the timeout specified, it drops the win-
dow size

$
to one and decreases the token count % to �

�
��� [1].

Revisiting figure 9, we see that the distance between the last
overlapped cross and diamond at time 76.9 and the first non-
overlapping cross indicates the time that the sender waits for the
ACK for packet number 174 from the new acker (PR4). If the
distance is longer than the timeout interval, which is true in this
experiment, one or more timeouts occur, degrading PGM per-
formance.

Another reason for the sudden drop of the window size to one
is that the RTT of the current acker itself is sometimes simply
longer than the timeout interval. In this case, the PGM sender
will never be able to receive an ACK within the timeout time and
will keep timing out, as shown in figure 8. This problem can be
remedied by implementing a TCP-like retransmission timeout
determination algorithm.

In terms of the goodput, the goodput for each of the PGM
receivers ranges from 3.95 to 4.26 kbps and the goodput for TCP
receiver is 1.39 kbps. It is not surprising that goodput for both
PGM and TCP flows is quite low because the links are congested
and shared among many TCP and UDP flows.

B. Experiment II: Medium Congestion

In this section, we maintain all simulation parameters un-
changed except that we increase the bandwidth of the links be-
tween routers. Many experiments were run with bottleneck link
bandwidths ranging between 2.5 and 3.5 times the original band-
widths shown in table I. The results are similar, so we only dis-
cuss the results using bandwidth of 2.5 times, and 3.5 times the
original bandwidth.

The throughput of both PGM and TCP flows and their win-
dows sizes are shown in figure 10. The receiving rate of each
PGM receiver is shown in the second line of table II. We observe
similar behavior to figure 7 in figure 10(a). Fewer timeouts oc-
cur in this experiment (figure 10(d)) compared to the highly con-
gested network in the previous subsection. This is because we
have increased the link bandwidths, so the time it takes for trans-
mission of ACKs from the acker to the sender is shorter than that
in the previous setting. However, the timeouts are still frequent,
causing the window to drop to 1 because the RTT of PR5 is
greater than the PGM sender timeout interval. The throughput

5

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800 900

se
qu

en
ce

 n
um

be
r

(p
ac

ke
t)

time (second)

1PGM/TCP(src4 ~ dst4)

"pgmdata"
"pgmack"
"pgmnak"

"pgmacker"
"tcpdata"
"tcpack"

(a) 2.5 � Congested

0

200

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500 600 700 800 900

se
qu

en
ce

 n
um

be
r

(p
ac

ke
t)

time (second)

1PGM/TCP(src4 ~ dst4)

"pgmdata"
"pgmack"
"pgmnak"

"pgmacker"
"tcpdata"
"tcpack"

(b) 3.5 � Congested

0
2
4
6
8

10
12
14
16
18
20

0 100 200 300 400 500 600 700 800 900

w
in

do
w

 s
iz

e
(p

ac
ke

t)

time (second)

PGM cc_window && TCP cc_window

"pgmccwin"
"tcpwin"

(c) 2.5 � Congested

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900

w
in

do
w

 s
iz

e
(p

ac
ke

t)

time (second)

PGM cc_window && TCP cc_window

"pgmccwin"
"tcpwin"

(d) 3.5 � Congested

Fig. 10. PGM/TCP throughput and window size with medium congestion

of the TCP flow, on the other hand, is higher than the one in ex-
periment I and has a higher slope. In terms of the goodput, the
goodput of PGM receivers ranges from 4.77 to 4.91 kbps, and
goodput of the TCP receiver is 4.97 kbps.

Figure 10(b) may appear different at first, but it is similar to
Figure 10(a) if we had run the simulation longer. The goodput
of each of the PGM receivers ranges between 22 and 22.4 kbps,
and that of the TCP receiver is 7.24 kbps. The reason for the
higher goodput for PGM receivers, in addition to the increase
of the bandwidth, is that the acker was switched from PR3 to
PR5 several times. As discussed above, acker switches take time
and the sender window is increased meanwhile. Further, the
two different branches have different throughputs. This effect is
clearly shown in figure 10(d).

By increasing the bottleneck link bandwidth, the throughput
of both the PGM and TCP flows increases. From this set of
experiments, we conclude that the PGM flow outperforms the
TCP flow during initial acker switching, but the TCP flow has a
higher throughput if the timeout interval at the sender does not
adapt to the increase of the acker RTT.

C. Experiment III: Uncongested Network

In this section, we retain all the parameter values of previous
experiments but we increase the bandwidth of the links between
routers. Many experiments were run with various bandwidths,
but, since the results are similar, we only show the results using
bandwidths 10 times and 80 times the original bandwidths in
table I. The throughput of both PGM and TCP flows and their
windows sizes are shown in figure 11.

From the figure, we find that the acker switches back and forth
between PR3 and PR5 due to the closeness of the throughputs
of PR3 and PR5 (the receiving rate for each of the PGM re-
ceivers is shown in the third line (labeled “Uncongested”) in
table II). Feedback suppression does not cause problems here
because PR3 and PR5 lose different packets. As expected, the
PGM sender window continues to increase some time after acker
switch. In terms of goodput, the goodput for each of the PGM
receivers ranges from 74.15 to 76.56 kbps, and for the TCP re-
ceivers it is around 7.8 kbps in both figure 11(a) and (b).

The reason why PGM outperforms TCP appears to be the se-
lection of PR3 as the acker throughput most of the simulation.
Both the TCP receiver and PGM receiver PR5 are connected to
router 6. PR5 is the acker for only 173 seconds while PR3 is the
acker for 736 seconds of the simulation time. PR3 has a short

RTT and reasonable loss rate. Therefore, even though increasing
the link bandwidth will increases the throughput of both PGM
and TCP flows, the PGM flow outperforms the TCP flow in this
case.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the fairness and dynam-
ics of the pgmcc single-rate multicast congestion control proto-
col. Our simulation results show that pgmcc flows initially send
more than competing TCP flows due to the rapid opening of the
PGM sender window between initial acker switches. If the acker
selection process stabilizes and a PGM receiver with a very long
RTT is selected to be the acker, timeouts severely degrade the
performance of the PGM flow. A TCP-like retransmission time-
out computation mechanism can remedy this problem. With the
use of a timeout interval selected according to the acker RTT,
the PGM sender can distinguish between situations of real con-
gestion and late ACKs received from an acker with a long RTT.
In an uncongested network, the PGM flow may outperform a
competing TCP flow if frequent acker switches occur between
ackers of different throughputs.

We plan to examine various application reliability semantics
to see how the pgmcc protocol fits in the unreliable (or not fully
reliable) multicast protocol context. The PGM multicast proto-
col provides reliability in the transport layer as specified in [3]
and illustrated in Figure 3. On examining the pgmcc implemen-
tation, we find that if a PGM receiver loses a data packet, it only
sends a NAK back to the sender once. If the NAK get lost or
corrupted before it gets to the sender, or if the NCF sent to ac-
knowledge the NAK reception is lost or corrupted before it gets
to the receiver, the receiver which originally sent the NAK will
wait for a retransmission timeout. Then, the receiver resched-
ules the retransmission timeout up to ten times waiting for the
repair, instead of resending the NAK. If, after rescheduling the
retransmission timeout for ten times, the repair is not received,
the receiver treats the packet as unrecoverable. This essentially
means that this flavor of PGM is not fully reliable. It is not com-
pletely unreliable though, because NAKs are sent, and when a
receiver receives the repair from the sender, it does not check
whether the repair is needed or not (e.g., if the repair must be
received within a certain amount of time and it is useless other-
wise). We plan to experiment with various reliability semantics,
and examine their effect on the pgmcc congestion control algo-
rithm, especially on acker selection with insufficient NAKs.

6

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700 800 900

se
qu

en
ce

 n
um

be
r

(p
ac

ke
t)

time (second)

1PGM/TCP(src4 ~ dst4)

"pgmdata"
"pgmack"
"pgmnak"

"pgmacker"
"tcpdata"
"tcpack"

(a) 10 � Congested

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600 700 800 900

se
qu

en
ce

 n
um

be
r

(p
ac

ke
t)

time (second)

1PGM/TCP(src4 ~ dst4)

"pgmdata"
"pgmack"
"pgmnak"

"pgmacker"
"tcpdata"
"tcpack"

(b) 80 � Congested

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700 800 900

w
in

do
w

 s
iz

e
(p

ac
ke

t)

time (second)

PGM cc_window && TCP cc_window

"pgmccwin"
"tcpwin"

(c) 10 � Congested

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900

w
in

do
w

 s
iz

e
(p

ac
ke

t)

time (second)

PGM cc_window && TCP cc_window

"pgmccwin"
"tcpwin"

(d) 80 � Congested

Fig. 11. PGM/TCP throughput and window size in an uncongested network

ACKNOWLEDGMENTS

The authors would like to thank Gianluca Iannaccone and
Luigi Rizzo for providing us with their pgmcc implementation.

REFERENCES

[1] L Rizzo, “pgmcc: a tcp-friendly single-rate multicast congestion control
scheme,” in Proceedings of the ACM SIGCOMM, August 2000.

[2] L. Rizzo, L. Vicisano, M. Handley, and G. Iannaccone, “PGMCC single
rate multicast congestion control: Protocol specification,” Internet Draft,
Internet Engineering Task Force, Feb. 2001, Work in progress.

[3] D. Farinacci, A. Lin, T. Speakman, and A. Tweedly, “PGM reliable trans-
port protocol specification,” Internet draft, March 2000.

[4] K. Miller, “Multicast networking and applications,” Addison Wesley Long-
man, Inc., 1999.

[5] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno,
and SACK TCP,” in ACM Computer Communication Review, July 1996,
vol. 26, pp. 5–21.

[6] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion control
in the internet,” IEEE/ACM Transactions on Networking, August 1999.

[7] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Moldeling TCP through-
put: A simple model and its empirical validation,” in Proceedings of the
ACM SIGCOMM, September 1998, vol. 28, pp. 303–314.

