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Abstract— Overlay networks among cooperating hosts have
recently emerged as a viable solution to several challenging
problems, including multicasting, routing, content distribution,
and peer-to-peer services. Application-level overlays, however,
incur a performance penalty over router-level solutions. This
paper quantifies and explains this performance penalty for
overlay multicast trees via (i) Internet experimental data, (ii)
simulations, and (iii) theoretical models. We compare a number
of overlay multicast protocols with respect to overlay tree struc-
ture, and underlying network characteristics. Experimental data
and simulations illustrate that the mean number of hops and
mean per-hop delay between parent and child hosts in overlay
trees generally decrease as the level of the host in the overlay
tree increases. Overlay multicast routing strategies, overlay host
distribution, and Internet topology characteristics, are identified
as three primary causes of the observed phenomenon. We show
that this phenomenon yields overlay tree cost savings: Our
results reveal that the normalized cost L(n)

U(n)
is ∝ n

0.9 for small
n, where L(n) is the total number of hops in all overlay links,
U(n) is the average number of hops on the source to receiver
unicast paths, and n is the number of members in the overlay
multicast session. This can be compared to an IP multicast cost
proportional to n

0.6 to n
0.8 .

I. INTRODUCTION

Overlay networks have recently gained attention as mech-
anisms to overcome deployment barriers to router-level so-
lutions of several networking problems. Overlay solutions
for multicasting [1], [2], [3], [4], [5], inter-domain routing
pathologies [6], [7], content distribution [8], and content
sharing [9], [10], [11] are being extensively studied. In this
paper, we consider a number of overlay (application-layer)
multicast approaches which have been proposed over the
last few years. In overlay multicast, hosts participating in a
multicast session form an overlay network, and only utilize
unicasts among pairs of hosts (considered neighbors in the
overlay tree) for data dissemination. The hosts in overlay
multicast exclusively handle group management, routing, and
tree construction, without any support from Internet routers.

The key advantages overlays offer are flexibility, adaptiv-
ity, and ease of deployment. Overlays, however, impose a per-
formance penalty over router-level alternatives. While overlay
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multicast clearly consumes additional network bandwidth
and increases latency over IP multicast, little attention has
been paid to precisely quantifying this overlay performance
penalty, either theoretically or experimentally. Moreover, to
the best of our knowledge, there is no work on characterizing
overlay multicast tree structure. Such characterization is
important to gain insight into overlay properties and their
causes at both the application layer and the underlying
network layer. It is also important to compare different
overlay multicast strategies to determine how to meet the
goals of target applications (e.g., by balancing latency versus
bandwidth tradeoffs).

In this paper, we analyze overlay multicast trees via (i)
real data from Internet experiments and traceroute servers,
(ii) simulations of three representative classes of overlay mul-
ticast strategies, and (iii) analytical models. We quantify the
performance penalty associated with overlay multicast, with
emphasis on the overlay cost (i.e., efficiency) at the network-
layer. We derive and validate asymptotic forms of the overlay
cost from two different tree models, constructed based upon
our observations from the experiments and simulations.

Our results indicate that (i) the mean number of hops
and per-hop delay between parent and child hosts generally
decrease, and (ii) the degree of hosts generally decreases, as
the level of the host in the overlay tree increases. We find that
overlay multicast routing strategies, overlay host distribution,
together with small-world and power-law Internet topology
characteristics, all contribute to the observed phenomena.
We extend our earlier work in [12] by isolating the impact
of each of these causes, and quantifying its effect on the
overlay cost. Our results reveal that the normalized overlay
cost L(n)

U(n) ∝ n0.9 for small n, where L(n) is the total number
of hops in all overlay links (connections), U(n) is the average
number of hops on the source to receiver unicast paths, and
n is the number of members in the overlay multicast session.
This can be compared to an IP multicast cost proportional to
n0.6 to n0.8 [13], [14].

The remainder of this paper is organized as follows.
Section II defines overlay networks and performance met-
rics. Section III characterizes overlay multicast networks
via Internet experimental data and simulations. Section IV
proposes and validates an overlay multicast model that is
based on our observations from experimental and simulation
data. Section V summarizes related work. Finally, Section VI
gives brief concluding remarks.
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II. OVERLAY NETWORKS: DEFINITIONS AND METRICS

We consider the underlying network as a graph G =
(N, E), where N is a set of nodes, and E is a set of
edges. A node ηi ∈ N denotes a router, and an edge
(ηi, ηj) ∈ E denotes a bi-directional physical link in the
underlying network. An overlay network superimposed on G

is a tree o = (s, D, No, Eo), where s is the source host, D

is the set of receiver hosts, No ⊆ N is the set of nodes in
the underlying network G that are traversed by overlay links,
and Eo is the set of overlay links, defined below.

The set of hosts Ho consists of s and D in o, i.e., Ho =
{s}∪D. The cardinality of set Ho is equal to n. An overlay
link eo = (ds, η0, . . . , ηls, dr) ∈ Eo comprises a host ds ∈
Ho, followed by a sequence of routers ηi ∈ No, followed by
a host dr ∈ D. Each receiver ∈ D appears exactly once at the
end of any sequence denoting an overlay link, but may appear
multiple times at the beginning of sequences for different
overlay links. An overlay link is typically a UDP or TCP
connection established by the overlay multicast protocol.

The number of hops in the router sequence η0, . . . , ηls in
an overlay link eo ∈ Eo is denoted by ls. For every two
routers ηi, ηj ∈ No that appear consecutively in an overlay
link eo ∈ Eo, there must exist a link connecting them in
the underlying network, i.e., edge (ηi, ηj) ∈ E holds. The
same router ηi ∈ No can appear in multiple overlay links
eo ∈ Eo. Subsequences of routers ηi, . . . , ηj can also appear
in multiple overlay links eo ∈ Eo. Figure 1 illustrates an
example overlay network with 6 overlay links.

Host
Router

A

Source

Overlay link

Underlying link

Receiver

Fig. 1. An example overlay multicast tree over an underlying network

Given an overlay network o, we define the term overlay
cost as the number of underlying hops traversed by every
overlay link eo ∈ Eo for an overlay o. More formally, the
overlay cost is: Σ∀eo∈Eo

ls(eo), where ls(eo) denotes the
number of router-to-router hops between η0, . . . , ηls for the
overlay link eo (as defined above). We consider the first and
last hops to/from hosts separately. This is because we must
fairly compare the normalized overlay cost to the normalized
IP multicast cost computed in [14], [15], [16], where the first
and last hops are ignored. For example, the overlay cost for
the overlay in Figure 1 is 2+3+1+1+4+2=13.

We also use the term link stress to denote the total number
of identical copies of a packet over the same underlying

link (as defined in [1], [17]). For example, the stress of the
link from the source to A in Figure 1 is two. It is clear
that the overlay cost defined above can be represented as
∀i,

∑

istress(i) where i is any router-to-router link traversed
by one or more overlay links eo ∈ Eo, and stress(i) is
the stress of link i. Prior work also used a resource usage
metric, defined as ∀i,

∑

idelay(i)×stress(i), where i is an
underlying link traversed by one or more overlay links [1].
Our overlay cost metric is a special case of this resource
usage notion, when delay(i)=1, ∀i. We have opted to evaluate
delays separately from the overlay cost in this paper.

In addition to the overlay cost and link stress, we study
the following overlay tree metrics: (1) degree of hosts Ho

(equivalent to the host contribution to the link stress of the
host-to-first-router link), (2) degree of routers ∈ No, and hop-
by-hop delays of underlying links traversed by overlay links
∈ Eo, (3) overlay tree height, (4) per-hop delays, number
of hops and total delays between parent and child hosts,
(5) mean bottleneck bandwidth between the source s and
receivers ∈ D, and (6) mean latency, longest latency, and
relative delay penalty (RDP) from the source to a receiver.
RDP was first used in [17], and is defined below.

The latency latency(s, dr) from the source s to dr ∈
D is: delay(s, d0) +

∑l−1
i=0 delay(di, di+1) + delay(dl, dr),

assuming s delivers data to dr via the sequence of hosts
(d0, · · · , dl). Here, delay(di, di+1) denotes the end-to-end
delay of the overlay link from di to di+1, for di ∈ Ho

and di+1 ∈ D. Note that the RDP from s to dr is the
ratio latency(s,dr)

delay(s,dr) . We compute the mean RDP of all re-

ceivers ∈ D. We can also define the stretch as hops(s,dr)
ls(s,dr)+2

where hops(s, dr) = ls(s, d0) +
∑l−1

i=0(ls(di, di+1) + 2) +
ls(dl, dr) + 4. Stretch denotes the relative number of hops
instead of the relative latency used in RDP. These metrics
compare overlay multicast to unicast (or IP multicast using
a minimum delay tree). It is clear that there is a tradeoff
between the latency metrics and the stress/bandwidth met-
rics. Balancing this tradeoff is the key to effective overlay
multicast protocol design.

III. OVERLAY MULTICAST TREE STRUCTURE

Our primary goal in this section is to understand the impact
of (i) the overlay protocol, (ii) the underlying network con-
nectivity and routing, and (iii) the overlay host distribution,
on the overlay tree structure and the overlay performance. We
first analyze Internet experimental data, and then conduct a
set of simulations.

A. Experimental Data

In order to study the structure of real overlay networks in
the Internet, we analyze experimental results for the End Sys-
tem Multicast (ESM) protocol [1], [17], the TAG protocol [4],
and the NICE protocol [3]. To analyze ESM, we recorded the
overlay trees constructed during experiments performed by
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parent-child hosts versus level of host in over-
lay tree
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overlay tree

Fig. 2. Overlay trees constructed by End System Multicast in November 2002

the ESM developers in November 2002. (Unfortunately, the
ESM developers have not released the overlay tree structure
in their later experiments.) We recorded the structure of
30 overlay trees. Since the overlay trees did not change
significantly throughout the experiment lifetime, we selected
one representative overlay tree. The tree comprises 65 hosts:
6 nodes at level 1, 22 nodes at level 2, 23 nodes at level 3,
8 nodes at level 4, 5 nodes at level 5, and 1 node at level 6.

We use traceroute to find the underlying path between
every two hosts on the overlay tree.1 Since we conducted
our ESM analysis before PlanetLab became operational,
finding the paths between two arbitrary hosts (without having
accounts on either of these hosts) was non-trivial. We uti-
lized publicly available traceroute servers [18] and our own
machines to compute paths to all the hosts on the overlay
tree.2 These paths are then synthesized to approximate the
paths between any two overlay hosts. For example, consider
two hosts h0 and h1. We find the paths to both h0 and h1

from traceroute servers, or our local machines. If these two
paths share a node, this node becomes a junction point. For
example, if the path from server s0 to h0 is (s0, r0, r1, h0)
and the path from server s1 to h1 is (s1, r2, r0, r3, h1), we
use the approximate path (h0, r1, r0, r3, h1) between h0 and
h1. The path synthesis task was simplified because hosts used
in the experiments, with a few exceptions, were located at
universities in the United States. Most university hosts are
connected to the Internet2 backbone network [20], and thus
the routes typically intersect at points on Internet2. These
points provide the synthesis junctions used.

Number of Hops. Figure 2(a) depicts the mean number of
hops between every two parent-child ESM hosts, for hosts at
different levels of the overlay tree (90% confidence intervals

1We encountered two problems using traceroute. First, some routers do not
generate ICMP Time-Exceeded packets when TTL (Time-To-Live) reaches
zero. Second, many routers disable the source-route capability, primarily due
to security concerns.

2traceroutes were not performed at precisely the same times the data was
recorded, and this can slightly impact our results. However, routes do not
typically change often [19].

are shown here to indicate variability). The figure shows
that the number of hops typically decreases as the host level
increases, though the decrease is not monotone, and there is
variance among nodes at the same tree level. We now seek
the causes of this phenomenon. Consider a set of routers that
are connected according to the power-law [21] and small-
world [22], [23] properties. The power-law property dictates
that there is a larger number of low-degree routers than
high-degree routers. We surmise that a high-degree high-
bandwidth router is typically more likely to be traversed by
overlay links near the source of the overlay tree. This is
because a high-degree router has higher chances of reducing
the path length and delays than a low-degree router, due
to its connectivity to a larger number of routers. The high-
degree router is also more likely to have high bandwidth links
connected to it. Overlay multicast protocols which consider
delay, path length, or bandwidth are thus likely to exploit
such high-degree routers in the first few levels of the tree
(unless all hosts are clustered near the source). Recall also
that nearby hosts tend to be clustered by the small-world
property. Accordingly, we can visualize an overlay tree where
a number of high-degree routers connect the hosts at the first
few levels of the tree. In addition, many hosts are connected
to low-degree lower-bandwidth routers, which are clustered
at lower levels of the tree. Therefore, hosts at lower levels
of the overlay tree may only be a few hops away from each
other. We study router degree at different levels of the tree via
simulations in Section III-B.2. Overall, a significant number
of hosts are within 2 or 3 hops of their parents, and many
are 9–15 hops away.

Delay Characteristics. We now study the delays between
parents and children at different levels of the overlay tree. The
distribution of round trip times between every two parent-
child ESM hosts at different levels of the overlay tree is
plotted in Figure 2(b) (with 90% confidence intervals). We
use round trip time estimates obtained from traceroute. From
the figure, the average round trip time generally decreases as
the host level increases, confirming our intuition. The large
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error ranges in the figure indicate that the round trip times
significantly vary at the same level of the tree. Figure 2(c)
illustrates that the degree of hosts in the overlay tree grows as
hosts get closer to the root of the overlay tree. This decreasing
degree can be attributed ESM’s goal of minimizing delay (if
bandwidth is acceptable).

Figure 3 shows the distribution of per-hop delay (the delay
between two consecutive routers on a path from a parent
to a child ESM host) for different overlay tree levels. The
per-hop delay between two consecutive routers ηi and ηj is
estimated as 1

2rtt(ηi, ηj), where rtt(ηi, ηj) is the time to
travel from ηi to ηj and vice versa obtained via traceroute.
The figure indicates that 78% of per-hop delays in lower tree
levels (levels 4-6) are shorter than 0.25 ms, and only 2%
are between 2.5 and 5 ms. In contrast, only 44% of per-hop
delays are shorter than 0.25 ms, 11% are between 2.5 and
5 ms, and 15% exceed 5 ms, for the first level of the tree,
which agrees with our discussion above.

11%
15%

44%

(0.25,2.5) ms

30%

(2.5,5) ms> 5 ms

< 0.25 ms

(a) Tree level 1

20%2%

(0.25,2.5) ms

< 0.5 ms

78%

(2.5,5) ms

(b) Tree level 4-6

Fig. 3. Distributions of per-hop delay for different overlay tree levels

Impact of Overlay Protocol. We have also conducted
experiments with NICE [3] and TAG [4] on the PlanetLab
testbed [24] in 2003 and 2004. We use tracepath [25] to
find the number of hops and delay on underlying paths. We
selected representative overlay trees for NICE and TAG from
several experiments with 60 group members. A cluster in
NICE has 2 to 5 members (see [3] for details). For TAG,
we use bwthresh=160 kbps, chlimit=5, and u = 1 (the
details of the TAG algorithm and its parameters are discussed
in Section III-B.1). Our results (given in [26]) show that
trees constructed by TAG exhibit similar properties to those
observed with ESM, as discussed above. NICE, however,
does not exhibit a similar decrease in number of hop as
tree level increases exhibited by ESM and by TAG. This
is because scalability is the primary concern of NICE, and
not bandwidth or delay as in ESM and TAG. We discuss this
further in Section III-B.2.

B. Simulation Experiments

We also investigate the overlay structure via session-level
simulations.

1) Simulation Setup: We use two router-level topologies.
The first topology contains 4000 routers connected according
to power-law and small-world properties. In a power-law dis-
tribution, a complementary cumulative distribution function

cd−α is used to denote the fraction of routers with degree
greater than d, where c and α are constants [27], [28]. We use
c = 1 and α = 1.22. These parameters mimic real Internet
topologies reasonably well (refer to [28] for the rationale).
Groups of routers are clustered according to the small-world
property: a router connects to its closest neighbor routers
with probability p, and to other routers with probability
1 − p, according to router degree. We use p = 0.5. Routers
are uniformly distributed on a 750 × 750 plane, and the
Euclidean distance between two routers approximates the
delay between the two routers (in ms). Hosts are connected
to edge routers (which are defined as routers with degree
less than 10) uniformly at random. The bandwidth from edge
routers to hosts is selected according to the distribution: 40%
are 56 kbps, and 15% for each of 1.5, 5, 10, 100 Mbps. All
other links are assigned bandwidths ranging from 100 Mbps
to 1 Gbps.3

The second topology we use is a Transit-Stub topology
generated by the popular GT-ITM topology generator [29].
The topology contains 4040 routers which constitute 4 transit
domains, 10 routers per transit domain, 4 stub domains
per transit router, and 25 routers per stub domain. GT-ITM
generates symmetric link delays ranging from 1 to 55 ms
for transit-transit or transit-stub links. We use 1 ms to 10
ms delays within a stub. Hosts are connected to stub routers
randomly and uniformly. Backbone links have bandwidths
ranging from 100 Mbps to 1 Gbps, while links from edge
routers to hosts have the same bandwidth range as in the first
topology. In both topologies, the underlying network routes
are selected to optimize delays. It is also worth mentioning
that we have simulated smaller scale topologies and the
results were similar.

We simulate three representative overlay multicast proto-
cols on the two topologies: ESM [1], Topology-Aware Group-
ing (TAG) [4], and Minimum Diameter Degree-Bounded
Spanning Tree (MDDBST) [5]. The reason we select ESM
is that it is the first overlay multicast protocol to be widely
tested in the Internet. It was used for multicasting the
SIGCOMM 2002/2003 conferences. Moreover, ESM has a
unique routing mechanism. The overlay tree construction
protocol of ESM is given in [26]. Each host evaluates the
utility of other hosts to determine its neighbors. A host has an
upper degree bound (UDB) on the number of its neighbors.
We use a value of 6 for the upper degree bound. The ESM
flavor used in our simulations has two discretized bandwidth
levels: > 100 kbps and ≤ 100 kbps (similar to the version
used for the SIGCOMM 2002 multicast). The overlay tree is
first optimized for bandwidth, and then uses delay as a tie
breaker among hosts at the same bandwidth level.

The second class of protocols we investigate is
topology-aware overlay multicast protocols, which includes
Scribe [30], topology-aware Content-Addressable Network

3These numbers were synthesized from:
http://www.websiteoptimization.com/bw/0509/ and FCC annual reports.
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(CAN) [31], and TAG [4]. We select TAG as a representative
of this group. TAG is a faithful representation of topology-
based approaches, since it aligns overlay routes and under-
lying routes, if certain weak constraints are met. Although
the TAG heuristic may not perform particularly well if inter-
domain routes are of poor quality, its simplicity makes it
appealing. The pseudo-code for TAG tree construction is
given in [26]. A TAG host becomes the child of the host
that most “matches” its path. Here, a path is defined as
the sequence of routers from the source to a host. A’s path
matches B’s path when the path from the source to A and
the path from the source to B have a common prefix of
length equal to the path from the source to A minus u

unmatched routers. Two weak constraints are employed by
TAG on the bandwidth and the number of children of a host
(the bandwidth from a parent to a new member is larger than
bwthresh and the number of children of the parent is less than
chlimit). We use u = 0, bwthresh= 150 kbps and chlimit=50
in our simulations.

The third class of protocols we investigate includes proto-
cols that seek to minimize overlay cost [32], or the longest
path in an overlay network [5] (with delay or bandwidth
constraints). We select MDDBST, given in [5], as a rep-
resentative protocol in this class. MDDBST minimizes the
cost (delay in our simulations) in the longest path, and
bounds the degree of hosts. The pseudo-code for MDDBST is
presented in [26]. The MDDBST protocol we use is slightly
modified for use in a single-source overlay multicast scenario.
We define the degree bound as degree(v)=lastbw(v)/unitbw,
where degree(v) is the degree of node v, lastbw(v) is the last
hop bandwidth of v, and unitbw is the desired bandwidth for a
single connection. We use unitbw=56 kbps in our simulations.
For each protocol, we run five simulations with different
random number generator seeds (for topology generation
and for selecting the multicast source and destinations) and
average the results.

Table I compares a number of overlay multicast algorithms
with respect to tree construction (mesh first, or tree, or
hierarchical), tree types (source-based trees or a single shared
tree), tree height, target group size, metrics used in tree
construction, and control overhead.

2) Simulation Results: Impact of Overlay Protocol and
Underlying Topology on Tree Structure. Figure 4 illustrates
the mean number of hops between parent and child hosts for
different host levels in the overlay tree.4 The label “ESM-4k”
denotes ESM with 4000 members; similar labels are used
for the other cases. Figure 4(a) depicts the results on the
power-law and small-world topology. The figure reveals that
the number of hops between parent and child hosts tends to
decrease as the level in the overlay tree increases, for both
ESM and TAG. MDDBST does not exhibit a clear trend.

4We do not show confidence intervals on this and the next figures to
improve readability. The standard deviation values were smallest for ESM
(less than 2 for almost all tree levels) in figures 4(a), (b), and (c), followed
by TAG, and then MDDBST.

The observed decrease in mean number of hops is consistent
with our experimental data, and our intuition on the effect of
Internet topology characteristics. We have observed similar
trends with 40 and 400 members.

In order to isolate the effects of the power-law property
from the small-world property, we execute the same simula-
tions on only-power-law (but no clustering) and only-small-
world (but equal degree routers) topologies. Figures 4(b)
and 4(c) give the results. From both figures, we observe that
the number of hops in ESM and TAG decreases with overlay
tree level increase, but the decrease is not as pronounced as
when both properties are combined (Figure 4(a)). Therefore,
both clustering among closely located routers as dictated by
the small-world property, and power-laws of router degrees,
appear to contribute to the observed decrease in number of
hops with overlay tree level increase. To confirm this, we
study the results on the GT-ITM Transit-Stub topology. We
find that ESM shows less noticeable and less rapid decrease
in the number of hops as the level increases, compared to
Figure 4(a). This is expected since GT-ITM router degrees
do not follow a power-law. For MDDBST, the number of
hops between parent and child hosts initially fluctuates and
slowly decreases as the level increases [26]. This is because
MDDBST does not seek the shortest path to individual hosts,
but minimizes the longest path in the tree.

Two aspects of ESM contribute to the observed tree struc-
ture, which decreases tree cost: (i) the mesh optimization,
and (ii) the DVMRP-based overlay tree construction. The
mesh optimization chooses potentially useful nodes over
unpopular nodes as intermediate hops. Most of the nodes
then connect to close neighbors (many of which are at the
bottom of the tree), while only a few nodes in strategic
locations become intermediate hops. The routing algorithm
of ESM uses shortest-path based routing (DVMRP) and
hence results in a delay-balanced tree with nearby nodes
clustered at lower levels. TAG also exhibits this phenomenon
since its path matching algorithm aligns overlay routes with
underlying routes (subject to bandwidth availability) and
underlying routes are typically optimized for shortest paths
(subject to routing policies). In general, the decreases are
more pronounced for TAG and ESM than for MDDBST and
NICE, independent of underlying topologies.

We now investigate the effects of underlying topology
in more depth by varying the power-law and small-world
parameters – specifically α and the probability p. In Fig-
ure 5(a), we find that the number of hops in all three protocols
decreases slowly (but non-monotonically) with overlay tree
level increase, when router degrees have a wide range. Relay
through high-degree routers may reduce the number of hops
between hosts in this case. As the range of router degrees
becomes narrow (in Figure 5(c)), the number of hops tends
to fluctuate more. Similarly, we have found that a stronger
small-world effect yields a more smooth and more rapid
decrease of the number of hops. The results were consistent
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TABLE I

A COMPARISON OF OVERLAY MULTICAST ALGORITHMS

Algorithm Mesh/Tree Tree type Tree height Group size Metrics Control overhead
ESM Mesh Source Unbounded Small Bandwidth, delay O(n)
NICE Hierarchical Source O(log n) Large Delay O(log n)

Overcast Tree Source Unbounded Large Bandwidth O(max-degree)
CAN-multicast Hierarchical Source O(dn1/d) Large Delay Constant

ScatterCast Mesh Source Unbounded Large Delay O(max-degree)
Yoid Tree Shared Unbounded Large Delay O(max-degree)

ALMI Tree Shared Unbounded Small Delay O(max-degree)
MDDBST Tree Shared Unbounded Large Edge cost O(max-degree)

Scribe Hierarchical Source O(log n) Large Delay O(log n)
HMTP Tree Shared Unbounded Large Delay O(max-degree)

Hypercast Mesh Source Unbounded Large Coordinate, angle O(max-degree)
TAG Tree Source Unbounded Large Delay, bandwidth O(max-degree)

Bayeux Hierarchical Source O(log n) Large Delay O(log n)

 0

 2

 4

 6

 8

 10

 12

 0  2  4  6  8  10  12  14  16  18

M
ea

n 
N

um
be

r 
of

 H
op

s

Tree Level

ESM-4k
TAG-4k

MDDBST-4k

(a) Power-law and small-world topology
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Fig. 4. Mean number of parent-child hops versus overlay tree level in power-law and small-world simulations

for ESM and TAG with different number of overlay tree
members and different protocol parameters.

To validate our conjecture that high-degree routers tend
to be traversed in upper levels of the overlay tree further,
we examine the distribution of the router degree against
the overlay tree level for the power-law and small-world
topology. The router degree denotes the connectivity of the
router to other routers. For tree level i, the routers on overlay
links from hosts at level i− 1 to i are considered. (Note that
the same router may appear at different levels of the overlay
tree, if traversed by overlay links at different levels). We
find that the results (which we give in [26]) agree with our
argument. We also find that all three protocol trees cross a
significant number of high-degree routers (50+), in order to
exploit their high connectivity and high bandwidth.

Impact of Member Host Distribution on Tree Structure.
We also simulate the three protocols on the power-law and
small-world topology with a non-uniform host distribution.
This is the typical case with academic conference streaming,
when users are clustered at a few universities. It is also com-
mon with some sporting event streaming, when there is a high
concentration of viewers in the home cities of participating
teams. In this case, we randomly select an edge router and
then connect ω hosts to this router and its neighboring routers

(one host per router), where ω is a random number between 1
and 20. Figure 6 illustrates that the number of hops between
parent and child hosts decreases even more rapidly (though
with some fluctuations) than uniform host distribution case
(Figure 4(a)). The decrease was less pronounced when we
repeated the same experiment on the Transit-Stub topology,
and when we experimented with smaller ω values. Therefore,
underlying topology properties as well as non-uniform host
distribution are all factors that exacerbate this phenomenon.
The routing features of overlay multicast protocols, such
as the utility for selecting neighbors in ESM, or topology
awareness in TAG, also play an important role.

Impact of Overlay Protocol, Underlying Topology, and
Member Host Distribution on Tree Cost. We now compare
the normalized overlay costs of different topologies and host
distributions for the three protocols. Figure 7(a) and (b)
show that a strong power-law (a) or small-world (b) topology
achieves significantly lower costs than GT-ITM. Non-uniform
host distribution also significantly reduces overlay multicast
cost, as depicted in Figure 7(c). It is also clear that ESM
is generally more effective in reducing cost than MDDBST,
since its trees exhibit decreasing hops and delays in lower
tree levels. The cost is lowest for the case of ESM in
Figure 7(c), i.e., non-uniform host distribution, and small-
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Fig. 5. Mean number of parent-child hops versus overlay tree level as the effect of power-law decreases
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Fig. 6. Mean number of hops versus overlay tree level in simulations on
the power-law and small-world topology with non-uniform (clustered) host
distribution

world and power-law properties similar to Internet topologies
(1.22 and 0.5 for = α and p respectively). These results
confirm our intuition that the overlay protocol, the Internet
power-law property, the Internet small-world property, and
overlay host clustering all contribute to making overlay
multicast effective in reducing cost and increasing bandwidth
efficiency.

Host Degree and Mean Bandwidth Properties. Results
of host degree and mean bandwidth, as well as results for
latency, RDP, and stress can be found in [26].

IV. OVERLAY MULTICAST TREE COST

In this section, we model overlay multicast trees based on
the overlay tree structure we have observed via experiments
and simulations, and we compute the overlay costs.

A. Network Model

We model the underlying network as a graph G = (N, E)
and the overlay tree o as the tuple (s, D, No, Eo), as defined
in Section II. To simplify our analysis, we assume G to be a
complete k-ary tree G = (N, E, r) on which o is constructed,
where r ∈ N is designated as the root router. s is the only
host connected to r. Other hosts are connected to routers
with equal probability in G to obtain D. The height of G

is h. This assumption is not unrealistic in this context, since

the overlay cost exhibited with an underlying tree has been
shown to be more consistent with that exhibited with real
topologies, compared to meshes or random graphs [33]. We
are, however, currently investigating relaxing this assumption
by computing the average costs for the set of trees covering
a power-law and small-world underlying network.

We now seek to incorporate the number-of-hops distribu-
tion properties we observed in our Internet experimental data
and simulations results (discussed in Section III). To model
hops between overlay hosts, routers must be added between
every two branching points in the underlying network model.
Such routers are called unary nodes. Recall that we had
observed that the number of hops between parent and child
hosts approximately decreases, as the level of the host in
the overlay tree increases. A similar modeling assumption to
that in [16] – a self-similar tree – can be used to model
this observation without making the analysis exceedingly
complex. This entails that Ai = φAi−1, 0 ≤ φ ≤ 1, where
Ai is the number of concatenated links generated by unary
nodes in the underlying network between a node at level
i−1 and a node at level i of the overlay tree. It is important
to note that, throughout the rest of this paper, the height h

refers to the height of a tree without the unary nodes. This
simplifies the exposition. A number k(h−i)θ − 1 of unary
nodes is created between adjacent nodes at levels i − 1 and
i of the overlay tree, where 0 ≤ θ < 1. The tree has no
unary nodes when θ = 0. Note that the number of hops
on overlay links will not be monotonically decreasing (but
will be approximately decreasing) for increasing levels of the
overlay tree, since data may be disseminated up G in certain
segments, as discussed below.

We assume that each receiver is connected to a router in
the network uniformly and independently of other receivers.
We use the term Lo(h, k, n) to denote overlay cost for an
overlay tree o and number of hosts |Ho| = n (h and k are
defined above). In [14], m, the number of distinct routers to
which hosts are connected, is used instead of n in Lo(h, k, n).
We, however, believe that using the number of hosts n is
intuitively appealing and makes analysis simpler. Note that
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Fig. 7. Comparisons of normalized overlay cost for different topologies and host distributions

m can be approximated by M(1 − (1 − 1
M

)n), where M is
the total number of available routers to which hosts can be
connected. Therefore, m ≈ n when n

M
� 1 [16].

Among all possible overlay networks that can be super-
imposed on G, we compute the least cost overlay network
defined as follows.

Definition 1: Let Ω be the set of all possible overlays,
connecting a particular set of n hosts, and superimposed on
a network G. Let Lτ (h, k, n) be the overlay cost for τ ∈ Ω.
Let o be the least cost overlay on G. Then, o is the overlay
that satisfies Lo(h, k, n) ≤ Lτ (h, k, n) for all τ ∈ Ω.
We consider the least cost overlay network for three primary
reasons. First, modeling and analysis are simplified in this
case. Second, many overlay multicast protocols optimize a
delay-related metric, which is typically also optimized by
underlying (especially intra-domain) routing protocols. Third,
it gives a lower bound on the overlay tree cost under our
assumptions.

B. Receivers at Leaf Nodes

We first consider a network in which receivers can only
be connected to leaf nodes in the underlying network. Fig-
ure 8(a) shows a model of such a network. One host, which
is the current source of the overlay multicast session, is
connected to the root r of the tree. All other hosts are con-
nected to leaf nodes, selected independently and uniformly.
We define ρ to be the lowest level with branching nodes
above or at half of the total tree height. Since

∑h

i=ρ+1 k(h−i)θ

indicates the height from ρ to the lowest tree level, ρ can be
computed as:

2

h
∑

i=ρ+1

k(h−i)θ ≤

h
∑

i=1

k(h−i)θ. (1)

Thus,

ρ =

⌈

h −
1

θ
logk

khθ + 1

2

⌉

. (2)

Figure 8(a) shows that the cost incurred when communi-
cating from a receiver to another receiver, both connected to

descendants of node σ at level ρ, is bounded by the total
tree height. Otherwise, the source would send another copy
directly to the receiver at a cost equal to the tree height.
For this reason, we group together all receivers connected to
descendants of σ in a subtree rooted at σ. Similar subtrees
are created for every node at level ρ.

We divide the computation of Lo(h, k, n) into two terms.
The first term is the minimum cost to send to the subtrees
rooted at σ, and the second term is the minimum cost of data
dissemination within the subtrees. To compute the first term,
we observe that there are kρ nodes at level ρ in the tree. The
probability that a link connecting to level ρ is traversed by
overlay o is 1− (1− k−ρ)n. Thus, the cost to transmit to all
nodes at level ρ, without unary nodes, is simply kρ(1− (1−
k−ρ)n). Since k(h−i)θ is additionally incurred by a node at
level i if the tree is extended with unary nodes, the first term
becomes:

h
∑

i=1

k(h−i)θkρ(1−(1−k−ρ)n) =
khθ − 1

kθ − 1
kρ(1−(1−k−ρ)n).

(3)
To compute the second term of Lo(h, k, n), we consider

the subtree rooted at σ. This subtree and potential overlay
links are shown in Figures 8(a) and (b). Consider a node αl

at branching point level l, where ρ ≤ l < h. Let α0
l+1 and

α1
l+1 be two children of αl at the next branching point level

l+1. Suppose that A is a receiver connected to a descendant
of α0

l+1, and B is a receiver connected to a descendant of
α1

l+1. Sending data from A to B across (up and then down)
αl costs:

2

h
∑

i=l+1

k(h−i)θ ≈ 2k(h−l−1)θ. (4)

The probability that data is transmitted via a branching
point at branching point level l+1 in o is 1−(1−k−(l+1))n.
Node αl has k children in o, so we multiply this factor by k,
which yields k(1 − (1 − k−(l+1))n). Since overlay links for
data transmission are created between children of αl across
αl, we modify the factor to k(1 − (1 − k−(l+1))n) − 1.
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Multiplying Equation (4) by this factor yields the total cost
for data transmission from leaves (to other leaves) across all
branching points at branching point level l in the subtree:
g(l) = 2k(h−l−1)θ(k(1 − (1 − k−(l+1))n) − 1).

Consequently, the second term of of Lo(h, k, n) becomes:

h−1
∑

l=ρ

klg(l). (5)

Lo(h, k, n) is the sum of (3) and (5):

Lo(h, k, n) =
khθ − 1

kθ − 1
kρ(1− (1−k−ρ)n)+

h−1
∑

l=ρ

klg(l). (6)

We prove that this tree is indeed the least cost overlay
tree on this underlying network in [26]. Since the average
number of hops on the source to receiver unicast paths
Uθ

o (h, k) is
∑h

i=1 k(h−i)θ = khθ
−1

kθ−1
, the normalized overlay

cost becomes:

Rθ
o(h, k, n) =

Lo(h, k, n)

Uθ
o (h, k)

. (7)

A power-law is observed in (7), where the exponent of n is
1−θ (see Lemma 2 in the Appendix for details). Figure 9(a)
depicts the normalized overlay cost Rθ

o(h, k, n) against the
number of overlay group members n.5 The figure shows that
Rθ

o(h, k, n) ∝ n0.92, for 0 < a < 1. Saturation occurs as
a → ∞ (n → ∞).

C. Receivers at Leaf or Non-leaf Nodes

We now relax the restriction that receivers are only con-
nected to leaf nodes in the underlying network, as illustrated
in Figure 10. A non-leaf node with receiver(s) connected
receives data from an ancestor, and relays this data to its
descendants. In contrast, descendants of a non-leaf node

5The total number of routers including unary nodes is 356 for (k =
4, h = 4), 309,819 for (k = 8, h = 6), 4.6 billion for (k = 16, h = 8)
and more than 4.6 billion for (k = 32, h = 10).

which has no receivers connected must receive data from
other non-ancestor nodes.

We use the same underlying network model as in Sec-
tion IV-B. We now assume that receivers are uniformly
and independently distributed over the entire tree with the
exception of unary nodes. This implies that the probability
that a node (other than the root) has at least one receiver
connected is:

p = 1− (1 −
1

M
)n (8)

for n receivers, where

M = k + · · · + kh =
kh+1 − k

k − 1
. (9)

On the average, among the k children of a non-leaf node, kp

children have receivers connected, while k(1 − p) children
have no receivers connected. Let Lν(h, k, n) be the overlay
cost of an overlay network ν. The computation of Lν(h, k, n)
is split into two components: (i) cost for kp children of the
root with receivers, and (ii) cost for k(1− p) children of the
root without receivers. In the first component, one of the kp

children incurs k(h−1)θ from the root and Lν(h−1, k, n) for
its descendants. Thus, the cost for the kp children of the root
is:

kp(k(h−1)θ + Lν(h − 1, k, n)). (10)

Now, consider one of the k(1 − p) children of the root
without receivers. We again have kp children with connected
receivers, and k(1−p) children without connected receivers.
A recurrence relation based on this pattern computes the
second part of Lν(h, k, n) for the k(1 − p) children of the
root. Consider node σ at branching point level l which does
not have receivers connected (refer to Figure 10). There may
be receivers at the descendants of σ that use the link from
the parent of σ to σ with probability:

1 −

(

1 − k−l kh − kl

kh+1 − k

)n

, (11)
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where k−l is the probability that a receiver is located below σ,
and kh

−kl

kh+1−k
is the probability that the receiver is connected

to a non-leaf node at branching point i, l < i < h. The
latter probability is based on the fact that the total number
of branching points except the root is k+ · · ·+kh = kh+1

−k
k−1

and the number of nodes at branching point i is kh
−kl

k−1 . We
use 1− (1− k−l)n as an approximation of Equation (11) for
large values of h.

Let T (l) denote the cost required to deliver data to the
descendants of σ at branching point level l. As illustrated
in Figure 10, at least one of the kp children must receive
data from nodes other than σ and the descendants of σ. A
sibling node of σ which has receivers (π in the figure) would
minimize the cost to one of these children to 2k(h−l)θ +
k(h−l−1)θ. An additional cost of 2k(h−l−1)θ(kp − 1) is
required to relay the data among the kp children of σ. Thus,
B(h− l− 1) = k(h−l−1)θ(2kθ +2kp− 1)(1− (1− k−l)n) is
incurred for the kp children of σ. Also, kpLν(h− l−1, k, n)
is incurred by the descendants of the kp children of σ. For
the k(1−p) children of σ without receivers, k(1−p)T (l+1)

is incurred. Hence, T (l) can be computed as:

T (l) = B(h − l − 1) (12)

+kpLν(h − l − 1, k, n) + k(1 − p)T (l + 1)

=

h−1
∑

i=l

ki−l(1 − p)i−l

×{B(h − i − 1) + kpLν(h − i − 1, k, n)}.

The cost for the k(1 − p) children of the root at branching
point level l = 1 is:

k(1 − p)T (l = 1) =

h−1
∑

i=1

ki(1 − p)i

×{B(h − i − 1) + kpLν(h − i − 1, k, n)}. (13)

Therefore,

Lν(h, k, n) = kp(k(h−1)θ + Lν(h − 1, k, n)) (14)

+

h−1
∑

i=1

ki(1 − p)i{B(h − i − 1) + kpLν(h − i − 1, k, n)}.
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Lemma 1: Solving the recurrence relation in Equation (14)
with a fixed ratio a = n

M
(0 < a < ∞) (M is as defined in

Equation (9)) yields:

Lν(h, k, n) = k(h−1)θ+1p + (kh + khθ

h−1
∑

i=2

k(1−θ)i)p2

+ k(h−2)θ+1(1 − p)(2kθ + 2kp− 1)

h−2
∑

i=0

k(1−θ)i

− kh−θ(1 − p)(2kθ + 2kp− 1)c2(a, θ),

+ O(1) (15)

where c2(a, θ) =
∑∞

i=0 k−(1−θ)ie−aki+1

.
The proof of Lemma 1 can be found in the Appendix. (The
proof that Lν(h, k, n) is the minimum cost overlay tree when
receivers are located at any node except the root can be
found in [26].) The average number of hops on the source to
receiver unicast paths, U θ

ν (h, k), can be computed as:

Uθ
ν (h, k) =

1

M

h
∑

l=1

kl

l
∑

i=1

k(h−i)θ. (16)

The normalized overlay cost Rθ
ν(h, k, n) = Lν(h,k,n)

Uθ
ν
(h,k)

does
not exhibit a power-law (see [26]). However, Figure 9(b)
demonstrates that Rθ

ν(h, k, n) behaves asymptotically similar
to a power-law when 0 < a < 1. The total numbers
of routers is the same as in Figure 9(a). In the figure,
Rθ

ν(h, k, n) ∝ n0.83. The factor 0.83 is smaller than the 0.92
for the case when hosts are only connected at leaves, since
many additional hops can be saved in this case. It is also
important to note that our decreasing unary node distribution
leads to a lower tree cost (0.83 versus an 0.87 factor for this
same model with uniformly distributed unary nodes). The cost
provides a useful notion for comparing and designing overlay
multicast protocols to optimize loads. The 0.8 to 0.9 factor
can be also compared to a factor ≈ 0.7 for IP multicast [13],
[14].

D. Simulation and Experimental Validation

We validate our analytical results using a traceroute-based
simulation topology. (Our methodology for synthesizing the
routes is discussed in Section III-A.) We simulate hosts
connected to edge routers by randomly connecting 1000
hosts to the edge routers connected to 60 selected traceroute
servers. 6 We first construct an overlay that is a complete
graph among these 1000 hosts. In order to be consistent with
our modeling assumption that the least cost overlay tree is
used, we compute the minimum spanning tree on that graph.
An important difference, however, is that a host in the overlay
tree enforces an upper degree bound (UDB) on the maximum
number of children, to simulate bandwidth constraints.7

6The total number of routers including unary routers is approximately
18,957.

7Hosts connected to the same router are not considered in the UDB check.

Figure 9(c) shows the normalized overlay cost versus the
number of members with UDB=6. Four different random
number generator seeds (RNG seed=3,5,7,9) are used for the
assignment of hosts. We observe that the results are consistent
with our modeling results. The normalized overlay cost is
asymptotically close to n0.85 or so, for a small number of
members (< 100). The value was higher (n0.87) when we
repeated the same experiment with UDB=1. The tree cost
saturates at around 36, when the number of members is
≈ 100, which is earlier than the curves in Figure 9(b). This
can be attributed to the usage of only 60 routers to which
hosts are connected in the simulation, versus a much larger
number of underlying routers used in Figure 9(b).

We have also examined the normalized overlay cost via
simulations of the three overlay protocols on the topologies
described in Section III-B. The results reveal that ESM
and MDDBST behave asymptotically close to n0.8 to n0.9

or so, before they saturate, which is consistent with our
analytical results. TAG has a slightly higher cost than ESM
and MDDBST. Partial path matching in TAG may incur
higher costs due to the u unmatched routers allowed with
high bwthresh values. We also found that the normalized
cost was higher for the GT-ITM topologies than for the
power-law and small-world topologies, since router degree
and clustering properties are exploited by overlay protocols
to reduce stress and cost.

To further validate our results, we compute the stress and
overlay cost for the real ESM tree used in Section III-A. We
find that the maximum stress is 12, the total stress is 696, and
the overlay tree cost is 568. Since the average unicast path
length is ≈ 12.01, the normalized overlay cost is 568

12.01 ≈
47.3. Since n = 59 (we only use hosts for which we could
obtain underlying routes), the normalized tree cost ≈ n0.945.

V. RELATED WORK

The objectives of our work are similar to those of work
evaluating IP multicast efficiency. Chuang and Sirbu [14]
were first to investigate the efficiency of IP multicast in terms
of network traffic load. They found that the ratio between the
total number of multicast links and the average unicast path
length exhibits a power-law with respect to the number of
distinct sites with multicast receivers (m0.8). Their conclu-
sion was based on real and generated network topologies.
Chalmers and Almeroth [13] subsequently investigated the
efficiency of IP multicast over unicast experimentally. They
carefully analyzed numerous real and synthetic Internet data
sets. They argue that the normalized tree cost is closer to n0.7

than to n0.8. In addition, their results indicate that multicast
trees typically include a high frequency (70 to 80%) of unary
nodes.

In order to precisely understand the causes of IP multicast
traffic reduction, several mathematical models have been de-
vised. Phillips et al. [15] were first to derive asymptotic forms
for the power-law in k-ary trees and more general networks.
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Their models, however, are approximate and cannot precisely
explain the 0.8 (or 0.7) power-law. Adjih et al. [16] obtained
more accurate asymptotic forms of the power-law. They show
that the essence of the problem is the modeling assumption.
To prove this, the simple k-ary tree used in [15] is abandoned,
and a k-ary self-similar tree is used. The authors argue
that the self-similar tree provides a plausible explanation of
the power-law. However, no experimental data is given to
support that IP multicast trees are indeed self-similar, i.e., the
number of unary nodes decreases as the tree level increases.
Mieghem et al. [34] have also analyzed the Chuang and Sirbu
result. The expected number of joint hops in a shortest-path
multicast tree is used to compute the expected number of
links.

We consider the case of overlay multicast, not IP multicast,
in this paper. A number of overlay multicast protocols have
been proposed over the last three years. ESM (or Narada) [1],
[17] was one of the earliest approaches. ESM hosts exchange
group membership and routing information to build a mesh,
and then execute a DVMRP-like protocol to construct a
forwarding tree. A hierarchical approach to improve scal-
ability is proposed in [3]. In [5], the authors utilize host
degree constraints and diameter bounds to centrally compute
an optimal overlay multicast network. TAG [4] uses route
overlap as a heuristic for constructing a low-delay overlay
tree in a distributed manner.

Perhaps the work that comes closest to ours is presented
in [33] and [28]. Radoslavov et al. [33] characterized real
and generated topologies with respect to neighborhood size
growth, robustness, and increase in path lengths due to link
failure. They briefly analyzed the impact of topology on two
heuristic overlay multicast strategies, in terms of stretch (the
ratio of the number of links in overlay multicast to that in IP
multicast) and maximum link stress. Jin and Bestavros [28]
have shown that both Internet AS-level and router-level
graphs exhibit small-world behavior, due to power-law de-
gree distributions and preference to local connections. They
also outlined how small-world behavior affects the overlay
multicast tree size.

VI. CONCLUSIONS AND FUTURE WORK

We have characterized overlay multicast trees via experi-
mental data and simulations of three overlay multicast proto-
cols. We also have derived an expression for the overlay cost,
defined as the total number of hops in all overlay links. Based
on our results, we can make the following observations. First,
the experimental data and simulations illustrate that both the
mean number of hops, per-hop delay, and total delay between
parent and child hosts tend to decrease as the level of the
host in the overlay tree increases. Our analysis suggests that
routing strategies in overlay multicast protocols, along with
power-law and small-world Internet topology characteristics,
play a key role in explaining these phenomena. Non-uniform
multicast host distribution reinforces them. Second, our mod-
els behave asymptotically close to power-laws, ranging from

n0.83 to n0.92 for n hosts. Simulations and experimental data
validate our models, and show the tradeoffs in overlay trees
constructed via three different protocols. We can quantify
potential bandwidth savings of overlay multicast compared to
unicast since n0.9 < n, and the bandwidth penalty of overlay
multicast compared to IP multicast (n0.9 > n0.8). The over-
lay protocol routing and Internet topology characteristics, in
addition to host distribution, contribute to further reducing the
overlay costs. This sheds light on the effectiveness of various
overlay protocol design methodologies. We plan to conduct
larger-scale experiments to better understand overlay tree
properties, and their correlations with underlying network
characteristics.
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APPENDIX

Proof of Lemma 1

Lν(h − 1, k, n) = kp(k(h−2)θ + Lν(h − 2, k, n))

+

h−2
∑

i=1

ki(1 − p)i{B(h − i − 2)

+kpLν(h − i − 2, k, n)}.

Lν(h, k, n) = kp(k(h−1)θ + Lν(h − 1, k, n))

+

h−1
∑

i=1

ki(1 − p)i{B(h − i − 1) + kpLν(h − i − 1, k, n)}

= k(h−1)θ+1p + k2p2(k(h−2)θ + Lν(h − 2, k, n))

+kp

h−2
∑

i=1

ki(1 − p)i{B(h − i − 2)

+kpLν(h − i − 2, k, n)}

+

h−1
∑

i=1

ki(1 − p)i{B(h − i − 1) + kpLν(h − i − 1, k, n)}

= k(h−1)θ+1p + k2p2k(h−2)θ + k2pLν(h − 2, k, n)

+
h−1
∑

i=2

ki(1 − p)i−1{B(h − i − 1)

+kpLν(h − i − 1, k, n)}+ k(1 − p)B(h − 2)

= k(h−1)θ+1p + p2(k2k(h−2)θ + k3k(h−3)θ)

+k3pLν(h − 3, k, n) +
h−1
∑

i=3

ki(1 − p)i−2{B(h − i − 1)

+kpLν(h − i − 1, k, n)}+ k(1 − p)(B(h − 2) + kB(h − 3)),

where

B(h− i− 1) = k(h−i−1)θ(2kθ + 2kp− 1)(1− (1− k−i)n).
(17)

Repeating this process yields

Lν(h, k, n) = k(h−1)θ+1p + p2
h−1
∑

i=2

kik(h−i)θ

+kh−1pLν(1, k, n) + kh−1(1 − p)B(0)

+k(1 − p)
h−3
∑

i=0

kiB(h − i − 2)

= k(h−1)θ+1p + khθp2
h−1
∑

i=2

k(1−θ)i + khp2

+k(h−2)θ+1(1 − p)(2kθ + 2kp− 1)

h−2
∑

i=0

k(1−θ)i

−k(h−2)θ+1(1 − p)(2kθ + 2kp− 1)

h−1
∑

i=1

k(1−θ)i(1 − k−i)n,

where Lν(1, k, n) = kp and Lν(0, k, n) = 0. Since j =
h − 1 − i, we have

h−1
∑

i=1

k(1−θ)i(1−k−i)n = k(1−θ)(h−1)
h−2
∑

j=0

k−(1−θ)j

(

1 −
kj

kh−1

)n

.

(18)
As analyzed in the Appendix A.1 of [16],

h−2
∑

j=0

k−(1−θ)j

(

1 −
kj

kh−1

)n

= c2(a, θ) + O(1), (19)

where c2(a, θ) =
∑∞

i=0 k−(1−θ)ie−aki+1

. Thus,

h−1
∑

i=1

k−(1−θ)i(1−k−i)n = k(1−θ)(h−1)c2(a, θ)+O(1). (20)

Finally,

Lν(h, k, n) = k(h−1)θ+1p + (kh + khθ

h−1
∑

i=2

k(1−θ)i)p2

+k(h−2)θ+1(1 − p)(2kθ + 2kp− 1)

h−2
∑

i=0

k(1−θ)i

−kh−θ(1 − p)(2kθ + 2kp− 1)c2(a, θ) + O(1).
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Lemma 2: For a fixed ratio a = n
kh , when 0 < a < ∞,

Lo(h, k, n) has the following asymptotic expansions:
(i) When logk(1 − (1 − 1

k
)

1
n )−1 − 1 < ρ,

Lo(h, k, n) =
khθ − 1

kθ − 1
kρ(1 − (1 − k−ρ)n), (21)

(ii) Otherwise, that is, when n is large,

Lo(h, k, n) =
khθ − 1

kθ − 1
kρ + 2(kh − k(h−ρ)θ+ρ)

×

(

k − 1

k − kθ
− c1(a, θ)

)

+ O(1), (22)

where c1(a, θ) =
∑∞

i=0 k(−1+θ)ie−aki

.
Proof: The result in (i) is easily obtained when g(l) = 0.

In (ii), we only need to compute the following.

h−1
∑

l=ρ

klg(l) = 2
h−1
∑

l=ρ

klk(h−l−1)θ(k(1 − (1 − k−(l+1))n) − 1)

= 2k−θ{

h−1
∑

l=ρ

k(h−l)θkl+1(1 − (1 − k−(l+1))n)

−

h−1
∑

l=ρ

k(h−l)θkl}. (23)

Since i = l + 1, the first term in Equation (23) is computed
as follows.

h−1
∑

l=ρ

k(h−l)θkl+1(1 − (1 − k−(l+1))n)

= kθ

h
∑

i=ρ+1

k(h−i)θki(1 − (1 − k−i)n)

= kθ{
h

∑

i=1

k(h−i)θki(1 − (1 − k−i)n)

−k(h−ρ)θ

ρ
∑

i=1

k(ρ−i)θki(1 − (1 − k−i)n)}.

This can be rewritten as

kh+θ

(

k1−θ

k1−θ − 1
− c1(a, θ)

)

(24)

−k(h−ρ)θ+ρ+θ

(

k1−θ

k1−θ − 1
− c1(a, θ)

)

+ O(1).

Using the analysis in Appendix A.1 of [16],

h
∑

i=1

k(h−i)θki(1 − (1 − k−i)n = (25)

kh

(

k1−θ

k1−θ − 1
− c1(a, θ)

)

+ O(1),

where

c1(a, θ) =

∞
∑

i=0

k(−1+θ)ie−aki

. (26)

The second term in Equation (23) is

h−1
∑

l=ρ

k(h−l)θkl =
kh+θ − k(h−ρ+1)θ+ρ

k − kθ
. (27)

Now,
∑h−1

l=ρ klg(l) becomes

h−1
∑

l=ρ

klg(l) = 2k−θ((kh+θ − k(h−ρ)θ+ρ+θ)

×

(

k1−θ

k1−θ − 1
− c1(a, θ)

)

−
kh+θ − k(h−ρ+1)θ+ρ

k − kθ
) + O(1)

= 2(kh − k(h−ρ)θ+ρ)

(

k − 1

k − kθ
− c1(a, θ)

)

+ O(1). (28)

From equation (28), when n is large,

Lo(h, k, n) =
khθ − 1

kθ − 1
kρ (29)

+2(kh − k(h−ρ)θ+ρ)

(

k − 1

k − kθ
− c1(a, θ)

)

+ O(1).
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