
1

A Scalable Framework for Distributed Time
Synchronization in Multi-hop Sensor Networks

Ossama Younis and Sonia Fahmy
Department of Computer Science, Purdue University

250 N. University Street, West Lafayette, IN 47907–2066, USA
E-mail: younis@ece.arizona.edu, fahmy@cs.purdue.edu

Abstract— Time synchronization is essential for several ad-hoc
network protocols and applications, such as TDMA scheduling
and data aggregation. In this paper, we propose a clustering-
based time synchronization framework for multi-hop sensor net-
works. We assume that relative node synchronization is sufficient,
i.e., consensus on one time value is not required. Our goal is
to divide the network into connected synchronization regions
(nodes within 2-hops) and perform inter-regional synchronization
in O(LLSync) × Niter time, where O(LLSync) denotes the
complexity of the underlying low-level synchronization technique
(used for single hop synchronization), and Niter denotes the
number of iterations where the low-level synchronization protocol
is invoked. We propose two novel fully-distributed protocols,
SYNC-IN and SYNC-NET, for regional and network synchro-
nization, respectively, and prove that Niter is O(1) for both
protocols. We exploit the tradeoff between rapid convergence
(and consequently energy-efficiency) and perceived accuracy. Our
framework does not require any special node capabilities (e.g.,
being GPS-enabled), or the presence of reference nodes in the
network. Our framework is also independent of the particular
clustering, inter-cluster routing, and low-level synchronization
protocols. We formulate a density model for analyzing inter-
regional synchronization, and evaluate our protocols via extensive
simulations.

Index Terms— Sensor networks, time synchronization, node
clustering

I. INTRODUCTION

Time synchronization is critical for several ad-hoc and
sensor network applications. Data aggregation in sensor net-
works requires timestamps to combine events occurring within
specified time frames. Applications that exploit caching need
timestamps to avoid adding stale (or duplicate) information to
the cache tables. TDMA scheduling requires accurate knowl-
edge of time lags and continuous synchronization among par-
ticipating nodes to avoid interference. Time synchronization is
also essential for coordinating the sleep and wakeup schedules
(duty cycles) of sensors to reduce energy consumption at idle
times, e.g., in TinyDB [1]. Several cryptography schemes for
ad-hoc networks also require that timestamps be included as
part of the digital signature, e.g., in µTESLA [2]. Other time-
sensitive applications include object tracking and navigation.

Although standard time beaconing using WWV [3] is de-
ployed across North America and Europe, sensors may be
deployed in areas where there is no coverage. In addition, the
sensors have to be able to tune to the specific frequencies of the

– This research has been sponsored in part by NSF grant ANI-0238294
(CAREER), and the Schlumberger Foundation technical merit award.

generated beacons, which may not always be feasible. Time
synchronization in sensor networks faces unique challenges,
most importantly (i) energy-scarcity, (ii) hardware cost, and
(iii) dense sensor deployment. The foremost challenge is
energy-scarcity, which renders the use of energy-consuming
devices, such as GPS, uneconomical1. Energy-efficiency also
dictates using low overhead protocols, which may trade off
accuracy for reduced message exchange. Another challenge is
the cost of adding hardware devices for clock synchronization
(such as GPS). This cost is typically high compared to the
price of the sensor itself. The efficacy of approaches such
as TPSN depends on the distribution of the reference nodes
in the network. In addition, in environments with malicious
users, attacks can target such highly equipped reference nodes.
Finally, dense deployment of sensor nodes necessitates the
design of scalable solutions. This is because node synchroniza-
tion must be frequently invoked in cases where the application
requires fine granularity, or the clock frequencies of nodes are
significantly different.

A. Synchronization Approaches

Network time synchronization can be classified as low-
level synchronization or high-level synchronization (that uses
low-level methods). Low-level synchronization involves the
process of synchronizing two or more clocks [4], [5], [6], [7],
[8]. Low-level synchronization can be further classified into
sender-receiver (SR) and receiver-receiver (RR) approaches.
In sender-receiver approaches, such as TPSN [4], a receiver
adjusts its clock according to the timestamp received from a
reference node. This node is referred to as the synchronization
initiator. In receiver-receiver approaches, such as RBS [5] or
LTS [9], receivers within 1 hop use a number of synchro-
nization pulses initiated by a sender to synchronize among
themselves. The received pulses are timestamped at every
reachable sensor, and these timestamps are exchanged. Every
sensor (other than the sender) can thus compute the time
offset and clock skewness with every other sensor in this
single-hop region. The sender is not synchronized with the
receivers in this case. Fig. 1 depicts a single-hop (i.e., 1-hop)
region synchronization using RBS [5], where an initiator sends
synchronization pulses in step 1 and nodes v1, v2, v3, and v4

exchange the timestamps in step 2. The time complexity of

1A node equipped with a GPS (Global Positioning System) antenna
synchronizes its clock with a satellite.

2

this low-level synchronization approach depends on how fast
all the nodes in the 1-hop region can access the channel to
broadcast their measured timestamps.

2

v4

v3

v2

v1
2

1
1

1

2

initiator (sender)
Synchronization

2
Exchanged

pulses (step 1)

Synchronization

timestamps (step 2)1

2

Fig. 1. Time synchronization of a 1-hop region using the receiver-receiver
approach

Receiver-receiver synchronization has two primary advan-
tages: (1) it does not require/prefer the presence of GPS-
enabled nodes in the network to act as reference nodes, and (2)
it gives higher accuracy than SR approaches if timestamping is
not possible at the MAC layer. Even if MAC layer timestamp-
ing is possible, it is not preferable for a node to follow the
clock of another node which does not have a reference clock.
For these reasons, we use receiver-receiver synchronization for
low-level synchronization in our work.

In contrast to these low-level approaches, high-level syn-
chronization gives methods for an entire multi-hop network
to be synchronized [10], [11], [8], [4], regardless of the
underlying protocol used to synchronize the clocks. Multi-
hop RBS [5] also belongs to this category, but does not give
practical methods to organize the network into synchronized
connected regions, which is the focus of our work.

B. Application Scenarios

Sensor network applications have different synchronization
requirements according to their types (or traffic patterns).
In source-driven applications, nodes periodically send reports
to an observer about a measured parameter(s), whereas in
data-driven (query-driven) applications, an observer queries
the network about the occurrence of an event2. Consider an
application where the sensors send timestamped measurements
of field temperature to a number of observers. Assume an
observer queries the network for temperatures exceeding 150
degrees. An SQL-like query will be in the form: SELECT
Time Ti, Temperature Te FROM SENSORS S WHERE Te >
150. The query may be pre-defined, or a sensor may possess
simple query processing capabilities using systems such as
TinyDB [1]. Based on the network load, two cases arise.
Case 1. The network is lightly-loaded, i.e., the expected
number of replies is small. For energy-efficiency, reactive
routing techniques, e.g., Directed Diffusion [12], are used
to construct paths between the observer and the responding
nodes. Thus, synchronization on the routing paths is sufficient
to handle possible data aggregation.
Case 2. The network is heavily-loaded, e.g., a large percentage
of the sensors is expected to report their responses to the

2A source-driven network can be viewed as a data-driven one, where the
sensors respond to a pre-defined periodic query.

observer, or responses are periodically reported. For example,
in streaming applications, the observer divides the data stream
into time frames (windows) according to their source times-
tamps for further analysis. In-network aggregation may be
performed using a query processor [1], or simple aggregation
operations for pre-defined queries. Therefore, routing paths in
the entire network must be pro-actively synchronized. This
second case is the primary focus of our work.

Prior approaches have not considered rapid convergence of
multi-hop network synchronization, especially when observers
may query the network from various locations. The pres-
ence of multiple mobile unsynchronized observers necessitates
separating sensor synchronization from the observers, since
multiple (possibly different) reference timestamps may be
available.

C. Our Contributions

In this work, we propose a new framework for high-
level time synchronization in multi-hop sensor networks. Our
framework integrates synchronization with node clustering to
construct two-tiered, synchronized networks. We will consider
the more challenging scenario of using a receiver-receiver
low-level synchronization approach, since it provides fine-
grained synchronization and does not assume the presence
of any specially-equipped reference nodes in the network.
In contrast to prior work, our primary goal is to achieve
rapid network synchronization (i.e., in only Niter = O(1)
iterations). Such a fast response is especially important if the
network is dense and the synchronization algorithm must be
frequently invoked (whenever the network goes out-of-sync).
In addition to rapid convergence, our proposed techniques
have low message overhead, which is essential for energy-
efficiency.

It is important to note that, although node clustering facil-
itates collaboration for aggregating data and reducing com-
munication overhead, it does not solve the network synchro-
nization problem. To the best of our knowledge, our proposed
framework for high-level time synchronization is unique in
accomplishing rapid multi-hop network synchronization (with-
out reference nodes in the network). Our goal is end-to-end
synchronization of communicating nodes, and not common
time consensus among all network nodes. Our synchronization
framework is independent of the particular clustering, routing,
and low-level synchronization protocols.

D. Organization of the Paper

The remainder of this paper is organized as follows. Sec-
tion II briefly surveys related work. Section III defines the
terms used throughout the paper, and defines the problem.
Section IV gives the design rationale and synchronization
algorithms. Section V evaluates the proposed algorithms via
simulations. Section VI outlines deployment issues for our
framework. Finally, Section VII summarizes our work and
suggests future research directions.

3

II. RELATED WORK

Several protocols have been proposed for network time
synchronization. The Reference Broadcast Synchronization
(RBS) [5] is a low-level receiver-receiver protocol that com-
putes the relative clock skewness between two neighbors and
does not need any infrastructure support. CesiumSpray [7]
also uses receiver-receiver synchronization and applies a GPS-
based hierarchical structure to achieve scalable synchroniza-
tion. Romer’s synchronization mechanism [8] for ad-hoc net-
works assumes uni-directional links and achieves 1 ms accu-
racy. Recent work [13] extends Romer’s mechanism for higher
synchronization accuracy. Cristian [14] proposes a probabilis-
tic approach where synchronization is achieved by sending
multiple packets until the error is bound by a pre-defined
constant. Basic TPSN [4] and Ping’s technique [6] use sender-
receiver synchronization to achieve higher accuracy than RBS,
assuming that timestamping can be done at the MAC layer.
The Automatic Self-time Correcting Procedure (ASP) [15]
assigns higher probability to nodes with faster clocks to act
as beacons. The Network Time Protocol (NTP) [16] is a
sender-receiver synchronization approach widely deployed in
the Internet, which has proved to be scalable and robust. The
Lightweight Time Synchronization protocol (LTS) [9] uses a
simple receiver-receiver mechanism, where only 3 packets are
exchanged. tiny-sync and mini-sync [17] use sender-receiver
synchronization and assume that the nodes are organized in a
tree topology for data aggregation. Biaz and Welch [18] proved
that the lower bound on the achievable synchronization under
uncertainties in an arbitrary graph is equal to half the graph
diameter.

Several protocols were proposed for high-level synchroniza-
tion. Lamport [19] introduced the notion of virtual clocks
for event ordering. The post-facto synchronization mecha-
nism [11] was proposed for systems where events do not
occur too often, and thus synchronization is performed only
when necessary. A high-level synchronization technique was
proposed in [4] (which we refer to as multi-hop TPSN) to
build a tree hierarchy using message flooding. In [5], high-
level synchronization (which we refer to as multi-hop RBS) is
achieved by assuming that intersecting regions have nodes that
perform inter-regional synchronization. The multi-hop LTS
protocol [9] constructs a spanning tree and synchronizes only
among neighboring tree levels. mini-sync [17] also assumes
a tree topology of sensors and uses relative synchronization.
Convergence of this approach is dependent on the tree depth.
Li and Rus [10] assume that all network nodes need to
agree on a clock value, which is different from our goal.
Their distributed (diffusion-based) approach requires a time
complexity that is linear in the number of nodes. We give
a taxonomy of time synchronization approaches for wireless
ad-hoc networks in [20].

Clustering ad-hoc networks has been employed for efficient
routing [21], [22], increasing network capacity [23], support-
ing data aggregation, and prolonging network lifetime [24],
[25]. Several clustering approaches have been proposed –
most notable are weight-based approaches, which cluster based
upon a certain parameter (weight) or a number of parameters,

such as node degree or residual energy [26], [27], [24], [28],
[29], [25]. Other approaches cluster the network by selecting
a dominating set, such as in [30], [31], [32]. A third class of
approaches is heuristic-based, e.g., cluster the network using
node identifiers [21].

III. PROBLEM DEFINITION

In this section, we define new terms and functions that will
be used throughout this paper, and formulate our problem.

Definition 1: For any two nodes u and v, the function
SYNC(u,v) = 1 if v is synchronized with u; and SYNC(u,v)
= 0 otherwise. SYNC(u,v) is transitive, i.e., if SYNC(u,v) =
1 and SYNC(v,w) = 1, then SYNC(u,w) = 1.

Definition 2: Nodes u and v are said to be relatively
synchronized if one of them (or both) is aware of the dif-
ference |clock(u)− clock(v)|. This type of synchronization is
asymmetric.

Definition 3: A strictly synchronized path P (v1, v|P |) is an
ordered set of nodes between a source v1 and a destination
v|P |, such that SYNC(v1, v|P |) = 1 if |P | = 2; otherwise ∀vi ∈
P , SYNC(vi−1, vi) = SYNC(vi, vi+1) = 1, where 1 < i < |P |.

In other words, a strictly synchronized path is one in which
every two adjacent nodes on the path are synchronized.

A. System Model

Assume that n sensors are randomly dispersed in a field. We
assume the nodes are quasi-stationary and links are symmetric,
but do not assume any infrastructure support. Each node is
assumed to have a unique identifier and its transmission power
can be tuned (as in Berkeley motes). Nodes are left unattended
after deployment and are location unaware. We assume that the
range of the sensor omni-directional antenna covers a circular
range. This range is smaller than the actual range to account
for signal fading and obstacles.

We make two assumptions related to the synchronization
process: (1) any two neighboring nodes can be synchronized
in O(1) time, which we call direct synchronization. This is
reasonable since two nodes can typically be synchronized
by exchanging a fixed number of messages and averaging
the delay [14]; and (2) a synchronization initiator node (one
that generates synchronization pulses) can synchronize its
neighbors, but will not be synchronized with them (as in
receiver-receiver low-level synchronization, e.g., RBS [5]).
This is because sender-receiver mechanisms make strong as-
sumptions about reference nodes and MAC layer capabilities,
as discussed above.

B. Goals

The goal of this work is to provide a framework for time
synchronization with complexity Niter ×O(LLSync), where
Niter is the number of iterations in which a low-level synchro-
nization protocol of complexity O(LLSync) is invoked. We
consider relative synchronization, which is sufficient for most
sensor networking applications. Our framework will provide
mechanisms for synchronizing a 2-hop region or the entire
network. We define a 2-hop region R in the network as

4

follows. Any two nodes u, v ∈ R can reach each other in
either: (1) one hop, or (2) two hops through a node w, such
that w ∈ R. We design mechanisms to support the following
requirements:

1) Regional synchronization: Assume that ∃ a node
w ∈ R, such that ∀v ∈ R, distance(v, w)=1. Then,
SY NC(v, w)=1 (R is a region in the network).

2) Relative network synchronization: For a multi-hop
network with a set V of nodes, ∃ at least one strictly
synchronized routing path P from any vi ∈ V to the
observer(s).

Our focus is thus on rapid relative synchronization to the
best that the underlying low-level synchronization mechanism
can provide.

IV. A TIME SYNCHRONIZATION FRAMEWORK

Network synchronization must be periodically performed
in heavily-loaded networks because queries do not follow a
distinct locality pattern. This type of synchronization is “pro-
active” (we borrow these terms from the routing literature).
Data-driven networks can typically exploit locality of requests
more than source-driven networks, unless the observer is
mobile and its location significantly changes between the is-
suance of queries. SEAD [33] proposed fixing the aggregation
points in the network so that a mobile observer can access
aggregated values by querying any nearby node (access point)
on the aggregation tree. Our synchronization framework can
be quite useful in this case, since it synchronizes the network
independently from the observer.

The notion of a “region” is central to many synchronization
protocols. For example, in [5] the network is assumed to be
divided into regions. The protocol relies on nodes in region
intersection areas to propagate synchronization information as
data is forwarded. A region in this context is an area in which
single-hop communication is possible between every pair of
nodes. To understand the problem caused by non-intersecting
regions in the network, consider the scenario in Fig. 2 where
the application of RBS may fail. In this scenario, the network
is divided into three regions around nodes A, B, and C. These
regions have no nodes in the intersection areas. Therefore, a
packet sent from node 1 to node 8 will not find a synchronized
path, although this would have been possible if nodes 2, 5, and
7 were the synchronization initiators. This problem depends
on node density, node distribution, and transmission range.
Therefore, the network must be organized such that regions are
clearly defined and inter-regional communication is possible,
even if regions are non-intersecting.

Node clustering and intelligent communication power level
selection can alleviate the above problem. In a clustered net-
work, a number of nodes act as cluster heads and communicate
with their cluster nodes, their neighboring cluster heads, and
any close-by observer(s). For node synchronization, clustering
can play an important role in: (1) defining synchronization
regions to be clusters; (2) selecting the synchronization initia-
tors in the network (e.g., to be the cluster heads); (3) adapting
to application requirements by expanding or contracting the
synchronization regions (cluster sizes); (4) synchronizing 2-
hop neighbors through cluster heads; and (5) enabling scalable

Synchronization
initiators 9

8

7

6

5
4

2
1

3

Unsynchronized
paths

A

C

B

Fig. 2. Failure to find inter-regional synchronized paths

and efficient multi-hop synchronization by synchronizing each
cluster independently and only relying on the cluster head
overlay (i.e., the network of cluster heads) for synchronizing
the network and propagating time information. This reduces
message overhead and increases scalability.

We assume that the application selects a power level,
which corresponds to a cluster range Rc, for cluster forma-
tion and intra-cluster communication, and reserves a higher
level corresponding to range Rt (Rt > Rc) for inter-cluster
communication. The power level choices depend on the node
capabilities, MAC protocol, node density, and transmission
patterns, and aim at maximizing spatial reuse and reducing
energy consumption. The selection of the best cluster power
level is beyond the scope of this work. Our main concern is
that the cluster head overlay is connected. This can be achieved
if the relation between the number of nodes in this overlay,
n0, and the inter-cluster transmission range Rt satisfies the
connectivity conditions specified in [34]. That is, assuming
that a node is active with probability p, the necessary condition
for connectivity and coverage is that R2

t ≥ c log n0

p n0

, where
c = 1

πβ2 , and β ≤ 0.5 (this is a generalization of the result
in [35]). We will define a density model in Section IV-B.1 to
give the necessary conditions for connectivity in our network
synchronization algorithm.

We now discuss algorithms for intra-cluster and inter-cluster
synchronization. For intra-cluster synchronization, cluster
members are synchronized with their cluster heads. For inter-
cluster synchronization, nodes in the cluster head overlay are
synchronized.

A. Intra-cluster Synchronization (SYNC-IN)

For intra-cluster synchronization, all nodes within a cluster
need to be synchronized with the cluster head, since com-
munication to the observer(s) always takes place through the
cluster head. A cluster head in the receiver-receiver approach
cannot synchronize itself with the cluster nodes if it acts as
a synchronization initiator, as stated in Section III-A. In this
case, the cluster head elects nodes from within its cluster to
act as initiators. It continues doing so until all the nodes
subscribed to its cluster are synchronized with the cluster
head. Since this is an intra-cluster operation, and to avoid
interference with neighboring clusters regardless of the MAC
protocol, pulses (messages) for intra-cluster synchronization
are sent with the cluster range Rc (i.e., using the power level
used for cluster formation and intra-cluster communication).

5

// Let S = φ, Cluster = C, Cluster head = CH
// Range is given as an input parameter
1. Vc ← {v : v ∈ C, v 6= CH}

2. WHILE |S| < |Vc|

3. Pick u ∈ (Vc − S) as synchronization initiator
4. Send S to u

5. IF (6 ∃v ∈ S, s.t. v ∈ neighbor(u) and v 6= CH)
6. Synchronize(u, CH) // last node
7. ELSE
8. Receiver-receiver sync. with initiator u

9. S ← S ∪ {v: SYNC(v,CH) = 1}

Fig. 3. SYNC-IN: Intra-cluster Synchronization Algorithm

This also increases energy efficiency. Fig. 3 gives the pseudo-
code for the intra-cluster synchronization algorithm executed
at each cluster head. The “Synchronize” function (line 6) can
use techniques in [14] to directly synchronize the last initiator
with the cluster head.

The best candidate to select as a synchronization initiator
is the node closest to the cluster head. This is because such a
close neighbor is likely able to cover most of the nodes in the
cluster using the cluster range Rc. A cluster head can maintain
lists of neighbors using each of its available power levels, so
that neighbors in the smallest level are identified as closest
(references [23] and [36] similarly suggest using variable
power levels, but with the goal of increasing the network
capacity). If the cluster head cannot deduce the proximity
of its cluster members, random selection can be employed.
During the operation of this protocol, nodes are synchronized
with the cluster head and removed from the candidate set of
synchronization initiators.

Correctness: It is easy to see that when the SYNC-IN
algorithm terminates, all nodes in the cluster are synchronized
with the cluster head, CH . Assume that Si and Si+1 are
the sets of nodes synchronized with CH at the beginning of
iterations i and i + 1, respectively. At iteration i, CH picks a
node u 6∈ Si to act as a synchronization initiator. This results in
at least one new synchronized node(s) that was not in Si. Thus,
|Si+1| > |Si|. The algorithm only terminates when |S| = |Vc|.

Proposition 1: The SYNC-IN algorithm terminates in
Niter = O(1) iterations, where an iteration is O(LLSync)
time.

Proof. The number of iterations depends on the part of the
cluster that is covered each time a node is elected to act as
an initiator. A worst case scenario is demonstrated in Fig. 4
where the elected nodes are very close to the boundary of the
cluster, i.e., on the perimeter of the virtual transmission circle
of the cluster head.

Assuming that the cluster circle has a perimeter p, the length
of the arc covered in circle CH by circle A is p/3. This is
because the opposite angle g is 2π/3 (since cos(g/2) = 0.5).
In the worst case, the next elected node B is also on the
perimeter of CH and A. This covers another arc of CH of
length π/3. We can add at most three other nodes on the
perimeter of CH to cover the entire area of CH . Therefore,
the SYNC-IN algorithm requires at most 5 iterations to visit
all “non-initiator” nodes and at most another 5 iterations to

node
sensor

cluster A’s range

Cluster

B’s range

A

range

CH g

Rc

Rc/2

B

Fig. 4. Worst case scenario for electing initiators to perform intra-cluster
synchronization

visit each of the initiators again (we will validate this result in
Section V). An “iteration” in this context denotes a low-level
synchronization process of a group of nodes in the cluster (as
shown in Fig. 1). Interference is avoided since only one node
transmits synchronization pulses at any time. 2

Proposition 2: The SYNC-IN algorithm requires O(1)
message transmissions per node in the cluster.

Proof. A node participates in the synchronization process in
only one iteration and sends only one message. A node may
act as an initiator only once and sends O(1) pulses. Thus, each
node (other than the cluster head) sends O(1) messages during
the entire synchronization process. The cluster head sends two
messages at each iteration (one to elect an initiator and one
for synchronization). Since the number of iterations is O(1),
the cluster head also sends O(1) messages. 2

B. Inter-cluster Network Synchronization (SYNC-NET)

We now design an algorithm, SYNC-NET, for pro-active
time synchronization of the entire hierarchical network. Since
pro-active network synchronization will be carried out in a
heavily-loaded network (otherwise reactive synchronization
of a routing path suffices), our goal is to construct strictly
synchronized routing paths among every pair of nodes, and
consequently between any node and the observer. If the
observer is not included in the clustered network, it can be
synchronized with the last node(s) on its routing path(s).
SYNC-NET strictly synchronizes the cluster head overlay and
uses SYNC-IN to synchronize each cluster. We assume the
network has been clustered using any clustering approach,
e.g., [26], [24], [28], [32], [22]. Approaches that result in
well-distributed cluster heads in the network are ideal because
interference is reduced, and intra-cluster communication can
proceed in parallel using the cluster range Rc. Fig. 5 illustrates
an organization tree rooted at the observer to aggregate data
from the entire network.

SYNC-NET operates on a clustered network. Let Ccomm be
the set of nodes in the cluster head overlay. SYNC-NET will
re-cluster the network using the set V − Ccomm. This results
in another cluster head overlay with a disjoint set of cluster
heads Csync, i.e., Ccomm ∩Csync = φ. Since sensor networks
are usually dense, we assume that this is possible (asymptotic
conditions are given in Section IV-B.1). The two cluster head
overlays have different roles. The first overlay, Ccomm, is the
overlay that will later be used for “time-aware” forwarding.

6

leaf node

Synchronized

path

Routing

path

observer

Fig. 5. An observer collecting data from a synchronized network using tree
routing. Light-colored nodes are the tree leaves. Only cluster heads are shown.

// The following is executed at every node v ∈ Csync

1. Snbrs[v]← {u : u ∈ Ccomm, distance(u, v) ≤ Rt}

2. Max iter← dlog2
1

Ps

e+ 1, iter← 0

3. REPEAT
4. iter← iter + 1, r ← Uniform(0,1)
5. IF r < Ps

6. Send SYNC beacons with range Rt

7. EXIT SYNC-NET
8. Scovered = {u : u ∈ Ccomm,

u has sent message “SYNC-DONE”}
9. IF Scovered 6= Snbrs

10. Ps ← min(Ps × 2, 1)

11. UNTIL (iter = Max iter OR Scovered = Snbrs)

Fig. 6. SYNC-NET: Inter-cluster Synchronization at v ∈ Csync

Cluster heads in Ccomm are also responsible for applying
SYNC-IN for intra-cluster synchronization. In contrast, cluster
heads in the overlay Csync are only used to synchronize the
set Ccomm.

Network synchronization proceeds as follows. Each cluster
head v ∈ Csync discovers its neighbor heads in Ccomm using
the inter-cluster transmission range Rt. A “neighbor” in the
remainder of this section refers to a node within a range Rt.3

In the first iteration of SYNC-NET, a node v ∈ Csync elects to
become a synchronization initiator for its neighbors in Ccomm

with probability Ps, 0 < Ps ≤ 1 (say 5%). The elected initiator
v synchronizes a cluster head u ∈ Ccomm that covers an
intersecting region with that of v, with all the cluster head
neighbors of u in Ccomm. This probabilistic election reduces
redundant message exchange. In addition, starting with a small
value of Ps allows gradual network synchronization and thus
reduces interference. We will study the number of messages
exchanged via simulations in Section V.

At the end of the first iteration, a cluster head that has
elected to act as a synchronization initiator exits SYNC-NET.
A node u ∈ Ccomm that detects that it is currently synchro-
nized with all its neighbors in Ccomm broadcasts a “SYNC-

3We assume that the multi-hop inter-cluster routing protocol will exploit a
neighbor as the next hop in the inter-cluster routing path, which must be the
case if Rt is the inter-cluster communication range.

DONE” message, and exits SYNC-NET. If all neighbors in
Ccomm of cluster head v ∈ Csync have sent “SYNC-DONE”
messages, v exits SYNC-NET. Otherwise, v doubles its Ps

value, and proceeds to the next iteration. This process is
repeated until Ps reaches 1. Note that when a node exits
SYNC-NET, it ignores any received synchronization pulses.
Fig. 6 gives the pseudo-code for Algorithm SYNC-NET.
The algorithm is asynchronous, i.e., all nodes need not start
executing it simultaneously. Observe that using SYNC-IN and
SYNC-NET, non-cluster head nodes need not maintain any
synchronization information, while a cluster head in Ccomm

only maintains relative synchronization information with its
cluster members and its neighboring cluster heads in Ccomm.

1) Density Model: Since SYNC-NET requires two in-
dependent cluster head overlays (Ccomm and Csync), we
must specify what node density is required to be able to
form such overlays. Assume that n nodes are uniformly and
independently dispersed at random in an area R = [0, L]2.
Assume that R is divided into N square cells of size Rc√

2
× Rc√

2

(thus N = 2L2

R2
c

), where a cell is an approximation of a cluster.
This implies that every node in each cell can reach every
other node residing in the same cell using a transmission
range Rc. We have formulated a general density model in [37]
that allows forming k connected cluster head overlays. This
requires a minimum cell occupancy of at least k > 1 nodes
asymptotically almost surely (a.a.s.).4 We can simply use the
special case k = 2 of the following theorem (which we proved
in [37]):

Theorem 1: Let η(n, N) be a random variable that denotes
the minimum number of nodes in a cell. For any fixed arbitrary
k > 0, assume that n nodes are uniformly and independently
distributed at random in an area R = [0, L]2. Assume R is
divided into N square cells, each of side Rc

√
2. If R2

cn ≥
aL2ln N for some constant a ≥ 2, Rc � L, and n � 1, then
limn,N→∞E[η(n, N)] = k iff k ∼ ln N .

Corollary 1: Each cell will a.a.s. have two distinct cluster
heads, one in Ccomm and the other in Csync.
Proof. Assuming that Theorem 1 holds for k = 2, then every
cell contains at least two nodes a.a.s., and consequently must
contain two cluster heads, one for each cluster head overlay.
The property holds a.a.s. because the nodes considered in
constructing Csync do not include the ones previously selected
in Ccomm. 2

2) Protocol Analysis: Correctness: When all nodes in
Csync terminate SYNC-NET, every node u ∈ Ccomm is
synchronized with all its neighbors in Ccomm. To prove this,
assume that Rt is selected such that it covers every cluster
head in the complete neighborhood of cells around any cell
A. The complete neighborhood around A constitutes all the
eight cells surrounding A (this can be ensured by enforcing
a relation between Rt and Rc). Assume that ∃a1 ∈ Ccomm,
such that Snbr(a1) is the set of neighbor cluster heads of a1

in Ccomm. We can prove synchronization by contradiction.
Assume that ∃u ∈ Snbr(a1), such that SY NC(a1, u) = 0.
We assume that Theorem 1 holds (where k = 2), and therefore

4We view a cell as an approximation of a cluster, and thus Rc is used to
define the required density, and Rt is used to define connectivity.

7

every cell contains two cluster heads (one in Ccomm and the
other in Csync). There are two cases for u:
Case 1. The cell of node u is within the complete neighbor-
hood of the cell of a1. For example, as depicted in Fig. 7,
a1 is in cell A, u can be one of {b1, d1, e1, f1}. In this
case, the cluster head a2 ∈ Csync can reach all of these
nodes, and therefore can synchronize them with a1, which
is a contradiction.
Case 2. The cell of node u is not in the neighborhood of
the cell of a1 (cell A). For example, cell G in Fig. 7 is one
such case. Assume that a1 and g1 are neighbors, while a2 and
g1 are not. However, there must exist another cluster head
in a neighbor cell that belongs to Csync (node d2 in this
example) which will not exit SYNC-NET until a1 and g1 are
synchronized and send “SYNC-DONE” messages. This means
that a1 and g1 will be synchronized, which is a contradiction.

a2

A

B

a1

d2

g1

G

b1

e1

d1

�����
�����
�����

�����
�����
�����

E

f1

F D
�������
�������
�������

�������
�������
�������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�����
�����
�����

�����
�����
�����

Fig. 7. Example of node synchronization using SYNC-NET.
{a1, b1, c1, d1, e1, f1} ⊂ Ccomm and {a2, d2} ⊂ Csync

Proposition 3: At every node v ∈ Csync, SYNC-NET
terminates in Niter = O(1) iterations, assuming that the
clustering protocol takes O(1) time (example O(1) clustering
protocols include [24], [28], [31]).
Proof. Since SYNC-NET continues until Ps reaches 1, the
number of iterations, Niter can be computed as:

Niter ≤ dlog2

1

Ps

e + 1, (1)

which is O(1). For example, if Ps is 10%, then Niter, is 5.
We assume that the underlying clustering protocol ensures that
the number of cluster head neighbors of each cluster head
is constant. Thus, neighborhood discovery is also an O(1)
operation. 2

Proposition 4: SYNC-NET has an O(1) message overhead
per node in each cluster head overlay.
Proof. A node may elect to become a synchronization initiator
in Csync only once, and sends O(1) synchronization pulses. A
node to be synchronized in Ccomm replies to synchronization
pulses until all its neighbors are synchronized with it. The
number of neighbors is O(1) (depends on the ratio Rt/Rc).
Thus, every node in Ccomm also sends O(1) messages (clus-
tering message overhead per node is O(1) [24], [28], [31]).
2

The worst case synchronization accuracy of SYNC-NET is
approximately O(

√
N ×q), where N is the number of cells in

the network, and q is the accuracy of the low-level synchro-

nization mechanism. We consider only the cluster head over-
lay, since (except for the first/last hop), communication pro-
ceeds through it. We assume cluster heads are non-neighbors,
and thus the cluster head overlay can be approximated by
a 2-D mesh network. Synchronization accuracy depends on
the length of the path from the source to the destination, Lp,
and the underlying low-level synchronization mechanism. In
the worst case, Lp can be as long as the network diameter,
which is O(

√
N). Therefore, the accuracy provided by SYNC-

NET is O(
√

N × q). For example, consider a sensor network
with n = 10, 000, N = 100 and RBS [5] as the underlying
low-level synchronization scheme. RBS achieves an absolute
accuracy per hop in the order of q ≈ 29µs on Berkeley
sensor motes, as measured in [4]. Therefore, according to
the above discussion, SYNC-NET achieves an accuracy of
10× 29× 10−6 = 290 µs on the longest expected path, in the
worst case when errors add up.

V. PERFORMANCE EVALUATION

In this section, we verify via simulations the properties of
our proposed approaches for intra-cluster and inter-cluster syn-
chronization. We developed our own simulator that is simpler
than existing simulators, such as ns-2. This simplicity allows
the simulator to scale to thousands of nodes. The simulator,
however, does not model all the details of a wireless channel
and MAC protocol, e.g., interference problems. This is a
reasonable approach for three reasons. First, all the results pre-
sented below are comparative and use the same simplifications
for all scenarios. Second, we assume that the MAC layer uses
CDMA (or orthogonal channels) to allow simultaneous intra-
cluster and inter-cluster transmissions. Intra-cluster collisions
are further reduced by using TDMA among cluster members.
Third, the typical packet sizes are small (the default is 29 bytes
for TinyOS [38]), which reduces the probability of collisions,
especially when aggregation is used.

A. Intra-cluster Synchronization

We explore the two possibilities for selecting synchro-
nization initiators that were discussed in Section IV-A: (1)
randomly, and (2) closest to the cluster head. We vary the
number of nodes per cluster from 10 to 1000 to study how
fast the algorithm terminates for different node densities:
node density ranges from 0.1 nodes/m2 to 10 nodes/m2. The
transmission range (Rc = 10 m). Fig. 8 illustrates that: (1)
the number of iterations until SYNC-IN converges is less
than 8 for different densities, which agrees with the result
in Proposition 1, and (2) the number of iterations when the
closest neighbors are selected as initiators is lower than that
when random initiators are selected, as expected. Selecting
the closest neighbors as initiators, however, adds overhead
on the cluster head for discovering neighbors at each power
level smaller than the cluster power level. Note that we have
assumed in this experiment that there is an infinite number of
transmission ranges below the cluster range.

8

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000

A
ve

ra
g
e
 n

u
m

b
e
r

o
f
ite

ra
tio

n
s

Number of nodes in the cluster

Random initiators
Closest Initiators

Fig. 8. Convergence of the SYNC-IN protocol

B. Inter-cluster Synchronization

We assume that nodes are dispersed uniformly and inde-
pendently in a 100×100 m2 area. We use 2500 nodes, unless
otherwise specified. Throughout this section, we use the term
“neighbors” in SYNC-NET to refer to two cluster heads which
can communicate using a transmission range Rt. Two neighbor
cluster heads can belong to the same cluster head overlay,
or belong to different overlays. As defined in Section IV-
B, we use Ccomm and Csync to refer to the forwarding and
synchronizing overlays, respectively, and use “node density”
to refer to the number of nodes per cluster.

1) Comparisons to other approaches: We compare the
performance of SYNC-NET to the Diffusion-based proto-
col [10], which is a receiver-receiver approach, and multi-
hop TPSN [4], which is a sender-receiver approach. Observe,
however, that this comparison is only for demonstration, since
protocols like TPSN and Diffusion-based assume that the
application needs to achieve time consensus in the network,
which is not the goal of our work. In addition, in TPSN, a ref-
erence node initiates synchronization by forming a hierarchy
using message flooding, while SYNC-NET does not rely on
the presence of any infrastructure support in the network. We
will demonstrate that SYNC-NET provides comparable per-
formance to multi-hop TPSN. We focus on three performance
metrics:

1) convergence speed, which is the primary focus of our
work;

2) message overhead, which is directly related to energy
savings; and

3) perceived accuracy, which is the goal of any synchro-
nization protocol.

In our first experiment, the cluster range for SYNC-NET
(Rc), TPSN neighbor discovery, and Diffusion-based com-
munications, varies from 5 m to 9 m. We plot the average
number of iterations for multi-hop TPSN and the Diffusion-
based protocol for 100 different topologies. We also plot
the maximum number of iterations of SYNC-NET for Ps

= 0.05, (which gives 6 iterations). We assume that an O(1)
clustering protocol [24], [28], [31] is used, and hence add
7 iterations to the SYNC-NET iterations to construct Csync.
Fig. 9(a) illustrates a significant difference in convergence
speed between SYNC-NET and the other two protocols (which
have linearly decreasing curves), especially for the more

typical small transmission ranges. In fact, multi-hop TPSN
and Diffusion-based protocols are expected to be even slower
in a 1-dimensional space, since the number of iterations is
expected to be O(n) in the average case.

In our second experiment, we compare the three protocols
in terms of their perceived accuracy (or error propagation).
We assume that the Diffusion-based target accuracy γ = 100
msec. The algorithm terminates only when this γ is achieved.
We assume RBS low-level synchronization is employed by
SYNC-NET for an absolute receiver-receiver synchronization
error value of mean 29 µs introduced at every hop, while
TPSN low-level synchronization achieves an absolute sender-
receiver error value of mean 17 µs. These values were
reported in [4] based on an implementation of RBS and
TPSN, and experimental results on Berkeley sensor motes. For
simplicity, data is forwarded using greedy geographic routing.
We consider the synchronization error propagated across the
network as reports are transmitted from a source closest to
the bottom left corner of the network area to an observer
that is closest to the upper right corner (the longest path). We
also assume worst case error propagation for both multi-hop
TPSN and SYNC-NET. Fig. 9(b) illustrates that both SYNC-
NET and the Diffusion-based approach provide comparable
synchronization granularity for the network. Multi-hop TPSN
has higher error for smaller ranges. The reason for SYNC-
NET performing better than TPSN although it has a higher
relative error propagation is that SYNC-NET uses the cluster
head overlay for forwarding, and thus has a fewer number of
hops than TPSN.

Finally, we compute the message overhead for each ap-
proach. Fig. 9(c) demonstrates the price paid by the Diffusion-
based approach to achieve its target accuracy. Results (shown
on a log scale) also demonstrate that multi-hop TPSN requires
the least message exchange overhead since timing informa-
tion is only forwarded and copied by the nodes. SYNC-
NET overhead is slightly higher than multi-hop TPSN but
significantly lower than the Diffusion-based approach. The
primary contributor to the overhead in SYNC-NET is the RBS
low-level synchronization at both the intra-cluster and inter-
cluster levels.

2) Effect of varying SYNC-NET parameters: We inves-
tigate SYNC-NET with respect to:

1) the average number of neighbors as the transmission
range grows;

2) the convergence speed as the node density increases; and
3) how probabilistic synchronization initiation reduces the

number of messages exchanged in the network.
We keep Rc fixed in most experiments. Changing Rc only
results in changing the average number of cluster heads in
Ccomm and Csync, and has no impact on the performance of
SYNC-NET.

To verify that the nodes in Csync can synchronize the
Ccomm overlay, we conduct an experiment where the inter-
cluster range Rt is varied from double to four times the cluster
range Rc (Rc = 10 m). We use average node densities of
2.5 nodes/cell, 5 nodes/cell, and 10 nodes/cell, for 500, 1000,
and 2000 nodes, respectively. Results (given in our technical
report [20]) illustrate that the average number of neighbors in

9

 0

 20

 40

 60

 80

 100

 120

 5 6 7 8 9

A
ve

ra
g
e
 n

u
m

b
e
r

o
f
ite

ra
tio

n
s

Transmission range (m)

SYNC-NET, P_s=5%
TPSN

Diffusion-based

(a) Convergence speed

 50

 100

 150

 200

 250

 300

 5 6 7 8 9

S
yn

ch
ro

n
iz

a
tio

n
 e

rr
o
r

(m
se

c)

Transmission range (m)

SYNC-NET
TPSN

Diffusion-based

(b) Perceived accuracy

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 5 6 7 8 9

N
u
m

b
e
r

o
f
e
xc

h
a
n
g
e
d
 m

e
ss

a
g
e
s

Transmission range (m)

SYNC-NET
TPSN

Diffusion-based

(c) Message overhead

Fig. 9. SYNC-NET performance compared to TPSN [4] and the Diffusion-based approach [10]

Ccomm for each node in Csync exceeds five, for all values
of Rt. This number gives an indication of number of nodes
typically synchronized when a node v ∈ Csync acts as a
synchronization initiator. Node density, as long as it satisfies
Theorem 1, does not appear to have as significant an impact on
the results in this case, since the average number of neighbors
is dominated by the ratio Rt/Rc.

We now perform two experiments to verify Proposition 3. In
the first experiment, we compute the actual average number of
iterations in these experiments to compare with the analytical
upper bound. In both experiments, the transmission range Rt

varies from 2Rc to 4Rc, and Rc = 6 m. Experiments are
performed for three values of n (the number of nodes): 1000,
2000, and 3000. This results in node densities that range from
about 2 nodes/cell to 6 nodes/cell. Fig. 10 shows that, as
expected, SYNC-NET terminates more rapidly as Rt grows
relative to Rc. We also examine the number of exchanged
messages associated with longer transmission ranges. Fig. 11
shows that the percentage of actual number of synchronization
initiators out of the total number of viable initiators in Csync

is about 95% for Rt = 2Rc, and about 60% for Rt =
3Rc. This is a significant reduction in message exchange,
compared to the simple approach of making every node in
Csync a synchronization initiator, since the percentage of non-
participating nodes in Csync reflects the percentage of reduced
message overhead.

3.5

4

4.5

5

5.5

6

2 2.4 2.8 3.2 3.6 4

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

Transmission range/cluster range

n=1000
n=2000
n=3000

Fig. 10. Convergence speed for different Rt/Rc ratios

Finally, we study the effect of the synchronization proba-
bility Ps on the convergence speed and message overhead of

0.5

0.6

0.7

0.8

0.9

1

2 2.4 2.8 3.2 3.6 4

ac
tu

al
 in

iti
at

or
s/

 to
ta

l #
 o

f i
ni

tia
to

rs

Transmission range/cluster range

n = 1000
n = 2000
n = 3000

Fig. 11. Percentage of nodes from Csync that participated as synchronization
initiators

SYNC-NET. The probability Ps ranges from 0.01 to 1 in our
experiments. The number of nodes n is set to 2000. The cluster
range Rc is 6 m, while the transmission range Rt varies from
2Rc to 4Rc. Fig. 12 shows that (1) the average number of
iterations until all the nodes in Ccomm are synchronized with
their neighbors is strictly less than the maximum specified by
Proposition 3, and (2) as Ps increases, termination is faster,
since the synchronization probability goes to 1 quickly. This is
not a desirable behavior, however, since more nodes in Csync

send redundant synchronization pulses. This is demonstrated
in Fig. 13, where smaller values of Ps generally result in a
lower average number of initiators, and hence lower message
overhead. The curves show more than one local minimum,
which means that each transmission range has a unique
behavior with different synchronization probabilities. We have
not considered the effect of interference in our simulations,
which will indeed be magnified by sending simultaneous long-
range synchronization pulses by neighboring nodes in Csync.
Therefore, we surmise that a small value of Ps (e.g., 5%) will
help achieve both goals: fast termination and lower message
exchange. Even for a small probability, the convergence speed
is within practical bounds.

VI. DEPLOYMENT CONSIDERATIONS

In this section, we discuss several design and deployment
considerations for our framework:

10

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

Synchronization initiation probability (Ps)

Rt = 2Rc
Rt = 3Rc
Rt = 4Rc

Fig. 12. Convergence speed for different Ps values

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

ac

tu
al

 in
iti

at
or

s/
to

ta
l #

 o
f i

ni
tia

to
rs

Synchronization initiation probability (Ps)

Rt = 2Rc
Rt = 3Rc
Rt = 4Rc

Fig. 13. Percentage of nodes from Csync that participated as synchronization
initiators

Synchronization in non-clustered networks: We use
node clustering to define synchronization regions and ensure
that the synchronization process has predictable asymptotic
behavior. Our proposed algorithms can, however, be adapted to
synchronize flat (non-clustered) networks as follows. Assume
that nodes use a transmission range Rc. Nodes can elect
themselves as synchronization initiators using an iterative
probabilistic approach (with a range Rc) as in the original
algorithm. Elected initiators send synchronization pulses using
a transmission range Rt (Rt > Rc). The network then
goes through another round of synchronization, excluding
the initiators of the previous round from acting as initiators.
Neighboring initiators in the two rounds can then privately
undergo one-to-one synchronization. In this scenario, every
node will have to store its relative synchronization information
with its neighbors to maintain synchronized paths.

Triggering synchronization: If clock skewness is variable
due to conditions such as temperature, SYNC-NET must
be periodically triggered for relative synchronization. SYNC-
NET can be triggered at any node by timer expiration or
by message exchange. For example, if the application can
tolerate an error of up to 1 ms, two clocks lose synchronization
at a maximum rate of 1 µsec per minute, and the network
diameter is 40 hops, then SYNC-NET should be triggered
every 1/(1 × 10−3 × 40/2) = 50 minutes. A node in Csync

that detects synchronization pulses from a neighbor should
immediately start executing SYNC-NET. Since it is difficult
to compute the clock skewness for the entire network during
network operation, each node can set a timer to trigger
synchronization taking into consideration an estimate of the

expected skewness.
Re-clustering and synchronization: In clustered networks,

clustering is periodically re-triggered to achieve certain goals,
such as load-balancing. Synchronization should be triggered
at least as frequently as clustering to maintain synchronized
clustered network routing paths to the observer(s).

Effect of fading, path asymmetry, and packet loss: The
wireless medium imposes challenges on SYNC-NET. Syn-
chronization pulses and timestamp reports may not be received
because of signal fading, path asymmetry, and packet loss.
Using small values of Ps for gradual network synchronization
reduces collisions. In addition, losing synchronization pulses
is not critical since a node in Ccomm does not exit the SYNC-
NET protocol unless it is synchronized with all its neighbors.
A node in Ccomm can also rely on pulses from more than
one node in Csync to be synchronized with each neighbor.
Therefore, pulse loss and path asymmetry will cause more
nodes in Csync to act as initiators, but SYNC-NET will still
operate correctly.

Synchronization probability: Throughout the paper, we
have considered a constant Ps value for all nodes. A variable
Ps can be used to attain certain properties, such as favoring
nodes with high connectivity for faster convergence, or favor-
ing nodes with high remaining energy. We plan to explore
these options in our future work.

Sleeping nodes: Putting cluster heads to sleep may be prob-
lematic for cluster head overlay connectivity and synchronized
path availability. To avoid these problems, a node that belongs
to Ccomm should not switch to the sleeping mode unless it is
not participating in the routing or synchronization processes.

Fault-tolerance: Networks deployed in hostile environ-
ments may experience unexpected node failures. This may
hinder communication if the failed nodes are in the cluster
head overlay. This problem is mitigated by the fact that
applications that use clustered networks periodically re-cluster
the network to maintain connectivity, and adjust to changing
network conditions due to dispersion of new nodes or failure
and energy depletion of others. Fault tolerance can also be
achieved by maintaining backup cluster head overlays which
can be synchronized using the pulses generated by the initia-
tors of Csync. If the clustering protocol can self-heal in case
of failures, then the newly elected heads should trigger local
synchronization by soliciting pulses from the Csync nodes.

Applicability: Our protocols are applicable to any wireless
network setting that requires scalable and rapid convergence.
Examples include several data dissemination, peer-to-peer
systems (e.g., BitTorrent [39]), and network monitoring appli-
cations, running on handheld or laptop devices in a wireless
ad-hoc network.

VII. CONCLUSIONS

In this work, we proposed a distributed, high-level time
synchronization framework for multi-hop sensor networks
that integrates node synchronization with node clustering for
scalability and fast convergence. Our framework serves the two
major classes of network applications, namely, source-driven
and data-driven network applications. We define synchro-
nization regions as clusters, where two-hop communication

11

can take place through a cluster head. We designed fully
distributed protocols for intra-cluster synchronization (SYNC-
IN), and inter-cluster synchronization (SYNC-NET). We show
(in Section VI) how to adapt SYNC-NET for flat networks.

For inter-cluster synchronization, results demonstrate that
the proposed analytical density model is easily achieved in
moderately dense networks, where the expected number of
nodes per cell exceeds two. By gradual network synchro-
nization (through a probability Ps), message overhead can be
significantly reduced. Results also show that SYNC-NET can
achieve a synchronization accuracy that is comparable to other
approaches, while terminating more rapidly and significantly
reducing message overhead. In our future work, we plan to
study the effect of node distribution in the network, and the
impact of variable probability Ps values, via both simulations
and testbed experiments.

REFERENCES

[1] S. Madden, “The design and evaluation of a query processing architec-
ture for sensor networks,” Ph.D. dissertation, MIT, 2004.

[2] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, “SPINS:
Security Protocols for Sensor Networks,” in Proceedings of ACM
MOBICOM, 2001.

[3] R. Beehler, “Time/Frequency Services of the U.S. National Bureau of
Standards and Some Alternatives for Future Improvement,” Electronics
and Telecommunications Engineers, vol. 27, 1981. [Online]. Available:
citeseer.ist.psu.edu/johnson96dynamic.html

[4] S. Ganeriwal, R. Kumar, and M. Srivastava, “Timing-sync Protocol for
Sensor Networks,” in Proceedings of ACM SenSys, November 2003.

[5] J. Elson, L. Girod, and D. Estrin, “Fine-Grained Network Time synchro-
nization Using Reference Broadcasts,” in Proceedings of OSDI, 2002.

[6] S. Ping, “Delay Measurement Time Synchronization for Wireless Sensor
Networks,” Intel Research, IBR-TR-03-013, Tech. Rep., June 2003.

[7] P. Verissimo, L. Rodrigues, and A. Casimiro, “CesiumSpray: A Precise
and Accurate Global Time Service for Large-scale Systems,” Special
Issue on the Global Time in Large-scale Distributed Real-time Systems,
Journal of Real-time Systems, vol. 12, no. 3, November 1997.

[8] K. Romer, “Time Synchronization in Ad-hoc Networks,” in Proceedings
of ACM MobiHoc, October 2001.

[9] J. V. Greunen and J. Rabaey, “Lightweight Time Synchronization for
Sensor Networks,” in Proceedings of the Second Workshop on Sensor
Networks and Application (WSNA’03), September 2003.

[10] Q. Li and D. Rus, “Global Clock Synchronization in Sensor Networks,”
in Proceedings of IEEE INFOCOM, March 2004.

[11] J. Elson and D. Estrin, “Time Synchronization for Wireless Sensor Net-
works,” in Proceedings of the 15th International Parallel and Distributed
Processing Symposium (IPDPS’01), April 2001.

[12] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: A
Scalable and Robust Communication Paradigm for Sensor Networks,”
in Proceedings of ACM MOBICOM, 2000.

[13] L. Meier, P. Blum, and L. Thiele, “Internal Synchronization of Drift-
Constraint Clocks in Ad-hoc Sensor Networks,” in Proceeding of ACM
MobiHoc, May 2004.

[14] F. Cristian, “Probabilistic Clock Synchronization,” Distributed Comput-
ing, pp. 146–158, 1989.

[15] J.-P. Sheu, C.-M. Chao, and C.-W. Sun, “A Clock Synchronization
Algorithm for Multi-Hop Wireless Ad-Hoc Networks,” in Proceedings
of IEEE International Conference on Distributed Computing Systems
(ICDCS), March 2004.

[16] D. L. Mills, “Network Time Protocol (Version 3): Specification, Imple-
mentation and Analysis,” RFC 1305, March 1992.

[17] M. L. Sichitiu and C. Veerarittiphan, “Simple, Accurate Time Synchro-
nization for Wireless Sensor Networks,” in Proceeding of IEEE WCNC,
March 2003.

[18] S. Biaz and J. L. Welch, “Closed Form Bounds for Clock Synchro-
nization under Simple Uncertainty Assumptions,” Elsevier Information
Processing Letters, vol. 80, pp. 151–157, 2001.

[19] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed
System,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, July
1978.

[20] O. Younis and S. Fahmy, “On Time Synchronization in Multi-hop Sensor
Networks,” Purdue University, Tech. Rep. CSD-TR-04-020, June 2004.

[21] C. R. Lin and M. Gerla, “Adaptive Clustering for Mobile Wireless
Networks,” in IEEE Journal on Selected Areas in Communications,
September 1997.

[22] B. McDonald and T. Znati, “Design and Performance of a Distributed
Dynamic Clustering Algorithm for Ad-Hoc Networks,” in Annual Sim-
ulation Symposium, 2001.

[23] V. Kawadia and P. R. Kumar, “Power Control and Clustering in Ad Hoc
Networks,” in Proceedings of IEEE INFOCOM, April 2003.

[24] O. Younis and S. Fahmy, “Distributed Clustering in Ad-hoc Sensor Net-
works: A Hybrid, Energy-Efficient Approach,” in Proceedings of IEEE
INFOCOM, Hong Kong, March 2004, an extended version appeared in
IEEE Transactions on Mobile Computing, 3(4), Oct-Dec 2004.

[25] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An
Application-Specific Protocol Architecture for Wireless Microsensor
Networks,” IEEE Transactions on Wireless Communications, vol. 1,
no. 4, pp. 660–670, October 2002.

[26] S. Basagni, “Distributed Clustering Algorithm for Ad-hoc Networks,”
in International Symposium on Parallel Architectures, Algorithms, and
Networks (I-SPAN), 1999.

[27] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “Initializing Newly De-
ployed Ad-hoc and Sensor Networks,” in Proceedings of ACM MOBI-
COM, September 2004.

[28] H. Chan and A. Perrig, “ACE: An Emergent Algorithm for Highly
Uniform Cluster Formation,” in Proceedings of the First European
Workshop on Sensor Networks (EWSN), January 2004.

[29] M. Chatterjee, S. K. Das, and D. Turgut, “WCA: A Weighted Clustering
Algorithm for Mobile Ad Hoc Networks,” Cluster Computing, pp. 193–
204, 2002.

[30] F. Kuhn and R. Wattenhofer, “Constant-Time Distributed Dominating
Set Approximation,” in Proceedings of ACM Symposium on Principles
of Distributed Computing (PODC), July 2003.

[31] A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynh, “Max-Min
D-Cluster Formation in Wireless Ad Hoc Networks,” in Proceedings of
IEEE INFOCOM, March 2000.

[32] S. Banerjee and S. Khuller, “A Clustering Scheme for Hierarchical
Control in Multi-hop Wireless Networks,” in Proceedings of IEEE
INFOCOM, April 2001.

[33] H. S. Kim, T. Abdelzaher, and W. H. Kwon, “Minimum-Energy Asyn-
chronous Dissemination to Mobile Sinks in Wireless Sensor Networks,”
in Proceedings of ACM Conference on Embedded Networked Sensor
Systems (ACM SenSys), November 2003.

[34] S. Shakkottai, R. Srikant, and N. Shroff, “Unreliable sensor grids: Cov-
erage, connectivity and diameter,” in Proceedings of IEEE INFOCOM,
March 2003.

[35] P. Gupta and P. R. Kumar, “Critical Power for Asymptotic Connectivity
in wireless Networks,” Stochastic Analysis, Control, Optimizations, and
Applications: A Volume in Honor of W.H. Fleming, W.M. McEneaney,
G. Yin, and Q. Zhang (Eds.), Birkhauser, 1998.

[36] J. Gomez and A. Campbell, “A Case for Variable-Range Transmission
Power Control in Wireless Multihop Networks,” in Proceedings of IEEE
INFOCOM, March 2004.

[37] O. Younis, S. Fahmy, and P. Santi, “Robust Communications for
Sensor Networks in Hostile Environments,” in the Twelfth International
Workshop on Quality of Service (IWQoS’04), Montreal, Canada, June
2004.

[38] “TinyOS,” http://www.tinyos.net, 2005.
[39] BitTorrent, “http://www.bitconjurer.org/BitTorrent,” 2004.

