
Topology-Aware Overlay Networks for Group
Communication

Minseok Kwon
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907–2066

kwonm@cs.purdue.edu

Sonia Fahmy
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907–2066

fahmy@cs.purdue.edu

ABSTRACT
We investigate a heuristic application-level (overlay) multicast ap-
proach, which we call Topology Aware Grouping (TAG). TAG ex-
ploits underlying network topology data to construct multicast over-
lay networks. TAG uses information aboutoverlap in routes to the
senderamong group members to set up the overlay network in a
distributed low-overhead manner. The constructed tree has low rel-
ative delay penalty, and introduces a limited number of identical
copies of a packet on the same link– assuming underlying routes
are of good quality. We study the properties of TAG, and quantify
its economies of scale factor, compared to unicast and IP multi-
cast. We also compare TAG with End System Multicast (ESM) in
a variety of simulation configurations, including both real Internet
topologies and generated topologies. Our results indicate the effec-
tiveness of our heuristic in reducing delays and duplicate packets,
with reasonable time and space complexities. TAG can be com-
bined with delay and bandwidth bounds to construct overlays that
satisfy application requirements.

Categories and Subject Descriptors
C.2.2 [Network protocols]: Applications; C.2.5 [Local and wide-
area networks]: Internet; D.4.4 [Communications management]:
Network communication; D.4.8 [Performance]: Simulation

General Terms
Algorithms, Design, Performance

Keywords
overlay networks, application-level multicast, network topology,
routing

1. INTRODUCTION
A variety of issues, both technical and commercial, have ham-

pered the widespread deployment of IP multicast in the global In-
ternet [14, 15]. Application-level multicast approaches using over-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’02,May 12-14, 2002, Miami, Florida, USA.
Copyright 2002 ACM 1-58113-512-2/02/0005 ...$5.00.

lay networks [9, 11, 12, 18, 24, 32, 42] have been recently pro-
posed as a viable alternative to IP multicast. In particular, End
System Multicast (ESM) [11, 12] has gained considerable attention
due to its success in conferencing applications. The main idea of
ESM (and its Narada protocol) is that end systems exclusively han-
dle group management, routing information exchange, and overlay
forwarding tree construction. The efficiency of large-scale overlay
multicast trees, in terms of both performance and scalability, is the
primary subject of this paper.

We investigate a simple heuristic, which we call Topology Aware
Grouping (TAG), to exploit underlying network topology data in
constructing efficient overlays for application-level multicast. Our
heuristic works well when underlying routes are of good quality,
e.g., in intra-domain environments, and when final hop delays are
small. Each new member of a multicast session first determines the
path (route) from the root (primary sender) of the session to itself.
The overlap among this path and other paths from the root is used
to partially traverse the overlay data delivery tree, and determine
the best parent and children for the new member. The constructed
overlay network has a low delay penalty and limited duplicate pack-
ets sent on the same link. TAG nodes maintain a small amount of
state information– IP addresses and paths of only their parent and
children nodes.

Unlike ESM, the TAG heuristic caters to applications with a large
number of members, which join the session at different times. TAG
works best with applications which regard delay as a primary per-
formance metric and bandwidth as a secondary metric. For exam-
ple, in a limited bandwidth streaming application or multi-player
on-line game, latency is an important performance measure. TAG
constructs its overlay tree based on delay (as used by current In-
ternet routing protocols), but uses bandwidth as a loose constraint.
Bandwidth is also used to break ties among paths with similar de-
lays. We investigate the properties of TAG and model its economies
of scale factor, compared to unicast and IP multicast. We also
demonstrate via simulations the effectiveness of TAG in terms of
delay, number of identical packets, and available bandwidth in a
number of large-scale configurations.

The remainder of this paper is organized as follows. Section 2
describes the basic algorithm, its extensions, and some design con-
siderations. Section 3 analyzes the properties of TAG and its economies
of scale factor. Section 4 simulates the proposed algorithm and
compares it to ESM using real and generated Internet topologies.
Section 5 discusses related work. Finally, section 6 summarizes our
conclusions and discusses future work.

2. TOPOLOGY AWARE OVERLAYS
Although overlay multicast has emerged as a practical alterna-

S

R1

R5

R2

R3

R4

D5

D3 D4

D1
D2

Figure 1: Example of topology aware overlay networks

tive to IP multicast, overlay network performance in terms of de-
lay penalty and number of identical packets (referred to as “link
stress”) in large groups have been important concerns. Moreover,
exchange of overlay end-to-end routing and group management in-
formation limits the scalability of the overlay multicast approach.
Most current overlay multicast proposals employ two basic mecha-
nisms: (1) a protocol for collecting end-to-end measurements among
members; and (2) a protocol for building an overlay graph or tree
using these measurements.

We propose to exploit the underlying network topology informa-
tion for building efficient overlay networks, assuming the underly-
ing routes are of good quality. By “underlying network topology,”
we mean the shortest path information that IP routers maintain. The
definition of “shortest” depends on the particular routing protocol
employed, but usually denotes shortest in terms of delay or number
of hops, or according to administrative policies. Using topology in-
formation is illustrated in figure 1. In the figure, sourceS (the root
node) and destinationsD1 toD4 are end systems that belong to the
multicast group, andR1 toR5 are routers. Thick solid lines denote
the current data delivery tree fromS toD1�D4. The dashed lines
denote the shortest paths to a new nodeD5 from S andD1. If D5
wishes to join the delivery tree, which member is the best parent
node toD5? If D1 becomes the parent ofD5, a relay path from
D1 toD5 is consistent with the shortest path fromS toD5. More-
over, no duplicate packet copies are necessary in the sub-pathS to
R2 (packets in one direction are counted separately from packets
in the reverse direction). This heuristic is similar to determining if
a friend is, more or less, on your way to work, so giving him/her
a ride will not excessively delay you, and you can reduce overall
traffic by car pooling. If he/she is out of your way, however, you
decide to drive separately. In addition, this heuristic is subject to
both capacity (e.g., space in your car) and latency (car pooling will
not make the journey excessively long) constraints.

Of course, it is difficult to determine the shortest path and the
number of identical packets, in the absence of any knowledge of
the underlying network topology. If network topology informa-
tion can be obtained by the multicast participant (as discussed in
section 2.6), nodes need not exchange complete end-to-end mea-
surements, and topology information can be exploited to construct
high quality overlay trees. Therefore, our heuristic is: a TAG desti-
nation selects as a parent the destination whose shortest path from
the source has maximal overlap with its own path from the source.
This heuristic minimizes the increase in number of hops (and hence
delay if we assume low delay of the last hop(s)) over the shortest
unicast path. We also use loose bandwidth constraints.

As with all overlay multicast approaches, TAG does not require
class D addressing, or multicast router support. A TAG session can

be identified by (rootIP addr, rootport), where “root” denotes the
primary sender in a session. The primary sender serves as the root
of the multicast delivery tree. The case of multiple senders will be
discussed in section 2.8.

2.1 Assumptions
TAG makes a number of assumptions:

1. TAG is used for single-source multicast or core-based mul-
ticast: The source node or a selected core node is the root of
the multicast forwarding tree (similar to single-source multi-
cast [21] or core-based multicast [6] for IP multicast).

2. Route discovery methods exist:TAG can obtain the short-
est path for a sender-receiver pair on the underlying network.
A number of route discovery tools are discussed in section 2.6.

3. All end systems are reachable:Any pair of end systems on
the overlay network can communicate using the underlying
network. Recent studies, however, indicate that some Inter-
net routes are unavailable for certain durations of time [31,
26, 7].

4. Underlying routes are of good quality (in terms of delay):
Intra-domain routing protocols typically compute the short-
est path in terms of delay for a sender-receiver pair. Recent
studies, however, indicate that the current Internet demon-
strates a significant percentage of routing pathologies [31,
36]. Many of these arise because of policy routing techniques
employed for inter-domain routing. TAG is best suited for
well-optimized routing domains.

5. The last hop(s) to end systems exhibit low delay:A long
latency last hop to an end system, e.g., a satellite link, ad-
versely affects TAG performance. TAG works best with low-
delay a last hop to an end system (or last few hops for the par-
tial path matching flavor of TAG, as discussed in section 2.5).

2.2 Definitions
We define the following terms, which will be used throughout

the paper.

DEFINITION 1. A path from nodeA to nodeB in TAG, de-
noted byP (A;B), is a sequence of routers comprising the shortest
path from nodeA to nodeB according to the underlying routing
protocol. P (S;A) will be referred to as thespathof A whereS
is the root of the tree. Thelength of a pathP or len(P) is the
number ofroutersin the path.

DEFINITION 2. A � B if P (S;A) is a prefix ofP (S;B),
whereS is the root of the tree.

For example, thepath from S to D5 (or spathof D5) in figure 1
is P (S;D5) =< R1; R2; R4 > with len(P (S;D5)) = 3. Since
P (S;D1) =< R1; R2 >,D1 � D5.

A TAG node maintains a family table (FT) defining parent-child
relationships for this node. One FT entry is designated for the par-
ent node, and the remaining entries are for the children. As seen
in figure 2, an FT entry consists of a tuple (address, spath). The
address is the IP address of the node, and thespathis the shortest
path from the root to this node.

2.3 Complete Path Matching Algorithm
The path matching algorithm traverses the overlay data delivery

tree to determine the best parent (and possibly children) for a new
node. The best parent for a new nodeN in a tree rooted atS is:

...
<IPaddr(Bi), P(S,Bi)>

<IPaddr(A), P(S,A)>

Children

Parent

FT

Figure 2: Family table (FT)

D1 : < R1, R3 >
D2 : < R1, R6 >

D7 : < R1, R2, R7 >
D4 : < R1, R2, R4 >

New member
of

New member subscribes here

(a) (b)

D1 : < R1, R3 >
D2 : < R1, R6 >

D7 : < R1, R2, R7 >

FT

D4 : < R1, R2, R4 >

New member subscribes here

(c)

D1 : < R1, R3 >
D2 : < R1, R6 >

D7 : < R1, R2, R7 >
D4 : < R1, R2, R4 >

Candidate
Best

Children

FT FT

D8 : < R1, R2, R4, R5 >
New Member New Member

D8 : < R1, R2 >
New Member
D8 : < R1, R5 >

Children

Figure 3: The three conditions for complete path matching

A nodeC (C 6= N) in the tree, such thatC � N and
len(P (S;C)) � len(P (S;R)) for all nodesR � N
in the tree.

The algorithm considers three mutually exclusive conditions, as
depicted in figure 3. LetN be a new member wishing to join a cur-
rent session. LetC be the node being examined, andS be the root
of the tree. If possible, we select a nodeA such thatA is a child of
C,A � N , andlen(P (S;N)) > len(P (S;A)) > len(P (S;C)),
and continue traversing the sub-tree rooted atA (figure 3(a)). Oth-
erwise, if there are childrenAi of C such thatN � Ai for some
i, N becomes a child ofC with Ai as its children (figure 3(b)).
In case no child ofC satisfying the first or second conditions ex-
ists,N becomes a child ofC (figure 3(c)). Note that no more than
one child satisfying the first condition can exist. The complete path
matching algorithm is presented in figure 4. In the algorithm,N
denotes a new member;C is the node currently being examined by
N ; andtarget is the next node whichN will probe, if necessary.

There are two reasons for selecting a node (in the first and second
conditions) whosespathis the longest prefix of thespathof the new
member. First, the path from the source to the new member will be
consistent with the shortest path determined by routing algorithms.
This reduces the additional delay introduced by overlays. Second,
sharing the longest prefix curtails the number of identical packet
copies in the overlay network, since a single packet is generated
over the shared part.

2.4 Tree Management
In this section, we discuss the multicast tree management proto-

col, including member join and member leave operations, and fault
resilience issues.

2.4.1 Member Join
A new member joining a session sends a JOIN message to the

primary senderS of the session (the root of the tree). Upon the re-
ceipt of a JOIN,S computes thespathto the new member, and ex-
ecutes the path matching algorithm. If the new member becomes a
child of S, the FT ofS is updated accordingly. Otherwise,S prop-
agates a FIND message to its child that shares the longestspath
prefix with the new memberspath. The FIND message carries the
IP address and thespathof the new member. The FIND is pro-
cessed by executing path matching and either updating the FT, or
propagating the FIND. The propagation of FIND messages contin-
ues until the new member finds a parent. The process is depicted in
figure 5.

An example is illustrated in figure 6. SourceS is the root of
the multicast tree,R1 throughR4 are routers, andD1 throughD5
are destinations. The thick arrows denote the multicast forwarding
tree computed by TAG. The FT of each member (showing only the
children) is given next to it. The destinations join the session in
the orderD1 to D5. Upon the receipt of a JOIN message from

proc PathMatch(C;N) �
ch := first child of C;
flag := condition(3);
while (ch is NOT NULL) do

if (ch � N)
then

target := ch;
flag := condition(1); fi;

if (N � ch)
then

add ch to children(N);
N becomes parent(ch);
flag := condition(2); fi;

if (flag is NOT condition(1))
then

ch := next child of C;
else

ch := NULL ;
fi;

od;
if (flag is condition(1))

then
PathMatch(target;N);

else
add N to children(C);

fi;
V ariables :
C : node currently being examined
N : new node joining the group
ch : a child of C
target : next node N will examine

Figure 4: Complete path matching algorithm

D1, S creates an entry forD1 in its FT (figure 6(a)).S computes
the shortest path for a destination upon receiving the JOIN mes-
sage of that destination. WhenD2 joins the session (figure 6(b)),
S executes the path matching algorithm with thespathof D2. S
determines thatD1 is a better parent forD2 than itself, and sends
a FIND message toD1 which takesD2 as its child. D3 simi-
larly determinesD2 to be its parent (figure 6(c)). WhenD4 joins
the session,D4 determinesD1 to be its parent and takesD2 and
D3 as its children. The FTs ofD1 to D4 are updated accord-
ingly (figure 6(d)). Finally,D5 joins the session as a child ofD4
(figure 6(e)). Figure 6(e) depicts the final state of the multicast
forwarding tree and the FT at each node.

2.4.2 Member Leave
A member can leave the session by sending a LEAVE message

to its parent. For example, ifD4 wishes to leave the session (fig-

Root

New Member

Member1

Member2

Path
MatchingFIND

FIND
JOIN

:::

Request/Reply

Request/Reply

Request/Reply

Figure 5: A member join process in TAG

D1: (R1)

FT

D2
D3

D5

R3

R4

D4R2

D1

S

(c)(b)(a)

(e)(d)

R1 D2: (R1, R2, R4)

D1: (R1)

FT

D3

D5

R3

R4

D4R2

D1

S

R1

D2

D1: (R1)

D3: (R1,R2,R4)

FT

FT

D2
D3

D5

R3

R4

D4R2

D1

S

R1

D4: (R1, R2)

D1: (R1)

FT

FT

FT

FT
D2

D3

D5

R3

R4

D4R2

D1

S

R1

D5: (R1,R2,R3)
D2: (R1,R2,R4)

D4: (R1,R2)

D1: (R1)

D3: (R1,R2,R4)

FT

FT

FT

FT

D2
D3

D5
R4

D4R2

D1

S

R1

D2: (R1, R2, R4)

D3: (R1, R2, R4)

D2: (R1,R2,R4)

FT

FT

R3

Figure 6: Member join in TAG

ure 7(a)),D4 sends a LEAVE message to its parentD1. A LEAVE
message includes the FT of the leaving member. Upon receiving
LEAVE from D4, D1 removesD4 from its FT and adds FT en-
tries for the children ofD4 (D2 andD5 in this case). The updated
multicast forwarding tree is illustrated in figure 7(b).

2.4.3 Fault Resilience
Failures in end systems participating in a multicast session (not

an uncommon occurrence) affect all members of the subtree rooted
at the failing node. To detect failures, a parent and its children pe-
riodically exchange reachability messages in the absence of data.
When a child failure is detected, the parent simply discards the
child from its FT, but when a parent failure is detected, the child
must rejoin the session.

2.5 Bandwidth Considerations
Since TAG targets delay-sensitive applications, delay (as defined

by the underlying IP routing protocol) is the primary metric used in
path matching. The complete path matching algorithm presented in
figure 4 can reduce the delay from source to destination, and reduce
the total number of identical packets. However, high link stress [12]
(and limited bandwidth to each child) may be experienced near a
few high degree or limited bandwidth nodes in the constructed tree.
To alleviate this problem, we loosen the path matching rule when
a node is searching for a parent. The new rule allows a nodeB to

(a) (b)

D5: (R1, R2, R3)
D2: (R1, R2, R4)

D2
D3

D5

R3

R4

D4R2

D1

S

R1

D3: (R1, R2, R4)

D1: (R1)

D4: (R1, R2)

D5: (R1, R2, R3)
D2: (R1, R2, R4)

D3: (R1, R2, R4)

D1: (R1)
FT

FT

FT

FT

FT

FT

FT

D2
D3

D5

R3

R4

D4R2

D1

S

R1

Figure 7: Member leave in TAG

attach to a nodeA as a child, ifA has a commonspathprefix of
lengthlen(P (S;A))� k with B (S is the root of the tree), even if
the remainingk elements of thespathof A do not match thespath
of B. We call this method partial path matching or minus-k path
matching. We use the symbol�partial(k) to denote minus-k path
matching.

Minus-k path matching allowschildrenof a bandwidth-constrained
node to take on new nodes as their children, mitigating the high
stress and limited bandwidth near the constrained node. When
the available bandwidth at a given node falls below a threshold
bwthresh, minus-k path matching is activated. The thresholdbwthresh
does not give a strict guarantee, but it gives an indication that alter-
nate paths should be explored. Thek parameter controls the devia-
tion allowed in the path matching. A large value ofk may increase
the delay to a node, but it reduces the maximum stress a node may
experience, therefore increasing available bandwidth to the node.

With minus-k matching, a new member can examine several
delay-based paths while traversing the tree, and select the path
which maximizes bandwidth. When a nodeC is being probed by
the new member, all children ofC which are eligible to be potential
ancestors of the new member (by the minus-k path matching algo-
rithm) constitute a set of nodes to examine next. The node which
gives the maximum bandwidth among these nodes is the one se-
lected. The partial path matching algorithm is presented in figure 8.
The member leave operation also employs minus-k path matching.
When the parent of a leaving member receives a LEAVE message,
the parent first removes the leaving member from its FT. Children
of the leaving member (included in the LEAVE message) then ex-
ecute minus-k path matching at the parent of the leaving member
to find their new parents. Figure 9 illustrates an example of mem-
ber join and leave withk = 1. A new memberD3 takesD1 as
its parent sinceD1 provides more bandwidth thanD2. WhenD1
leaves,D4 becomes a child ofD3. D3 maximizes bandwidth to
D4 among the children ofD0 (D2 andD3).

Table 1 shows the tradeoff between the delay (mean RDP as de-
fined in section 4), total link stress on the tree, and maximum link
stress in the tree, for a variety ofbwthresh values (in kbps). The
simulation setup used will be discussed in section 4. The configu-
ration used here is TAG-TS2 with 1000 members. We use a fixed
k = 1 in these simulations, though we are currently investigat-
ing dynamic adaptation ofk. As seen in the table, asbwthresh
increases, minus-k path matching is activated more often. Conse-
quently, a largerbwthresh value reduces the total number of iden-
tical packets and maximum stress, but increases the RDP value.
If TAG does not use minus-k path matching (bwthresh=0), TAG
trees suffer from a large number of identical packets and high max-
imum stress, yielding little bandwidth for many connections.

D2
D1

D3

R4

R2

R1
R3

S

D2−D3: 400 kbps
D1−D3: 800 kbps

R0

D1 leave

R0

R1

R6

R3

D3

D4

D2

D1

D0

S

Member Leave (k=1)Member Join (k=1)

D0−D4: 100 kbps
D1−D4: 800 kbps
D2−D4: 300 kbps
D3−D4: 600 kbps

R4

R2

R5 R4

R6

R3

D3

D4

D2

D1

D0

S

R0

R1 R2

R5

Figure 9: Member join and leave with partial path matching

Table 1: Tradeoffs with different bwthresh values (in kbps)
bwthresh (in kbps) RDP Total stress Max. stress

400 1.570779 1804 106
300 1.559278 1928 104
200 1.526061 2142 105
100 1.384193 2680 146
50 1.319069 2578 189
20 1.301828 3732 413
0 1.352894 3992 340

2.6 Obtaining Topology and Bandwidth Data
When a new member joins a multicast session in TAG, the root

must obtain the path from itself to the new member. We propose
two possible approaches for performing this. The first approach
is to use a network path-finding tool such astraceroute. Tracer-
outehas been extensively used for network topology discovery [19,
31]. Some routers, however, do not send ICMP Time-Exceeded
messages when Time-To-Live (TTL) reaches zero for several rea-
sons, the most important of which is security. Recently, we con-
ducted simple experiments where we usedtraceroutefor 50 sites
in different continents at different times and on different days. Ap-
proximately 82�90% of the routers responded. The average time
taken to obtain and print the entire path information was 5.2 sec-
onds, with a maximum of 42.6 seconds and a minimum of 0.2 sec-
onds. 5�8% traceroutefailures were reported in [31]. A recent
study [20] indicates that router ICMP generation delays are gener-
ally in the sub-millisecond range (< 500�secs). This shows that
only a few routers in today’s Internet are slow in generating ICMP
Time-Exceeded messages.

The second option is to exploit topology servers. For example,
an OSPF topology server [38] can track intra-domain topology, ei-
ther by listening to OSPF link state advertisements, or by pushing
and pulling information from routers via SNMP. Network topology
can also be obtained from periodic dumps of router configuration
files [17], from MPLS traffic engineering frameworks [4], and from
policy-based OSPF monitoring frameworks [5]. Internet topology
discovery projects [16, 8, 10] can also supply topology informa-
tion to TAG when a new member joins or changes occur. Topology
servers may, however, only include partial or coarse-grained (e.g.,
AS-level) information [29, 16, 8, 10]. Partial information can still
be exploited by TAG for partial path matching of longest common
subsequences.

Bandwidth estimation tools are important for TAG, in conjunc-
tion with in-band measurements, to estimate the available band-
width between nodes under dynamic network conditions. Tools

similar topathchar[22] estimate available bandwidth, delay, aver-
age queue, and loss rate of every hop between any source and des-
tination on the Internet.Nettimer[27] is useful for low-overhead
measurement of per-link available bandwidth. Other bandwidth or
throughput measurement tools are linked through [1].

2.7 Adaptivity and Scalability
If network conditions change and the overlay tree becomes in-

efficient (e.g., when a mobile host moves or paths fail), TAG must
adapt the overlay tree to the new network conditions. An accu-
rate adaptation would entail that the root probe every destination
periodically to determine if the paths have changed. When path
changes are detected, the root initiates a rejoin process for the des-
tinations affected. This mechanism, however, introduces scalability
problems in that the root is over-burdened and many potential probe
packets are generated.

We propose three mechanisms to mitigate these scalability prob-
lems. First, intermediate nodes (non-leaf nodes) participate in pe-
riodic probing, alleviating the burden on the root. The intermediate
nodes only probe the paths to their children. Second, path-based
aggregation of destinations can substantially reduce the number of
hops and destinations probed. Destinations are aggregated if they
have the samespath. Only one destination in a destination group
is examined every round. During the next round, another member
of the group is inspected. When changes are detected for a certain
group, all members of that group are updated. Third, when changes
in part of thespathare detected for a destination, not only the desti-
nation being probed, but also all the destinations in the same group
and all the destinations in groups with overlappingspaths, are up-
dated.

Although these TAG reorganizing mechanisms help reduce over-
head, the root is likely to experience a high load when a large num-
ber of members join or rejoin simultaneously. The root is also a sin-
gle failure point. To address these limitations, mechanisms similar
to those used in Overcast [24] can be used. For example, requests
from members to the root are redirected to less-burdened replicated
roots.

Another important consideration is the quality of the TAG tree in
terms of both delay and bandwidth. TAG aligns overlay routes with
underlying routes, assuming underlying routes are of good quality
(fourth assumption in section 2.1). Unfortunately, today’s Inter-
net routing, particularly inter-domain routing, exhibits pathologies,
such as slow convergence and node failures. Savageet al. [36,
35] found that there is an alternate path with significantly supe-
rior quality to the IP path in 30�80% of the cases (30�55% for
latency, 75�85% for loss rate, and 70�80% for bandwidth). Intra-
domain network-level routes, however, are generally of good qual-
ity, and, in the future, research on inter-domain routing and traffic

proc PathMatch(C;N) �
ch := first child of C;
flag := condition(3);
maxbw := 0;
if (bandwidth(C)< bwthresh)

then
minus-k path matching in condition(1) activated;

fi;
while (ch is NOT NULL) do

if (ch �partial(k) N && bandwidth(ch)> maxbw)
then

target := ch;
maxbw := bandwidth(ch);
flag := condition(1); fi;

if (N � ch&& flag is NOT condition(1))
then

add ch to children(N);
N becomes parent(ch);
flag := condition(2); fi;

ch := next child of C;
od;
if (flag is condition(1))

then
PathMatch(target;N);

else
add N to children(C);

fi;
V ariables :
C : node currently being examined
N : new node joining the group
ch : a child of C
target : next node N will examine
maxbw : maximum bandwidth among potential

parents of N

Figure 8: Partial path matching algorithm, with bandwidth as
a secondary metric. The bandwidth() function gives the avail-
able bandwidth between a node and the new member

engineering may improve route quality in general. Another impor-
tant consideration is that a long latency last hop(s) to a TAG parent
node may yield high delay to its children (section 2.1). A delay-
constrained overlay tree construction mechanism can be combined
with the TAG heuristic to prevent such high delay paths.

As for bandwidth, it is only considered as a secondary metric (as
a tie breaker among equal delay paths) in tree construction (sec-
tion 2.5). Minus-k path matching does not guarantee bandwidth—
it simply explores more potential paths when bandwidth is scarce.
A bandwidth-constrained tree construction mechanism can be in-
corporated into TAG if bandwidth guarantees are required.

2.8 Multiple Sender Groups
In the current version of TAG, a sender other than the root of the

tree must first relay its data to the root. The root then multicasts
the data to all members of the session. This approach is suitable
for mostly single-sender applications, where the primary sender is
selected as the root, and other group members may occasionally
transmit. In applications where all members transmit with approx-
imately equal probabilities, the root of the tree should be carefully
selected. This is similar to the core selection problem in core-based
tree approaches for multicast routing [6]. Multiple (backup) roots
are also important for fault tolerance.

3. ANALYSIS OF TAG
In this section, we investigate the properties of TAG, and study

its bandwidth penalty compared to IP multicast. For simplicity, we
use TAG with complete path matching (figure 4) in our analysis,
except for the complexity analysis where we analyze both complete
and mins-k path matching.

3.1 Properties of TAG
In this section, we study the conditions used in the path matching

algorithm, and the properties of the trees constructed by TAG.

LEMMA 1. NodeA is anancestorof nodeB in the TAG tree iff
A � B.

Proof:): We first show that if nodeX is the parent of nodeY ,
denoted byX = Parent(Y), thenX � Y . In the path matching
algorithm,X can become the parent ofY by the second or by the
third path matching conditions. Both cases guaranteeX � Y .

Then, we generalize to the case when nodeA is anancestor(not
necessarily the parent) of nodeB. In this case, there must ben
(n > 0) nodes such thatM1 = Parent(B), M2 = Parent(M1),
: : :,Mn =Parent(Mn�1),A =Parent(Mn). M1 =Parent(B) �
B holds, according to the previous case. Similarly,M2 � M1 �
B. Transitively,A = Parent(Mn) � B.
(: This follows from conditions 1 and 2 in the path matching

algorithm. 2

In figure 1, nodeD1 is anancestorof nodeD5 becauseP (S;D1)
= < R1; R2 > is a prefix ofP (S;D5) = < R1; R2; R4 >. In
contrast, the fact thatP (S;D2) = < R1; R5 > is not a prefix of
P (S;D5) = < R1; R2; R4 > implies that nodeD2 is not an an-
cestor ofD5. We now investigate the conditions of the path match-
ing algorithm.

LEMMA 2. The three conditions in the TAG path matching al-
gorithm (given in figure 3) are mutually exclusive (no two of the
three conditions can occur simultaneously) and complete (no other
case exists).

Proof: We first prove mutual exclusion. To show mutual exclusion
is equivalent to proving no two conditions can hold simultaneously.
The first and the third conditions, and the second and the third con-
ditions cannot co-exist by definition. Therefore, we need to show
that the first and second conditions cannot both hold at the same
time. Suppose the first and the second conditions occur simulta-
neously for a nodeC that is being examined. A new memberN
selectsB, a child ofC, such thatB � N for further probing by
the first condition. By the second condition, there must exist a node
B0, another child ofC, such thatN � B0, andB andB0 are sib-
lings. However, in this case, the path matching algorithm would
have previously ensured thatB0 is a descendant ofB, not a child
of C, by lemma 1, sinceB � N � B0. This is a contradiction.

Since the third condition includes the complement set of the first
and the second conditions, the conditions are complete. 2

Now we study the number of trees TAG can construct.

LEMMA 3. TAG constructs a unique tree if all members have
distinctspaths, regardless of the order of joins. If there are at least
two members with the samespaths, the order of joins alters the
constructed tree.

Proof: By lemma 1, a unique relationship among every two nodes
(i.e., parent, ancestor, child, descendant, or none) is established

S

R

R

R

M

M

M

i

len(p(i))

2 more hops

Figure 10: Bound on the number of hops in TAG

among every two nodes which have differentspaths, independent
of the order of joins. If two members have the samespath, one
must be an ancestor of the other. Therefore,n! distinct trees can
be constructed by TAG ifn group members have the samespaths
(according to the order of their joins). 2

We now study the properties of a parent node.

LEMMA 4. For all i, the spathof the parent of nodesAi has
the longest prefix of thespathP (S;Ai), where “longest” denotes
longest in comparison to thespathsof all members in a session and
S is the root of the tree.

Proof: Consider two nodesB andC whereB is the parent of
C. By lemma 1,B � C, i.e., P (S;B) is a prefix ofP (S;C).
Suppose there exists a nodeA such thatP (S;A) is a prefix of
P (S;C) andlen(P (S;A))> len(P (S;B)). If bothP (S;A) and
P (S;B) are prefixes of the same pathP (S;C) andlen(P (S;A))
> len(P (S;B)), thenP (S;B) is a prefix ofP (S;A). By defini-
tion 2,B � A. Therefore,A must be a descendant ofB according
to lemma 1. The path matching algorithm, however, would make
C a child ofA, instead ofB, sinceB � A andA � C. This
is a contradiction. Hence,P (S;B) must be the longest prefix of
P (S;C), whereB is the parent ofC. 2

Finally, we give a bound for the number of hops on the path from
the root to each member.

LEMMA 5. For every destinationi in a TAG tree,SPD(i) �
E(i) � 3�SPD(i)�2, whereSPD(i) is the number of hops on
the shortest path from rootS to i, andE(i) is the actual number of
hops fromS to i in the TAG tree.

Proof: ConsiderP (S; i), the path from rootS to i. By the defi-
nition of len, SPD(i) = len(P (S; i)) + 1 sinceSPD(i) is the
number of hops on the pathP (S; i). The fact thatSPD(i) is the
number of hops on the shortest pathP (S; i) ensuresSPD(i) �
E(i). The maximumE(i) occurs wheni has as many ancestors
aslen(P (S; i)). This situation is depicted in figure 10. In the fig-
ure, R denotes a router;i is a destination, and nodesM are all
ancestors ofi. For everyM , 2 hops are added to the path. Thus,
2� len(P (S; i)) hops are added toSPD(i). Therefore, the max-
imumE(i) is 3 � SPD(i)� 2. 2

3.2 Time Complexity
In this section, we analyze the time complexities of both com-

plete path matching and minus-k path matching. For simplicity, we
assume that an overlay multicast tree hasn end systems, and that
each end system has an average ofm children. We also assume
that an average ofv routers exist over the link between a parent and
its child. After the source discovers the path to a new member, the
member join process requires: (1) operations for each node, and (2)
tree traversal. For (1), suppose that the new member has matched
its path to a node� at leveli � 1 and is searching for a matching

node at leveli in the overlay multicast tree, where0 < i < logm n.
(The height of the tree islogm n, which is assumed to be an inte-
ger.) In complete path matching, operations in (1) requiremvi
operations for the new member at� to search for the next match-
ing node at leveli, in the worst case. The new member can find
the next matching node at leveli by examining at mostvi routers
per child for each of them children of�. Operation (2) is of order
logm n from the root to a leaf node. Therefore, the time complexity
of member join is:

logm nX
i=1

mvi =
mv logm n(logm n+ 1)

2
= O(mv log2m n) (1)

Member leave requires one deletion andm additions of FT en-
tries. Each entry requiresv logm n operations for the worst case
path length. Thus, the time complexity of member leave isO(mv logm n).

In minus-k path matching, (1) requiresm(k + vi) operations if
k+vi � v logm n. Otherwise, (1) requiresmv logm n operations.
A new member matched with node� examinesk more routers than
in the complete path matching case. Hence,k + vi routers are ex-
amined by the new member per child to find the next matching node
if k + vi � v logm n. Otherwise,v logm n routers are examined
(the maximum path length). This is performed for each of them
children of�. Since operation (2) requireslogm n operations and
assuming thatk is small, the time complexity of member join is:

blogm n� k

v
cX

i=1

m(k + vi) +

logm nX
i=blogm n� k

v
c+1

mv logm n

= m(blogm n�
k

v
c)

v(blogm n� k

v
c + 1)

2
+ k

!

+ km logm n

= O(mv log2m n) (2)

As discussed in section 2.5, children of a leaving member re-
join the session starting from the parent of the leaving member in
minus-k path matching. In this process, each ofm children of the
leaving member requiresO(mv log2m n) operations for the rejoin.
Hence, the time complexity of member leave isO(m2v log2m n) in
this case.

3.3 Modeling the Economies of Scale Factor
Two important questions to answer about an overlay multicast

tree are: (1) how much bandwidth it saves compared to naive uni-
cast; and (2) how much additional bandwidth it consumes com-
pared to IP multicast. IP multicast savings over naive unicast have
been studied in [2, 13, 33]. Chuang and Sirbu [13] investigated
the cost of IP multicast for a variety of real and generated network
topologies. Their work was motivated by multicast pricing. They
found thatL(m) / m0:8, whereL(m) is the ratio between total
number of multicast links and average unicast path length, andm is
the number of distinct routers to which end systems are connected.
They also found that the cost of a multicast tree saturates when the
number of subscribing end systems exceeds a certain value. Based
on these results, they suggested membership-based pricing untilm
reaches the saturation point, and flat-rate pricing beyond that point.

In this section, we quantify the network resources consumed by
TAG. We derive a bound for the functionLTAG(n), which de-
notes the sum of link stress values on all router-to-router links,
for a multicast group of sizen. Although the number of distinct
routers to which end systems are connected is used in [13], we use

k

H

k

k

Router

End system

Figure 11: A k-ary Tree Model

B l

B l+1

B l+1(k)

. . .

δ

l−1

level

l+1(2)B l+1(1)

l

Figure 12: TAG Trees

n, the number of end systems in a multicast group. As discussed
in [2], using the number of end systems is intuitively appealing and
makes the analysis simpler. Note thatm can be approximated by
m = M(1 � (1 � 1

M
)n) whereM is the total number of possi-

ble routers to which end systems can be connected.m � n when
n
M
� 1.

For simplicity, we assume ak-ary data dissemination tree in
which tree nodes denote routers (as in [2, 33]), as depicted in fig-
ure 11. The height of the tree isH and all nodes except the leaves
have degreek. We assume that no unary nodes (nodes at which
no branching occurs) exist. Therefore, our results are approximate.
An end system can be connected to any router (node in the tree).
Suppose thatn end systems join the multicast session. The prob-
ability that at least one end system is connected to a given node
is:

pn = 1� (1�
1

M
)n (3)

whereM = 1 + k + k2 + � � �+ kH = kH+1�1
k�1

is the number of
possible locations for the subnet of an end system, which is equal
to the number of nodes in the tree.

We now evaluate the cost of transmission at each level of the
tree. In figure 12,Bl indicates the cost over the link between node
Æ at levell and its parent at levell � 1, andBl+1(a) denotes the
cost over the links between nodeÆ at levell and its children at level
l + 1 for 1 � a � k. We computeBl considering two different
cases: when at least one end system is connected to nodeÆ, and
when no end system is connected toÆ. Let B1

l be the cost in the
first case andB2

l be the cost in the second case. TAG enforces
that the first case costs one, for transmission between nodeÆ and
its parent. This is because nodeÆ sends packets from the parent
to the children (Bl = 1). In the second case, however, since no
end system relays the packets atÆ, the cost over outgoing links ofÆ
towards the leaves is equal to the cost over the link betweenÆ and its
parent. Therefore,B1

l = pn andB2
l = (1 � pn)

Pk
a=1Bl+1(a).

We assume the end systems are uniformly distributed to tree nodes.
This assumption implies thatE[Bl+1(1)] = E[Bl+1(2)] = � � � =
E[Bl+1(k)] = E[Bl+1]. Therefore,E[B2

l] = (1� pn)kE[Bl+1].

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

N
or

m
al

iz
ed

 O
ve

rla
y

Tr
ee

 C
os

t

Number of Members

k=3,H=6
k=3,H=7
k=3,H=8
k=4,H=5
k=4,H=6
k=5,H=5

x^0.95

Figure 13: TAG tree cost versus group size

Hence,E[Bl] is defined as follows:

E[Bl] = E[B1
l] +E[B2

l] = pn + (1� pn)kE[Bl+1] (4)

E[BH] = pn (5)

Solving the recurrence in (4) and (5), we obtain:

HX
l=1

klE[Bl] =
kH+1(1� pn)f1� (1� pn)

Hg

k(1� pn)� 1

�
pn(k

H+1 � k)

fk(1� pn)� 1g(k � 1)
(6)

The costLTAG(n) is given by (6):

LTAG(n) =
HX
l=1

klE[Bl] (7)

Figure 13 plots the normalized overlay tree cost of TAG for a va-
riety of k andH values on a log-log scale. The normalized overlay
tree costLTAG(n)=û is defined asLTAG(n), the cost of an over-
lay with n members, divided by the average number of hops (only
counting router-to-router links) for a unicast path from the source
to receivers,̂u. Since we assume end systems are uniformly dis-
tributed at nodes,̂u is the average number of hops from the root to
a node on the overlay tree:

û =
1

M

HX
i=1

iki (8)

All curves stabilize for group sizes exceeding 1000�5000 mem-
bers. The slope decreases because as group size grows, more end
systems can share the links yielding more bandwidth savings. This
is an important advantage of TAG over unicast. The figure shows
that, approximately,LTAG(n)=û / n0:95 before the curves sta-
bilize. The factor 0.95 is smaller than unicast, but larger than the
factor for IP multicast (LIPmulticast(n)=û / n0:8), where repli-
cation at the routers, together with good multicast routing algo-
rithms yield additional savings. We will verify these results via
simulations in section 4.3.

4. PERFORMANCE EVALUATION
We first discuss the simulation setup and metrics, and then ana-

lyze the results.

4.1 Simulation Setup and Metrics
We have implemented session-level (not packet-level) simula-

tors for both TAG and ESM [12] to evaluate and compare their

performance. The simulators model propagation delays, but not
queuing delays and packet losses. Two sets of simulations were
performed on different topologies. The first set uses Transit-Stub
topologies generated by GT-ITM [41]. The Transit-Stub model
generates router-level Internet topologies. We also simulate AS-
level topologies, specifically the actual Internet AS topologies from
NLANR [29] and topologies generated by Inet [25].

The Transit-Stub model generates a two-level hierarchy: inter-
connected higher level (transit) domains and lower level (stub) do-
mains. We use three different topologies with different numbers of
nodes: 492, 984, and 1640. When the total is 492 nodes, there are
2 transit domains, 6 nodes per transit domain, 5 stub domains per
transit node, and 8 nodes per stub domain. Similar distributions are
used when the total number of nodes is 984 and 1640. We label
the 3 transit-stub topologies TS1, TS2, and TS3 respectively, e.g.,
label “TAG-TS1” denotes the results of TAG on the Transit-Stub
topology with 492 nodes. Multicast group members are assigned
to stub nodes randomly. The multicast group size ranges from 60 to
5000 members. GT-ITM generates symmetric link delays ranging
from 1 to 55 ms for transit-transit or transit-stub links. We use 1 to
10 ms delays within a stub. We randomly assign bandwidth ranging
between 100 Mbps and 1 Gbps to backbone links. We use 500 kbps
to 10 Mbps for the links from edge routers to end systems.

The AS topologies from NLANR and Inet give AS-level connec-
tivity. AS-level maps have been shown to exhibit a power-law [16].
This means that a few nodes have high-degree connectivities, while
most other nodes exhibit low-degree connectivities. We use the
1997 and 1998 NLANR data sets, named AS97 and AS98, respec-
tively. We also use the 1997 Inet data set (named Inet97) and the
1998 Inet data set (Inet98), which have the same number of ASes
as the NLANR data sets: 3015 and 3878. We have 4000 (for 1997)
and 5000 (for 1998) members in a multicast session, and assign
members to ASes randomly. Link delays and bandwidths in the
same ranges as the Transit-Stub configuration are used for the AS
configurations. The link delays are asymmetric.

We assume that the IP layer routing algorithm uses delay as a
metric for finding shortest paths. The routing algorithm for the
mesh in ESM uses discretized levels of available bandwidth (in
200 kbps increments) as the primary metric, and delay as a tie
breaker. The minus-k path matching algorithm is used in TAG
with a fixedk = 1 and bwthresh= 200 kbps, unless otherwise
specified. We use the same parameters for ESM used in the simula-
tions in [11, 12] (lower degree bound = 3, upper degree bound = 6,
high delay penalty = 3), except for delay-related parameters (close
neighbor delay = 85 ms) since we assign a wider range of delays to
the links.

We use the following performance metrics [11, 12] for evaluating
TAG and ESM:

1. Mean Relative Delay Penalty (RDP):RDP is the relative
increase in delay between the source and a receiver in TAG
against unicast delay between the source and the same re-
ceiver. The RDP from sources to receiverdr is the ratio
latency(s;dr)
delay(s;dr)

. The latencylatency(s; dr) from s to dr is de-

fined to bedelay(s; d0) +
Pl�1

i=0 delay(di; di+1) +delay(dl; dr),
assumings delivers data todr via the sequence of end sys-
tems(d0; � � � ; dl). Here,delay(di; di+1) denotes the end-
to-end delay fromdi to di+1. We compute the mean RDP of
all receivers.

2. Link Stress: Link stress is the total number of identical
copies of a packet over a physical link. We compute the total
stress for all tree links. We also compute the maximum value
of link stress among all links.This is clearly a network-level

0

2

4

6

8

10

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
ea

n
R

D
P

Group Size

TAG-TS1
TAG-TS2
TAG-TS3
ESM-TS1
ESM-TS2
ESM-TS3

Figure 14: Mean RDP: TAG versus ESM

0

5000

10000

15000

20000

25000

30000

35000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

To
ta

l S
tre

ss

Group Size

TAG-TS1
TAG-TS2
TAG-TS3
ESM-TS1
ESM-TS2
ESM-TS3

Figure 15: Total stress: TAG versus ESM

metric and is not of importance to the application user.

3. Mean Available Bandwidth (in kbps): This is the mean of
the available bottleneck bandwidth between the source and
all receivers.

The TAG tree cost is also computed in section 4.3, and compared
to IP multicast and unicast cost.

4.2 Performance Results

4.2.1 Transit-Stub Topologies
The mean RDP values for TAG and ESM on the three different

Transit-Stub topologies (TS1, TS2, TS3) are plotted in figure 14.
From the figure, TAG exhibits lower mean RDP values than ESM
for different group sizes in all 3 topologies. The mean RDP values
for TAG-TS1, TS2, and TS3 are all in the range of 1 to 2, while
the mean RDP values for ESM range from 2 to 6. This is because
TAG considers delay as the primary metric while ESM uses delay
only as a tie breaker. Although TS3 is a larger scale topology than
TS2, and TS2 is larger than TS1, the mean RDP values for TAG
are similar for the different topologies. Mean RDP values for TAG
increase with the increase in group size. As more end systems join
in TAG, the mean RDP values increase due to the bandwidth con-
straint in partial path matching (even though lower latency paths
may become available). We observe that, unlike TAG, the mean
RDP values for ESM do not always increase with the increase in
group size.

Figure 15 illustrates the total stress of TAG and ESM for the
three different topologies. For all group sizes and topologies, TAG

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

(%
)

Stress (log-scale)

TAG-TS1
TAG-TS2
TAG-TS3
ESM-TS1
ESM-TS2
ESM-TS3

Figure 16: Cumulative distribution of stress

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
ax

 S
tre

ss

Group Size

TAG-TS1
TAG-TS2
TAG-TS3
ESM-TS1
ESM-TS2
ESM-TS3

Figure 17: Maximum stress: TAG versus ESM

total stress is below 8000. In contrast, ESM exhibits higher stress.
The total stress for all 6 configurations increases in proportion to
the group size, since more identical packets traverse physical links
when more end systems join the session. TAG-TS1 and TAG-
TS2 exhibit the lowest total stress. TAG can avoid some duplicate
packets since TAG aligns overlay and underlying routes, subject to
bandwidth availability. Packets from the source to a receiver are not
duplicated along the path from the source to the parent of that re-
ceiver. Figure 16 depicts the cumulative distribution of total stress.
The figure shows that the three TAG configurations have slightly
more low-stress links than the three ESM configurations.

Figure 17 illustrates that TAG, with the correct parameters, can
reduce the maximum stress value as well. With the complete path
matching algorithm, a strategically located end system attached to
a high-degree router can be the parent of numerous nodes, which
severely constrains the bandwidth available to each of these nodes,
and increases the stress at this end system. The minus-k path match-
ing algorithm remedies this weakness, as shown in the figure.

The mean bandwidth, depicted in figure 18, denotes the average
of the available bottleneck bandwidths from the source to all mem-
bers. The available bottleneck bandwidth with ESM is high (from
600 to 1600 kbps) for up to 500 members, and then stabilizes at
approximately 600 kbps for groups exceeding 500 members. TAG
gives 200�800 kbps bandwidth for up to 500 members. For larger
groups, the bandwidth rapidly drops to under 200 kbps. The bottle-
neck bandwidth given by TAG continues to decrease as the group
size increases. TAG bottleneck bandwidth is very sensitive to the
number of members, and to the bandwidth threshold (bwthresh =
200 kbps here). This and the fact that ESM optimizes bandwidth

0

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
ea

n
B

an
dw

id
th

 (k
bp

s)

Group Size

TAG-TS1
TAG-TS2
TAG-TS3
ESM-TS1
ESM-TS2
ESM-TS3

Figure 18: Mean bandwidth: TAG versus ESM

0

1

2

3

4

5

6

7

8

5 10 15 20 25 30

M
ea

n
R

D
P

Upper Degree Bound (UDB)

ESM-TS1
ESM-TS2
ESM-TS3

Figure 19: Mean RDP for different UDB values in ESM

explain why ESM performs better than TAG.
An important point to note is that in the ESM algorithm, the

lower and upper degree bounds (LDB and UDB, respectively) for
each group member play a key role. The two parameters control
the number of neighbors that each member communicates with.
In particular, the upper degree bound is significant, as it impacts
both protocol scalability and performance. In our simulations, we
observe that increasing the upper degree bound for ESM reduces
the delay penalty in some cases, but not always. Figure 19 plots
the mean RDP values of ESM versus different UDB values on the
3 topologies TS1, TS2, and TS3 for 1000 members. In the figure,
the mean RDP values decrease as UDB increases for ESM-TS1 and
ESM-TS3 (except for an increase between UDB=10 and UDB=15).
The mean RDP stabilizes beyond a certain UDB value. Increasing
UDB generally helps a member find the best paths in terms of de-
lay penalty and bandwidth. However, due to the discretized levels
of available bandwidth used as a primary metric in ESM, changes
using different UDB values are not substantial. A higher UDB,
of course, increases the volume of routing information exchanged,
which is detrimental to scalability. We have observed no significant
change in the mean bandwidth, total stress, or maximum stress,
with higher UDB values.

The parameter choices for TAG, most significantlybwthresh
(which should be tuned according to application bandwidth require-
ments), significantly affect the results. For example, settingbwthresh
to zero and using complete path matching dramatically improves
the RDP values for TAG, at the expense of the maximum stress and
bandwidth results, as discussed in section 2.5.

4.2.2 AS and Inet Topologies

Table 2: Performance of TAG and ESM in AS and Inet
Configuration Algorithm Mean RDP Total link stress Max. stress Mean parent-child bandwidth (kbps)

AS97 TAG-50 3.460311 13353 537 926.00
TAG-100 4.318838 11443 293 1229.00
TAG-200 7.048233 10114 134 1562.00

ESM 4.022230 13933 390 2407.00
Inet97 TAG-50 4.755937 13904 513 933.00

TAG-100 9.343069 11585 321 1353.00
TAG-200 11.080918 11331 290 1559.00

ESM 7.664771 13091 352 2489.00
AS98 TAG-50 2.574400 17086 343 1034.00

TAG-100 3.123874 15632 212 1140.00
TAG-200 5.409245 13268 180 1485.00

ESM 3.425697 18774 314 2230.00
Inet98 TAG-50 3.574421 14594 283 1279.00

TAG-100 5.990842 15744 189 1161.00
TAG-200 10.513578 15611 159 1315.00

ESM 5.391030 17208 309 2566.00

Table 2 shows the performance of TAG and ESM on AS97, AS98,
Inet97, and Inet98. We run three different versions of TAG with re-
spect tobwthresh. TAG-50, TAG-100, and TAG-200 denote TAG
with bwthresh = 50, 100, and200 kbps, respectively.

TAG-50 gives lower mean RDP than ESM over all configura-
tions. In contrast, the mean RDPs of TAG-100 and TAG-200 are
similar to, or even worse than, the mean RDP of ESM. All the TAG
configurations exhibit lower mean parent-child bandwidth than ESM
(in these simulations, we measure parent-child, not sender to re-
ceiver, bottleneck bandwidth). Among the TAG configurations,
TAG-200 achieves higher mean bandwidth than TAG-100, which
gives higher mean bandwidth than TAG-50. Since TAG only con-
siders bandwidth as a secondary metric, it does not consider band-
width in its primary tree construction choices. This result shows
that bwthresh in TAG must be chosen carefully. A tradeoff be-
tween RDP and bandwidth is clearly observed.

In addition, note that fanout of nodes in AS-level topologies
is higher than that in router-level topologies. The minus-k path
matching algorithm in TAG increases the RDP of the nodes which
can no longer take a high-degree node as a parent. The available
bandwidth at the high-degree node is reduced by the possibly large
number of children. TAG with abwthresh of zero dramatically re-
duces the RDP (to 1.5 for AS97 and 1.6 for Inet97) at the expense
of significant decrease in mean bandwidth.

Total link stress values do not widely vary for TAG-50, TAG-
100, TAG-200, and ESM. However, the maximum stress of TAG-
50 is higher than the maximum stress of ESM on AS97 and Inet97.
The maximum stress of TAG-50 and ESM on AS98 and Inet98 are
similar. With a smallbwthresh for TAG-50, TAG allows a node to
have a large number of children, which results in a high maximum
stress. The maximum stress decreases from TAG-50 to TAG-100 to
TAG-200. As previously discussed, running the same simulations
for TAG with largerbwthresh values reduces the maximum stress.

4.3 Economies of Scale Factor
We compute overlay tree cost via simulations, in order to vali-

date our analytical results from section 3.3. In order to compare
results, we assume that one hop used by one point-to-point transfer
represents a unit of bandwidth. We therefore add the total stress
values for all router-to-router links, and use this quantity to denote

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

N
or

m
al

iz
ed

 O
ve

rla
y

Tr
ee

 C
os

t

Number of Members

Overlay Tree Cost
x^0.95

Figure 20: Overlay tree cost versus group size (log-log scale)

tree cost. We run three sets of simulations for unicast, TAG, and
IP multicast on the TS2 configuration with 1280 end systems. The
complete (not minus-k) path matching TAG is used. This is done
to give a fair comparison of simulation results with the analytical
results, which modeled complete path matching. The simulation
results show that unicast, TAG, and IP multicast cost 16627, 4574,
and 1265 respectively. We also plot the normalized overlay tree
cost of TAG for a variety of group sizes (using the same method-
ology as in [13]) in figure 20. The normalized overlay tree cost
LTAG(m)=û is defined as in section 3.3. The figure shows that
LTAG(m)=û / m0:95. The overlay tree cost stabilizes with tree
saturation, as with IP multicast. This is consistent with our model-
ing results.

5. RELATED WORK
End System Multicast (or Narada) [11, 12] is a clever overlay

multicast protocol targeting sparse groups, such as audio and video
conferencing groups. End systems in End System Multicast (ESM)
exchange group membership information and routing information,
build a mesh, and finally run a DVMRP-like protocol to construct a
multicast forwarding tree. The authors show that it is important to
consider both bandwidth (primarily) and latency, when construct-
ing conferencing overlays. Other application-level multicast archi-
tectures include ScatterCast [9], Yoid [18], ALMI [32]. These ar-

chitectures either optimize delay or optimize bandwidth. In par-
ticular, Overcast [24] provides scalable and reliable single-source
overlay multicast using bandwidth as a primary metric.

More recently, Content-Addressable Network (CAN)-based mul-
ticast [34] was proposed to partition member nodes into bins us-
ing proximity information obtained from DNS and delay measure-
ments. Node degree constraints and diameter bounds in the con-
structed overlay multicast network are employed in [39]. Liebeherr
et al. investigate Delaunay triangulations for routing in overlay net-
works in [28]. A prefix-based overlay routing protocol is used in
Bayeux [42]. Hierarchical approaches to improve scalability are
also currently being investigated by several researchers. A protocol
that was theoretically proven to build low diameter and low degree
peer-to-peer networks was recently described in [30].

In addition to overlay multicast proposals, several recent stud-
ies are related to the TAG approach. A unicast-based protocol for
multicast with limited router support (that includes some ideas that
inspired TAG) is the REUNITE protocol [40]. Overlay networks
that detect performance degradation of current routing paths and
re-route through other end systems include Detour and RON [3].
Jagannathan and Almeroth [23] propose an algorithm which uses
multicast tree topology information (similar to the manner in which
we exploit path information in TAG) and loss reports from receivers
for multicast congestion control.

6. CONCLUSIONS AND FUTURE WORK
We have designed and studied a heuristic topology-aware application-

level multicast protocol called TAG. TAG is single-source or core-
based multicast protocol that uses network topology information to
construct an overlay network with low delay penalty and a limited
number of identical packets. Bandwidth is also considered in tree
construction as a secondary metric. TAG, however, works best with
high quality underlying routes, and assumes low delay on the last
hop(s) to end systems. We have studied the properties of TAG, and
analyzed its economies of scale factor, compared to both unicast
and IP multicast. Simulation results on the Transit-Stub model (GT-
ITM), Inet, and NLANR data indicate the effectiveness of TAG in
building efficient trees for a large number of group members.

We are currently extending TAG to incorporate a tight bandwidth
constraint, and delay constrains. With dynamically varying val-
ues of the path deviation parameterk and the bandwidth threshold
bwthresh, a new member can find a better parent, in terms of both
latency and bandwidth. We are also considering a hierarchical ap-
proach for increasing adaptivity and scalability. This includes us-
ing partial topology in a subsequence matching algorithm. We will
extend TAG to include other QoS parameters such as power avail-
ability in wireless nodes. In addition, we will incorporate TAG into
two different applications (a multi-player online game and a video
streaming application), and conduct experiments for evaluating the
practical aspects and performance of a TAG implementation in the
Internet.

7. ACKNOWLEDGMENTS
The authors would like to thank the NOSSDAV 2002 reviewers

for their valuable comments that helped improve the paper. This
research is sponsored in part by the Purdue Research Foundation,
and the Schlumberger Foundation technical merit award.

8. REFERENCES
[1] Performance Measurement Tools Taxonomy.

http://www.caida.org/tools/taxonomy/performance.xml.

[2] C. Adjih, L. Georgiadis, P. Jacquet, and W. Szpankowski.
Multicast Tree Structure and the Power Law. InProc. of
SODA, 2002.

[3] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris. Resilient Overlay Networks. InProc. of ACM
SOSP, October 2001.

[4] P. Aukia, M. Kodialam, P. Koppol, T. Lakshman, H. Sarin,
and B. Suter. RATES: A server for MPLS traffic engineering.
IEEE Network, pages 34–41, March/April 2000.

[5] E. Bacceli and R. Rajan. Monitoring OSPF routing. InProc.
of IFIP/IEEE International Symposium on Integrated
Network Management, May 2001.

[6] T. Ballardie, P. Francis, and J. Crowcroft. Core based trees
(CBT): An architecture for scalable multicast routing. In
Proceedings of the ACM SIGCOMM, August 1993.

[7] B. Chandra, M. Dahlin, L. Gao, and A. Nayate. End-to-end
WAN Service Availability. InProc. of 3rd USITS, pages
97–108, 2001.

[8] H. Chang, R. Govindan, S. Jamin, S. Shenker, and
W. Willinger. Towards Capturing Representative AS-Level
Internet Topologies. Technical Report UM-CSE-TR-454-02,
Michigan, 2002.

[9] Y. Chawathe, S. McCanne, and E. A. Brewer. An
Architecture for Internet Content Distribution as an
Infrastructure Service. Ph.D. Thesis, Fall 2000.

[10] Q. Chen, H. Chang, R. Govindan, S. Jamin, S. Shenker, and
W. Willinger. The Origin of Power Laws in Internet
Topologies Revisited. InProc. of IEEE INFOCOM, June
2002.

[11] Y. Chu, S. Rao, S. Seshan, and H. Zhang. Enabling
Conferencing Applications on the Internet using an Overlay
Multicast Architecture. InProc. of ACM SIGCOMM, August
2001.

[12] Y. Chu, S. Rao, and H. Zhang. A Case for End System
Multicast. InProc. of ACM Sigmetrics, June 2000.

[13] J. Chuang and M. Sirbu. Pricing Multicast Communications:
A Cost-Based Approach. InProc. of Internet Society INET,
July 1998.

[14] S. Deering and D. Cheriton. Multicast routing in datagram
inter-networks and extended LANs.ACM Trans. on
Computer Systems, 2(8):85–110, May 1990.

[15] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and
D. Balensiefen. Deployment Issues for the IP Multicast
Service and Architecture.IEEE Network Magazine,
January/February 2000.

[16] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On Power-Law
Relationships of the Internet Topology. InProc. of ACM
SIGCOMM, pages 251–262, August 1999.

[17] A. Feldmann and J. Rexford. IP network configuration for
traffic engineering. Technical Report 000526-02, AT&T
Labs-Research, May 2000.

[18] P. Francis. Yoid: Your Own Internet Distribution, April 2000.
http://www.aciri.org/yoid/.

[19] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. IDMaps: A Global Internet Host Distance
Estimation Service.IEEE/ACM Transactions on Networking,
October 2001.

[20] R. Govindan and V. Paxson. Estimating Router ICMP
Generation Delays. InProc. of Passive and Active
Measurement, 2002.

[21] H. Holbrook and B. Cain. Source-Specific Multicast for IP.

Internet-Draft, November 2001.
[22] V. Jacobson. Pathchar.

http://www.caida.org/tools/utilities/others/pathchar/.
[23] S. Jagannathan and K. Almeroth. Using Tree Topology for

Multicast Congestion Control. InProc. of International
Conference on Parallel Processing, September 2001.

[24] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O.
Jr. Overcast: Reliable multicasting with an overlay network.
In Proc. of OSDI, October 2000.

[25] C. Jin, Q. Chen, and S. Jamin. Inet: Internet Topology
Generator. Technical Report CSE-TR-443-00, Univ. of
Michigan, 2000.

[26] C. Labovitz, R. Malan, and F. Jahanian. Internet Routing
Instability. IEEE/ACM Trans. on Networking, 6(5):515–526,
1998.

[27] K. Lai and M. Baker. Nettimer: A Tool for Measuring
Bottleneck Link Bandwidth. InProc. of USENIX Symposium
on Internet Technologies and Systems, March 2001.

[28] J. Liebeherr and M. Nahas. Application-layer Multicast with
Delaunay Triangulations. InProc. of IEEE GLOBECOM,
November 2001.

[29] NLANR. National Laboratory for Applied Network
Research, 2000. http://moat.nlanr.net/Routing/rawdata.

[30] G. Pandurangan, P. Raghavan, and E. Upfal. Building
Low-Diameter P2P Networks. InProc. of the 42nd Annual
IEEE Symposium on the Foundations of Computer Science,
2001.

[31] V. Paxson. End-to-End Routing Behavior in the Internet. In
Proc. of ACM SIGCOMM, pages 25–38, August 1996.

[32] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI:
an Application Level Multicast Infrastructure. InProc. of
USENIX Symposium on Internet Technologies, March 2001.

[33] G. Phillips, S. Shenker, and H. Tangmunarunkit. Scaling of
multicast trees: Comments on the Chuang-Sirbu scaling law.
In Proc. of ACM SIGCOMM, 1999.

[34] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-Aware Overlay Construction and Server
Selection. InProc. of IEEE INFOCOM, June 2002.

[35] S. Savage, T. Anderson, A. Aggarwal, D. Becker,
N. Cardwell, A. Collins, E. Hoffman, J. Snell, A. Vahdat,
G. Voelker, and J. Zahorjan. Detour: a Case for Informed
Internet Routing and Transport.IEEE Micro, 1(19):50–59,
January 1999.

[36] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson.
The End-to-End Effects of Internet Path Selection. InProc.
of ACM SIGCOMM, pages 289–299, September 1999.

[37] D. Senie. Network Address Translator (NAT)-Friendly
Application Design Guidelines. RFC 3235, January 2002.

[38] A. Shaikh, M. Goyal, A. Greenberg, R. Rajan, and K. K.
Ramakrishnan. An OSPF Topology Server: Design and
Evaluation.IEEE Journal of Selected Areas in
Communications, 20(4):746–755, May 2002.

[39] S. Shi and J. Turner. Routing in Overlay Multicast Networks.
In Proc. of IEEE INFOCOM, June 2002.

[40] I. Stoica, T. S. E. Ng, and H. Zhang. REUNITE: A Recursive
Unicast Approach to Multicast. InProc. of IEEE INFOCOM,
2000.

[41] E. Zegura, K. Calvert, and S. Bhattacharjee. How to model
an internetwork. InProceedings of IEEE INFOCOM, 1996.

[42] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and
J. D. Kubiatowicz. Bayeux: An Architecture for Scalable and
Fault-tolerant Wide-area Data Dissemination. InProc. of
ACM NOSSDAV, June 2001.

