
Detecting Unsafe BGP Policies in a Flexible World
Debbie Perouli∗, Timothy G. Griffin†, Olaf Maennel‡, Sonia Fahmy∗,

Cristel Pelsser§, Alexander Gurney¶ and Iain Phillips‡
∗ Department of Computer Science, Purdue University, USA. Email: {depe,fahmy}@cs.purdue.edu

† Computer Laboratory, University of Cambridge, UK. Email: tgg22@cam.ac.uk
‡ Department of Computer Science, Loughborough University,UK. Email: {O.M.Maennel,I.W.Phillips}@lboro.ac.uk

§ Innovation Institute, Internet Initiative Japan, Japan. Email: cristel@iij.ad.jp
¶ Department of Computer and Information Science, University of Pennsylvania, USA. Email: agurney@seas.upenn.edu

Abstract—Internet Service Providers (ISPs) need to balance
multiple opposing objectives. On one hand, they strive to offer
innovative services to obtain competitive advantages; on the
other, they have to interconnect with potentially competing ISPs
to achieve reachability, and coordinate with them for certain
services. The complexity of balancing these objectives is reflected
in the diversity of policies of the Border Gateway Protocol (BGP),
the standard inter-domain routing protocol.

Unforeseen interactions among the BGP policies of different
ISPs can cause routing anomalies. In this work, we propose a me-
thodology to allow ISPs to check their BGP policy configurations
for guaranteed convergence to a single stable state. This requires
that a set of ISPs share their configurations with each other, or
with a trusted third party. Compared to previous approaches to
BGP safety, we (1) allow ISPs to use a richer set of policies, (2)
do not modify the BGP protocol itself, and (3) detect not only
instability, but also multiple stable states. Our methodology is
based on the extension of current theoretical frameworks to relax
their constraints and use incomplete data. We believe that this
provides a rigorous foundation for the design and implementation
of safety checking tools.

I. I NTRODUCTION

The Border Gateway Protocol (BGP) [1] is critical to today’s
Internet. It enables routers from different Internet Service
Providers (ISPs) to exchange reachability information. The
highly expressive policy language of BGP allows ISPs to
implement the “layer 3 details” of their complex commercial
relationships with neighboring ISPs. This expressive power
comes with some risks. Routing policies may appear rational
to each individual ISP, yet policyinteractionsamong ISPs can
cause routing anomalies such as protocol oscillation [2], [3]
and unintended stable states [4].

Advances in the theory of policy-based routing (for exam-
ple, [5]–[7]) have yielded sufficient conditions that ensure BGP
safety— that is, guarantees of convergence to a unique stable
state. Yetflexibility is typically seen as the more important
concern in the operation of real-world networks. We can break
flexibility down into the distinct concepts ofautonomyand
expressiveness. Autonomy here refers to the ability of each
ISP to configure its own network with little or no global
coordination, while expressiveness refers to the ability to
innovate in the policy domain in response to evolving and
unforeseen customer needs. An open research question in
inter-domain routing is whether or not it is possible to design

protocols that guarantee safety while maintaining levels of
flexibility acceptable for ISP operations.

In the meantime, we must live with legacy BGP and the fact
that safety is sacrificed (knowingly or unknowingly) in favor
of full autonomy and unconstrained policy expressiveness.
In this context, one possible approach to safety is to check
router configurations for possible safety violations. There are
two difficulties with this approach, both of which may be
overcome to a limited extent. First, it has been shown that
determining safety from configuration files is in the worst
case an intractable problem [8]. However, we feel it may be
practically feasible to do this type of analysis when the number
of ISPs involved is small (dozens, not thousands). Second,
ISPs consider their routing polices to be private. For this,we
imagine that ISPs may be willing to share their configuration
files with a trusted third party in return for information that
facilitates debugging. This approach may provide ISPs with
more control over the balance between safety and flexibility.
We will present modifications to existing theoretical models of
BGP that are specifically aimed at supporting this approach.

Previous approaches to configuration analysis [9] have been
based on the Stable Paths Problem (SPP) framework [6].
However, the SPP contains a “strictness condition” which
essentially requires every step of the BGP decision procedure
be captured — all the way down to the “last gasp” tie-break
on router identifiers. The problem with this approach is that
it requires too much information regarding the internal details
of an ISP (like IGP distances, and the use of the troublesome
MED attribute) and it may depend on many tricky vendor-
specific details of BGP policy implementation.

In this work, we develop a variant of the SPP model,
called Extended SPP(Section III), that does not require the
strictness condition and so allows for an approximation to the
full SPP model. Our Extended SPP is related to the recently
introducedpartial SPP[12] that allows for path rankings that
are entirely unknown. However, we believe that the Extended
SPP model is better suited for the analysis of existing BGP
configuration files. Section IV develops data structures derived
from the Extended SPP framework while Section V presents
the theoretical results needed to apply these structures tothe
safety problem. Finally, Section VI describes a methodology of
configuration analysis that is based on the theoretical models
and structures of the preceding sections.978-1-4673-2447-2/12/$31.00c© 2012 IEEE

(a) The backup relationship re-
quires coordination [5]. The
backup paths (21, 321, 4321)
need to be propagated with a “de-
preference” community oneach
hop in order to ensure safety.

(b) Avoiding sending traffic through a par-
ticular AS may require preferring a peer or
provider route over a customer route. AS 1
prefers the 1654 peer route over the 1234
customer route, because it does not wish its
traffic to traverse AS 3.

(c) Propagating peer routes to peers may become
a routine policy in a flatter (less hierarchical)
Internet [10], [11]. Node 3 depends less on its
provider node 2, since it has the additional route
3456.

Fig. 1. Three commonly occurring scenarios that violate the Gao-Rexford guidelines.

II. RELATED APPROACHES

The Gao-Rexford guidelines [5] prevent problematic speci-
fications. The guidelines define the roles (provider/customer,
or peer) that an ISP is allowed to have with respect to
each of its neighbors. Depending on the role, the ISP then
has to follow the corresponding rules that specify (a) the
preference it may assign to routes, and (b) the routes it is
allowed to announce to other neighbors.Safetyandautonomy
are guaranteed. However,expressivenessis severely limited
to those policies that comply with the guidelines. Recent
studies [10], [11] indicate that the Internet has many more
peering relationship types, and thus more policies, than the
fundamental hypothesis of the Gao-Rexford model assumes.

Fig. 1 illustrates some simple scenarios that violate the Gao-
Rexford guidelines, yet we believe these to be quite common
in today’s Internet. Fig. 1a depicts ISP 2 providing a “backup
route” service to ISP 1, which wants the rest of the nodes to
access it through its primary provider, node 4, unless the 4-1
link is down. In that case only, nodes should access 1 through
the backup link 2-1. Fig. 1b presents a situation where ISP
1 selects the peer path 1654 over the customer path 1234 to
avoid sending traffic through a specific Autonomous System
(AS). If the rest of the ASes follow traditional policies, the
specification is still safe. In Fig. 1c, ISP 4 announces the route
it learns from its peer ISP 5 to another of its peers, ISP 3.
Although announcing peer routes to peers is prohibited by the
Gao-Rexford guidelines, this policy may be desirable to ISPs
that wish to strengthen their peer relationships and dependless
on their providers [13], [14]. ISP 3 now has two choices, paths
3456 and 32156, instead of only its provider path through 2.

It is important to note that this relaxation to the guidelines
does not always create an unsafe system. However, when mul-
tiple ISPs choose such “non-standard” policies, the interactions
can lead to unexpected results. For example, RFC 4264 [4]
describes how scenarios like that depicted in Fig. 1a can lead
to multiple stable states, some of which violate the intent of
the policy writers. It is exactly this kind of unintended policy
interaction that motivates our work.

In addition to guidelines that are targeted at routing safety,
there has been a lot of work on the theoretical foundations of
policy-based routing. The SPP model has been used in many
related studies. Necessary conditions have been proposed for
more specific safety related problems [15]–[18]. A dynamic
model of SPP that verifies the compliance of a network with
the Gao-Rexford guidelines [5] is proposed by Epsteinet.
al. [19]. Arye et al. [20] follow a different formal approach.
They develop a tool to generate specifications with no stable
solution or multiple solutions. The tool can be used to test the
validity of sufficient conditions. Cittadiniet. al. [9] propose a
heuristic and tool to statically check BGP configurations for
guaranteed routing convergence.

From the empirical side, Wetherallet. al. [21] study BGP
misconfigurations. They observe on the order of 600 miscon-
figurations in originating prefixes and 100 in exporting prefixes
in RouteViews data. The RCC tool [22] includes a set of
syntactic, and a limited number of semantic, policy checks,
for detecting misconfigurations. Nemecis [23] is another tool
for analyzing policies, expressed in RPSL.

A different approach that allows more policy flexibility to
ISPs has been taken by [24]–[26]. Their distributed algorithms
detect and resolve policy interactions which lead to BGP os-
cillations. The methodology is based on the paths that routers
have seen in the past, in their “route history.” The inherent
limitation of this approach is that it is meant to detect routing
oscillations, not any kind of problematic policy interaction.
Keeping track of the route history does not guarantee the
detection of problematic interactions that lead to multiple
stable solutions. The implementation of these algorithms also
requires modifications to BGP itself.

III. E XTENDED SPP

The Stable Paths Problem(SPP) [6], [27] is a graph-
theoretic model that provides sufficient conditions for safe
policy-based routing. To verify SPP conditions in operational
networks, SPP requires detailed information about the configu-
ration of a network—the specifics of the BGP best path selec-
tion process [1]. In this section, we relax the strictness property

(a) Strict SPP SpecificationS (b) DD(S) (c) PD(S) (d) MD(S)

Fig. 2. This example illustrates: (i) a multipath case that canbe directly modeled instrict SPP, (ii) a specification whosePD does not have a cycle, while
DD (or MD) does, and (iii) the smallest possible cycle of onlyinflation arcs inMD that can appear instrict SPP.

of SPP and set the ground for a theory that significantly
reduces the complexity of the safety checking algorithm.

We model a routing problem as an SPP by defining three
parameters: (G,P,Λ). A simple, undirected, connected graph
G = (V, E) captures the topology. Each node ofV is labeled
ui, 0 ≤ i < |V| whereu0 is the origin of all routing paths
(i.e., the destination of data paths).

Set P consists of all the simple, permitted, routing paths
of G. A routing path of lengthk ≥ 1 is a sequence of nodes
pk = uk, uk−1, . . . , u1, u0 such thatui ∈ V, (ui, ui−1) ∈ E
and1 ≤ i ≤ k. If pk ∈ P, it is implied thatpk belongs to the
set of permitted paths of nodeuk, that ispk ∈ Puk .

Every nodeui 6= u0 has a ranking functionλui which
specifies which paths are permitted atui. The functionλui also
sortsui’s permitted paths tou0 from most to least preferred.
The most preferred path ofui is the path for whichλui is
maximum.Λ is the set that contains all functionsλui ,∀i 6= 0.

The definition of SPP also specifies thestrictnessproperty:
two paths are allowed to be equally preferred by a nodeui, if
they have the same next hop. Two paths are equally preferred,
trivially, when the paths themselves are equal (they consist of
the same sequence of nodes).

Example III.1. The specification shown in Fig. 2a is an
example of an SPP. Paths 40 and 20 are more preferred than
paths 4320 and 2140, respectively. Paths 140 and 14320 are
equally preferred by node 1, and since they have the same
next-hop (node 4), the preference of node 1 satisfies the
strictness property. Similarly, node 3 satisfies strictness.

Definition III.1 (Strict SPP). We refer to the SPP model that
was first introduced in [27] asstrict SPP. Under the strictness
property of this model, two paths can be equivalent iff they
have the same next hop or they are the same path.

Definition III.2 (Extended SPP). ExtendedSPP is an SPP
model without the strictness property. A specificationS is
still described by the triple (G,P,Λ). However, there is no
restriction on the preference functions of the setΛ regarding
which paths can be considered equivalent.

In other words, underextendedSPP, two distinct pathsp1

and p2 which do not share the next-hop node can still be
equally preferred by a nodeui: λui(p1) = λui(p2). Clearly,
a specification that can be expressed as astrict SPP can also
be expressed as anextendedSPP.

Definition III.3 (Equivalence Class).A set of pathsE of a
nodeui in which for any two pathspx, py ∈ E λui(px) =
λui(py) is an equivalence class, i.e., all paths in the same
equivalence class are equally preferred by nodeui.

Definition III.4 (Refinement). Let S be a specification mod-
eled as astrict or extendedSPP. SpecificationR is arefinement
of S, written asR(S), if each nodeui in R has a strict order
of path rankings which follows the rules:

• if λui(p1) > λui(p2) in S, then the same is true inR
• if λui(p1) = λui(p2) in S, then eitherλui(p1) > λui(p2)

or λui(p1) < λui(p2) in R

Lemma III.1. Every path of a refinementR(S) belongs to
an equivalence class which contains no other path but itself.

Note that Lemma III.1 does not necessarily hold for a strict
SPP specificationS. Two distinct paths are allowed to belong
to the same equivalence class as long as they have the same
next hop.

Lemma III.2. Any refinementR(S) can be modeled as a
strict SPP.

Example III.2. Consider again the specification shown in
Fig. 2a. Paths 140 and 14320 belong to the same equivalence
class of node 1, while paths 320 and 32140 belong to the
same equivalence class of node 3. Ranking the paths of the
equivalence classes results in the following four refinements:

1) R1: λ1(140) > λ1(14320) and λ3(320) > λ3(32140),
that is path 140 is preferred over 14320 and path 320 is
preferred over 32140

2) R2: λ1(140) > λ1(14320) andλ3(320) < λ3(32140)
3) R3: λ1(140) < λ1(14320) andλ3(320) > λ3(32140)
4) R4: λ1(140) < λ1(14320) andλ3(320) < λ3(32140)

Routers execute the BGP decision process to select asingle
best path. Every step of the decision process splits equivalence
classes of paths into smaller classes until a single path remains.

The routing system can be modeled as astrict SPP by execut-
ing all comparisons of the BGP decision process. However, if
we stop at an intermediate step, the routing system needs the
extendedSPP model, since there is no guarantee that paths in
the same equivalence class will have the same next-hop.

Our goal is to partly execute the decision process and still
be able to decide on the satisfaction of sufficient conditions for
safety of the routing system. In other words, we are interested
in answering the following question:given anextendedSPP
specification, are any of its refinements safe?We also wish
to provide the network operators with information on how to
configure their networks in order to reach a safe refinement.

(a) Multiple safe refinements (b) One refinement has multiple
stable states.

Fig. 3. The example in Fig. 3a has two refinements both of which are
safe, since each refinement has a unique stable state to which it always
converges. Only one of the refinements of Fig. 3b is safe; the refinement
whereλ3(321) > λ3(341) is a system with two stable states, first described
in RFC 4264 [4].

Example III.3. Fig. 3a shows anextendedSPP specification
where all nodes follow shortest paths, and node 3 has two
equal-cost choices. The specification has two refinements,R
andR′, depending on which of the two paths node 3 finally
prefers in its (unipath) routing. Each of the refinements hasa
single stable solution, in which the selected paths are: forR:
(21, 321, 41), and forR′: (21, 341, 41).

The specification in Fig. 3b is an example of a potentially
problematic specification that our methodology aims to recog-
nize. The refinementW whereλ3(321) > λ3(341) is not safe,
as it has two stable states:T1 = (2341, 341, 41) andT2 = (21,
321, 41).W is referred to as a “wedgie” in RFC 4264 [4],
where it is also explained why convergence to multiple stable
states is undesirable.

The specification in Fig. 3a can also be seen as an equal-
cost multipath routing (ECMP) [28] example. In this paper,
we do not model multipath routing, although the extension to
SPP and the data structures presented in Section IV can prove
useful in such a study.

IV. DATA STRUCTURES

Given a strict or extendedSPP specificationS, we can
construct a dispute digraphDD(S) [27], a paths digraph
PD(S) [7], [29], or a multipath digraphMD(S). We in-
troduceMD(S) in this paper, but we also usePD(S) in
our analysis. The relations thatPD(S) andMD(S) have to
DD(S) are important, because of the connection ofDD(S)
to the sufficient condition for safety instrict SPP.

Symbol DD PD MD

−→ Dispute Preference Ranking
99K Transmission Transmission Inflationary

TABLE I
NAME AND SYMBOL FOR THE ARCS OF EACH DIGRAPH.

A. Dispute Digraph (DD)

The dispute digraph,DD(S), was introduced in [27] to
describe relationships among the policies of a specification
S = (G,P,Λ) expressed instrict SPP. The nodes ofDD are
all paths of the specification as shown in Fig. 2b. The digraph
has two types of arcs: transmission and dispute. A transmission
arc connects any pathp to an extension(i, j)p, where i, j

are neighboring nodes inG. The definition of a dispute arc
is more subtle and is omitted here, since it is not of critical
importance to this paper. However, we do draw the dispute
arcs in Fig. 2b for completeness. Griffinet. al. [27] prove the
following theorem.

Theorem IV.1. For any specificationS that can be modeled
as astrict SPP: ifDD(S) is acyclic, thenS is safe [27].

B. Paths Digraph (PD)

The paths digraph encapsulates the computational depen-
dencies that exist among possible paths [7], [12], [29]. For-
mally, given an extended SPPS, the paths digraphPD(S)
is a directed graph where nodes represent the permitted paths
in S. Its arcs are of two types: transmission, defined as in
DD(S), and preference. There is a preference arc from path
p to path q if p is in the immediately preferred equivalence
class toq (for paths with the same origin). Fig. 4 shows the
paths digraphs for all the refinements of the specification in
Fig. 2 that were described in Example III.2.

Note that in previous work [7], [29], the definition of a
preference arc does not requirep to be in the immediately
preferred class toq, it can be inanyclass that is preferred toq.
This means that additional preference arcs were present. Such
additional(p, q) arcs do not affect the presence or absence of
a cycle, sincep andq are in any case connected by a chain of
other preference arcs. Consequently, Theorem IV.2 holds for
thePD definition in this paper.

Theorem IV.2. For any specificationS that can be modeled
as astrictSPP and has a single refinementR(S) (i.e.,R(S) ≡
S), PD(S) has a cycle iffDD(S) has a cycle [12], [29].

C. Multipath Digraph (MD)

Let S = (G,P,Λ) be a specification expressed inextended
SPP. Each nodeui of G has equivalence classes of paths. We
denote thejth best equivalence class of nodeui asMui

j , i.e.,
the paths inMui

j are more preferred than the paths inMui

h ,
h > j. In Fig. 5a,u1 hask classes and nodeu2 has a single
class.Mu1

1 contains the most preferred paths ofu1.

Definition IV.1 (Multipath Digraph). TheMultipath Digraph
of a specificationS uses a nodemui

j to represent each

(a) R1 (b) R2 (c) R3 (d) R4

Fig. 4. Paths digraphs for the four possible refinements of thespecification of Fig. 2. The differences among the graphs are the direction of the edges
between paths 140, 14320 and 320, 32140. From Lemma IV.3, theseare also the multipath digraphs of the refinements.

equivalence classMui

j , and two types of arcs. Aranking
arc connects a nodemui

j to nodemui

j+1
. An inflationary arc

connects nodemui

j to nodem
u′

i

j′ , if there is at least one path

(u′

i, ui)p in classM
u′

i

j′ which is extending a pathp of class
Mui

j .

We draw ranking arcs with solid lines and inflationary
arcs with dotted lines as in Table I. In Fig. 5a, both paths
in Mu2

1 happen to come from the same node (u1), so this
specification satisfies the strictness property. However,MD
does not depend on strictness and can be used to model
extendedSPP.

u1

M
u1

1
= {pa, ...}

M
u1

2
= {pb, ...}

...

M
u1

k
= {pc, ...}

u2

M
u2

1
= {p, p′, ...}

(a) Part of an SPP specificationS

m
u1

1

m
u1

2

m
u1

k

...

m
u2

1

(b) MD(S)

Fig. 5. In this example, pathp ∈ M
u2

1
extends a path that belongs inMu1

2

and pathp′ ∈ M
u2

1
is extending a path that belongs inMu1

k
.

Definition IV.2 (Multi-node). A node of a multipath digraph
is a multi-nodeiff the equivalence class it represents contains
more than one path.

Example IV.1. The multipath digraph of Fig. 2d has two
multi-nodes: a node for the equivalence class of paths{320,
32140} and a node for the class{140, 14320}.

Lemma IV.3. Let S = (G(V, E),P,Λ). If R(S) is a refine-
ment ofS, thenPD(R(S)) andMD(R(S)) are isomorphic
as graphs.

Proof: Based on Lemma III.1, there is no multi-node in
MD(R(S)): all equivalence classes are singletons, and so
each node contains exactly one path. Moreover,p is a node in
PD(R(S)) if and only if {p} is a node inMD(R(S)), since

both statements are equivalent to the pathp being one of the
permitted paths inP.

We now show that preference and transmission arcs in
PD(R(S)) correspond to ranking and inflationary arcs, re-
spectively, inMD(R(S)). First, (p, q) is a preference arc in
PD(R(S)) if and only if p and q are paths with the same
origin node, andp is ranked higher thanq; this condition is
equivalent to the existence of a ranking arc. Finally,(p, (i, j)p)
is a transmission arc inPD(R(S)) whenever bothp and
(i, j)p are permitted paths,p has source nodej, and (i, j)
is an arc inE . Again, this is equivalent to({p}, {(i, j)p})
being an inflationary arc inMD(R(S)).

V. SUFFICIENT CONDITIONS FORSAFETY OF

REFINEMENTS

In this section, we prove the results on which our metho-
dology is based. Specifically, we show how the graphs of
section IV can be used to verify the safety of a refinement
R(S). Note that we make no assumptions regarding the
strictness property. SpecificationS is modeled as anextended
SPP, which makes our algorithm less sensitive to the vendor-
specific implementation details of the BGP best path selection
process. Fig. 6 summarizes our key results.

Fig. 6. The relationship between a cycle inMD(S) or PD(S) and a cycle
in DD(R(S)). If MD(S) is acyclic,DD(R(S)) is acyclic too, therefore
anyR(S) is safe (Lemma V.4).

Lemma V.1. For a refinementR(S), if DD(R(S)) is acyclic,
thenR(S) is safe.

Proof: Follows from Lemma III.2 and Theorem IV.1.

Theorem V.2. If PD(S) is acyclic, there exists a refinement
R(S) that is safe.

Proof: If PD(S) is acyclic, then there is at least one
refinementR(S) of S for which PD(R(S)) is acyclic [29].
From Theorem IV.2, ifPD(R(S)) is acyclic thenDD(R(S))
is acyclic; from Lemma V.1, it follows thatR(S) is safe.

Theorem V.3. If MD(S) is acyclic,MD(R(S)) is acyclic
for any refinementR(S).

Proof: We prove this by contradiction. Suppose that there
is a cycle inMD(R(S)) visiting the nodesp1, p2, . . . , pk, p1.
Based on Lemma III.1, every node inMD(R(S)) contains a
single path. Letmi be the node inMD(S) which contains
path pi. If paths pi and pi+1 are connected through an
inflationary arc inMD(R(S)), then there is an inflationary
arc frommi to mi+1 in MD(S) as well. If pathspi andpi+1

are connected through a ranking arc inMD(R(S)), there are
two possibilities:

• Pathspi, pi+1 belong to the same node inMD(S) (mi ≡
mi+1). In this case, the paths are equally preferred inS,
while pi is more preferred thanpi+1 in R(S).

• Paths pi, pi+1 belong to different nodes inMD(S)
(mi 6= mi+1). Since any refinement respects the prefe-
rences inS by definition, there is a ranking arc frommi

to mi+1 in MD(S).

In either case, if there is an arc frompi to pi+1 in MD(R(S)),
mi ≡ mi+1 or nodesmi and mi+1 are also connected in
MD(S). Therefore, the existence of a cycle inMD(R(S))
implies the existence of a cycle inMD(S). Since this con-
clusion contradicts the hypothesis, there can be no cycle in
MD(R(S)) if there is no cycle inMD(S).

Lemma V.4. If MD(S) is acyclic, any refinementR(S) is
safe.

Proof: It follows from Theorem V.3 thatMD(R(S))
is acyclic for any refinementR(S). From Lemma IV.3
PD(R(S)) is also acyclic, and based on Theorem IV.2
DD(R(S)) will have no cycle either. From Lemma V.1,R(S)
is safe.

Theorem V.5. If PD(S) has a cycle,PD(R(S)) has a cycle
for any refinementR(S).

Proof: PD(S) and PD(R(S)) have exactly the same
nodes. The transmission arcs of the two graphs are also the
same. We examine whether two paths that are connected
through a preference arc inPD(S) are also connected in
PD(R(S)).

Let (pi, pj) be a preference arc inPD(S). Then,pi and
pj belong to different equivalence classesPi and Pj in S,
respectively. Each of the paths inPi has a preference arc
towards each path ofPj in PD(S). For any refinementR(S),

the least preferred path ofPi has a preference arc towards the
most preferred path ofPj in PD(R(S)). Every refinement will
also specify strict preferences among the paths inPi andPj .
Therefore, there will be a sequence of zero or more preference
arcs frompi to the least preferred path ofPi in PD(R(S)).
Similarly, there will be a sequence of zero or more preference
arcs from the most preferred path ofPj to pj .

In any case, if there is a preference arc frompi to pj in
PD(S), there is a sequence of one or more preference arcs
from pi to pj in PD(R(S)) for anyR(S). We conclude, then,
that a cycle inPD(S) implies a cycle inPD(R(S)).

Lemma V.6. Let R(S) be a refinement ofS. If PD(S) has
a cycle,DD(R(S)) also has a cycle.

Proof: It follows from Theorem V.5 thatPD(R(S))
has a cycle, whereR(S) is any refinement ofS. From
Theorem IV.2,DD(R(S)) will also have a cycle.

Theorem V.7. If PD(S) has a cycle,MD(S) also has a
cycle.

Proof: Suppose there exists a sequence of arcs inPD(S)
visiting the nodesp1, p2, . . . , pk, p1. Without loss of generality,
suppose that this sequence of arcs forms a simple cycle,i.e., a
circuit. Each pathpi that is represented by a node inPD(S)
is contained in a nodemi in MD(S). By definition, it is
possible that more than two paths are contained in the same
node inMD(S). If there is a transmission arc frompi to pj

in PD(S), then there is an inflationary arc frommi to mj in
MD(S). Similarly, the existence of a preference arc frompi

to pj in PD(S) implies the existence of a ranking arc from
mi to mj in MD(S). Therefore, nodesm1,m2, . . . ,mk,m1

form a cycle inMD(S), which is not necessarily a circuit.

Note. The reverse of Theorem V.7 does not hold. Fig. 2 shows
an example whereMD(S) has a cycle butPD(S) is acyclic.

Theorem V.8. If MD(S) has a cycle,PD(S) does not have a
cycle iff the cycle inMD(S) contains at least one multi-node
m for which both of the following hold: (1) Both the incoming
and outgoing edges ofm, which are part of the cycle, are
inflationary arcs, and (2) The path that is contained inm and
is being extended through the outgoing edge is different from
the path inm that extends the incoming edge.

Proof: Suppose that there is a cycle inMD(S). If the
cycle contains no multi-node, then all nodes and arcs that
participate in theMD(S) cycle exist inPD(S) as well.

Assume that there is exactly one multi-nodem in the cycle
in MD(S). Let a be the node in theMD(S) cycle beforem
and letb be the node followingm in the cycle. The part of
the cycle fromb back toa contains no multi-nodes, so there
must also be a sequence of arcs fromb to a in PD(S). We
examine whether there is a sequence of arcs froma to b in
PD(S).

There are four cases for the (a, m) and (m, b) arcs as
shown in Fig. 7. Let the paths contained in the multi-node
m bep1, p2, . . . , pN . Each of these paths is a separate node in
PD(S).

(a) Both Ranking (b) Ranking and Inflationary (c) Inflationary and Ranking (d) Both Inflationary

Fig. 7. In each of the four subfigures, the top graph isMD(S) and the bottom graph isPD(S). The subfigures differ in the type of the arcs inMD(S)
from nodea to the multi-node and from the multi-node to nodeb. When both of the arcs are inflationary (as in 7d), there is no cycle in PD(S) unlesspa

andpb are the same path. The refinements that create a cycle inPD(R(S)) are those wherepa is more preferred thanpb.

• (a, m): ranking arc, (m, b): ranking arc
In PD(S), there is a preference arc froma to each node
pi and from each nodepi to b. There are no preference
arcs among thepi paths, since they all belong to the same
equivalence class. As shown in Fig. 7a, there are multiple
cycles inPD(S).

• (a, m): ranking arc, (m, b): inflationary arc
The existence of the inflationary arc means there is a
path pb in m which is being extended by a path inb.
In PD(S), there is a transmission arc frompb to b. As
in the previous case, the ranking arc inMD(S) implies
preference arcs inPD(S). Fig. 7b illustrates thePD(S)
cycle.

• (a, m): inflationary arc, (m, b): ranking arc
The inflationary arc means there is a pathpa in m which
extends the path ina. In PD(S), there is a transmission
arc froma to pa, while the preference arcs are drawn as
in the previous cases. Fig. 7c shows the cycle inPD(S).

• (a, m): inflationary arc, (m, b): inflationary arc
In the general case, there is no cycle inPD(S) as shown
in Fig. 7d. The only case that creates a cycle ispa ≡ pb.

We conclude that if there is a cycle inMD(S) that contains
exactly one multi-nodem, there is always a cycle inPD(S)
unless both (a, m), (m, b) are inflationary arcs andpa 6= pb.
If the cycle contains many multi-nodes, it suffices to find one
multi-node that satisfies the conditions of Theorem V.8 for
PD(S) to be acyclic.

Lemma V.9. If MD(S) has a cycle, then there exists a
refinementR(S) for whichDD(R(S)) has a cycle.

Proof: For all the cases specified in Theorem V.8 in which
PD(S) also has a cycle, it follows from Theorem V.5 that
PD(R(S)) has a cycle for anyR(S).

We examine the case wherePD(S) is acyclic whereas

MD(S) has a cycle, which is depicted in Fig. 7d with
pa 6= pb. We observe that the refinements whosePD(R(S))
has a sequence of preference arcs connecting nodepa to node
pb have a cycle inPD(R(S)).

We conclude that regardless of the acyclicity ofPD(S),
if MD(S) has a cycle there always exists a refinement
R(S) such thatPD(R(S)) has a cycle. From Theorem IV.2,
DD(R(S)) has a cycle as well.

Lemma V.10. If MD(S) has a cycle andPD(S) does not
have a cycle, there exist refinementsR(S) andR′(S), R(S)
6= R′(S) , such thatDD(R(S)) is acyclic (and therefore safe)
while DD(R′(S)) has a cycle.

Proof: Follows from Theorem V.2 and Lemma V.9.

VI. CONFIGURATION ANALYSIS WITH INCOMPLETEDATA

In this section, we describe a configuration analysis al-
gorithm that leverages our theoretical results from previous
sections. These results enable us to reduce the complexity
of verifying the BGP safety of router configuration files in
several cases. They also provide tools to account for partial
information. By partial information, we mean that only a few
ISPs share their configurations, while the rest of the Internet
has unknown policies.

A. On-Demand BGP Decision Process Exploration

Our methodology only examines steps of the BGP decision
process as needed. First, we split the paths of each node into
equivalence classes according to the first step of the BGP
decision process. This step is the comparison of the BGP local
preference attribute [1]. Every equivalence class of a nodein
the specification will correspond to a local preference value
of that node. For router implementations that have a different
first step, the procedure is similar.

(a) Double Backup Wedgie (b) PD(S) (c) MD(S)

Fig. 8. An example from RFC 4264 [4] whosePD(S) has a cycle. By examining all cycles ofMD(S) we can determine whetherPD(S) has a cycle
without creatingPD(S) as proven in Theorem V.8. In this example, the red cycle51 → {251, 2351, 2341} → 21 → {521, 5321, 5341} → 51 in Fig. 8c
guarantees the existence of the cycle51 → 251 → 21 → 521 → 51 in PD(S) since the pairs of arcs adjacent to the multi-nodes are (inflationary, ranking)
and this violates the second condition of Theorem V.8.

Then, we createMD(S). Each equivalence class of paths
will be a node inMD(S). The ranking arcs among classes
that belong to the same nodeui of S will have direction from
the classes of higher local preference value ofui towards
classes with lower local preferences. Since all paths of the
specification are known, it is also possible to place inflationary
arcs between the classes.

If MD(S) is acyclic, BGP safety is guaranteed for the
specification. It is then unnecessary to consider additional steps
of the BGP decision process. Note that the local preference
attribute is typically used to configure policies which override
shortest path routing and are therefore more prone to BGP
anomalies [15]. Due to the presented extension to the SPP
theory, we may be able to conclude the safety of such policies
by examining this attribute alone.

If MD(S) has a cycle, we need to createPD(S) and
check if it has a cycle. Theorem V.8 provides an alternative
to thePD(S) construction. Checking for a cycle inPD(S)
is equivalent to checking the type of cycles inMD(S). If
there is a cycle inMD(S) that does not satisfy the conditions
specified in Theorem V.8, then that cycle is guaranteed to
appear inPD(S) as well. IfPD(S) has a cycle, then sufficient
conditions for safety are not met for anyR(S). Again, it is
unnecessary to consider other steps of the BGP decision pro-
cess. The specification will not meet the sufficient conditions
regardless of the decisions made by BGP in subsequent steps.

Theorem V.7 proves that it is not possible forPD(S) to
have a cycle andMD(S) to be acyclic. For the case when
PD(S) is acyclic butMD(S) has a cycle, we present two
options.

One option is to analyze router configurations to further split
equivalence classes of paths according to subsequent stepsin
the BGP decision process. We then repeat the previous analysis
for the newMD(S). For instance, suppose that theMD(S)
created by separating the paths based on local preference
values has a cycle, butPD(S) does not. Then, we separate
each local preference equivalence class into sub-classes based
on the AS path length, which is the second step of the BGP
decision process. Each sub-class is a node in the newMD(S),

i.e., an equivalence class in the newMD(S) has paths with
the same local preference and AS path length. We repeat the
procedure of checking for cycles in the newMD(S).

Instead of checking whether the current configuration leads
to a safe refinement by executing additional steps, the second
option is to select one of the safe refinements and configure
the network accordingly. Lemma V.10 states that there are re-
finements which are safe and refinements that are not. In other
words, depending on the decisions made in subsequent steps
of the decision process, the specification can be guaranteed
to be safe or not. From the proof of Theorem V.8, we know
which refinements are guaranteed to be safe: the refinements
which split the multinode in Fig. 7d so that pathpb is more
preferred thanpa. Thus, we know what decisions subsequent
steps in the BGP decision process need to make in order to
have a system that is guaranteed to be safe.

Example VI.1. Fig. 8a is a specification inspired by the
double backup wedgie example presented in RFC 4264 [4].
The equivalence classes of paths shown can result if one
separated paths/prefixes based on local preference values.
Customer AS 1 receives its primary service through provider
AS 4, while it is signed up for backup service from providers
2 and 5. The two backup providers should use the direct link
to their customer (21 or 51 respectively) if and only if they
do not have another path available. We assume that AS 2 and
5 implement the specified contract by assigning the lowest
possible BGP local preference value to the direct link path.
We have also assumed that these “de-preference” policies are
the only policies configured through local preference.

Fig. 8b shows thatPD(S) has a cycle.PD(S) has a cycle
even if we configure more policies with local preference,
for example the peer-peer policy on the (3, 4) link. As
expected,MD(S) also has a cycle. In particular, the cycle
51 → {251, 2351, 2341} → 21 → {521, 5321, 5341} → 51
(shown in red in Fig. 8c) guarantees the existence of a cycle
in PD(S) as proven in Theorem V.8.

Example VI.2. In the specification of Fig. 2,MD(S) has
the cycle{320, 32140} → 4320 → {140, 14320} → 2140 →

{320, 32140}, while PD(S) is acyclic. The cycle contains
two multinodes whose incoming and outgoing arcs (which
are part of the cycle) are inflationary. This is expected due
to Theorem V.8. Pathpa, shown in Fig. 7d, is path 32140 for
multinode {320, 32140} and path 14320 for{140, 14320}.
Pathpb is 320 and 140 for each multinode respectively. Due
to the same Theorem, we know that the refinement whose
PD(R(S)) has a cycle is the one where 32140 and 14320
are more preferred than 320 and 140 respectively. This is
illustrated in Fig. 4.

Example VI.3. Fig. 9a shows a specification where the nodes
follow policies that are not recommended by the Gao-Rexford
guidelines [5]. In particular, nodes 1 and 4 prefer peer routes
equally to customer routes, while nodes 3, 4, and 7 announce
to their providers or peers (nodes 2, 3 and 4 respectively)
routes they have learned from a peer (4, 7, and 6 respectively).
MD(S), shown in Fig. 9b, is acyclic, thereforeS is safe.

ISPs’ incentives to implement non-traditional policies are
not well-known or understood, but we know that such policies
exist [13]. Here is an example scenario of why they could con-
tribute to ISPs’ flexibility. Node 7 may agree to announce peer
routes to its provider 4, knowing that 4 will not necessarily
prefer customer (routes from 7) over peer (routes from 3 or
5). Node 4 may find it beneficial to have a greater variety
of routes available in exchange for ceasing to always prefer
customer routes. Peers 3 and 4 could have an agreement to
mutually exchange not only routes learned from customers but
also from peers for similar reasons. Finally, node 3 may have
successfully negotiated a discounted provider service with 2
in return for propagating peer routes to its provider.

B. Accounting for Unknown Paths

Constructing the completeMD(S) requires router configu-
ration files from all ISPs. In our model, we have assumed that
only a set of neighboring ISPs are sharing such information.
Therefore, there will be parts ofMD(S) which are unknown.

Assume that ISPs 1, 3, and 4 of Fig. 9a share their
configurations with a third party, while other ISPs do not. We
select these nodes because they use non-traditional policies,
as described in Example VI.3. For this reason, they are more
likely to be concerned about the safety of their policies than
the other ISPs of Fig. 9a.

Fig. 10. MD(S) constructed with partial information. It corresponds to
the specification in Fig. 9a when only nodes 1, 3, and 4 share their router
configuration files.

Fig. 10 presents theMD(S) that can be constructed with
partial information. The notationPAB denotes the set of paths
that node A learns from node B. Similarly,PAB,AC denotes

the set of paths node A learns from either B or C. Nodes
2, 5, and 7 are ISPs whose policies are unknown. Their
paths are represented asP2X (P5X and P7X respectively),
where X stands for any of known or unknown neighbors
through which they learn a route. All paths of theP2X set
are placed in the same equivalence class, a single node of
MD(S), since there is no information on 2’s preferences.
There exists an inflationary arc fromP2X to P32, because the
configuration of 3 permits paths announced from 2. Similarly,
there is an inflationary arc fromP41 to P7X since node 4’s
policies announce to 7 any routes learned from 1 and it is
not known whether 7 permits or denies this announcement.
The equivalence classes and ranking arcs of the ISPs which
share their configuration files are known. For instance, 4 ranks
last any routes announced from node 1, while node 1 equally
prefers all its available paths. Although the equivalence classes
are split based on the neighbor announcing a path in this
example, the methodology is independent of the criterion on
which paths are ranked.

If there is cycle inMD(S) that only involves paths which
belong to the ISPs sharing configurations, then these ISPs
know their policies may create routing anomalies. Having this
information, they can decide what is the economically and
operationally best method to resolve such a cycle, if they
choose to do so.

TheMD(S) of Fig. 10 has cycles of a different kind: these
cycles, e.g. P2X → P12,14,15 → P2X , include paths that
belong to nodes of unknown policies. In such a case, node
1 has three choices. Based on Theorem V.8, it can split its
own equivalence class into two so that the cycle is eliminated.
More specifically, it will have to prefer the paths it announces
to node 2 over the paths it receives from it. A second choice
is to convince node 2 to share router configurations and check
whether the potential cycle is indeed a cycle based on 2’s
preferences. Finally, node 1 can risk doing nothing to resolve
this potential issue. It has still gained, however, the information
that its interaction with node 2 could become a source of
routing anomalies, which can aid in debugging. The choices
node 4 has regarding its interaction with node 7 in the cycle
P7X → P45,47 → P41 → P7X are similar.

Since MD(S) was created with partial information, the
absence of a cycle can be illusive. There can still be arcs con-
necting paths that belong to nodes with unknown policies. For
instance, nodesP7X andP5X may have direct links between
them. Nodes 1, 3, and 4 (that share their configurations) will
not know whether nodes 5 and 7 exchange routes through
unsafe policies, but they will be aware of the risk. This is
no different from the case that safety is ensured through
guidelines: following guidelines is up to each individual ISP.

VII. C ONCLUSIONS

In this work, we propose a methodology that allows ISPs to
check their router configurations for safety. We leverage prior
work on the Stable Paths Problem (SPP), but we bridge the
gaps needed to make SPP applicable to a real-world implemen-
tation. Specifically, we extend SPP to reduce the complexity

(a) SpecificationS. (b) MD(S)

Fig. 9. A specification where some of the nodes follow non-traditional policies.MD(S) is acyclic, so the specification is safe.

involved in analyzing BGP safety from configuration files.
This allows us, in many cases, to only evaluate parts of the
BGP best path selection process, without losing accuracy.
We propose a new data structure, the multipath digraph, that
is well-suited for detecting problematic conditions, and we
prove properties that allow us to demonstrate the feasibility of
applying it for verifying BGP safety in practice.

We apply our methodology to the partial information prob-
lem, since we expect our tool will never have complete confi-
guration information. When checking configurations for a few
ISPs, outside paths are at best partially known. Furthermore,
ISP configurations may not always be complete. Our future
work includes completing the implementation and evaluation
of a tool that applies our methodology to real ISP networks.

ACKNOWLEDGMENTS

The authors would like to thank Randy Bush for his support,
and Stefano Vissicchio and the anonymous reviewers for their
insightful comments. This work has been sponsored in part by
Cisco grant 570873 and NSF grant CNS-0831353.

REFERENCES

[1] Y. Rekhter, T. Li, and S.Hares, “A border gateway protocol 4 (BGP-4),”
RFC 4271, http://www.ietf.org/rfc/rfc4271.txt, 2005.

[2] K.Varadhan, R.Govindan, and D. Estrin., “Persistent route oscillations
in inter-domain routing,”Computer Networks, vol. 32, pp. 1–16, 2000.

[3] R. Sami, M. Schapira, and A. Zohar, “Searching for stability in inter-
domain routing,” inProc. of IEEE INFOCOM, 2009, pp. 549–557.

[4] T. G. Griffin and G. Huston, “BGP wedgies,” RFC 4264, http://tools.
ietf.org/html/rfc4264, 2005.

[5] L. Gao and J. Rexford, “Stable Internet routing without global coordi-
nation,” IEEE/ACM Trans. on Netw., vol. 9, no. 6, pp. 681–692, 2001.

[6] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem
and interdomain routing,”IEEE/ACM Trans. Netw., vol. 10, pp. 232–243,
April 2002.

[7] J. L. Sobrinho, “Network routing with path vector protocols: Theory
and applications,” inProc. of ACM SIGCOMM, 2003, pp. 49–60.

[8] T. G. Griffin and G. Wilfong, “An analysis of BGP convergence
properties,” inProc. of ACM SIGCOMM, 1999, pp. 277–288.

[9] L. Cittadini, M. Rimondini, S. Vissicchio, M. Corea, and G. Di Battista,
“From theory to practice: Efficiently checking BGP configurations
for guaranteed convergence,”Network and Service Management, IEEE
Transactions on, vol. 8, no. 4, pp. 387 –400, december 2011.

[10] A. Dhamdhere and C. Dovrolis, “The internet is flat: modeling the
transition from a transit hierarchy to a peering mesh,” inProc. of Co-
NEXT, 2010, pp. 21:1–21:12.

[11] B. Augustin, B. Krishnamurthy, and W. Willinger, “IXPs:mapped?” in
Proc. of the 9th ACM SIGCOMM conference on Internet measurement,
2009, pp. 336–349.

[12] A. J. Gurney, L. Jia, A. Wang, and B. T. Loo, “Partial specifi-
cation of routing configurations,” Department of Computer andIn-
formation Science, University of Pennsylvania, Tech. Rep.,2011,
http://netdb.cis.upenn.edu/papers/partial-spec-tr.pdf.

[13] M. Yoshinobu, “What makes our policy messy,” 2010, http://www.attn.
jp/maz/p/c/bgpworkshop200904/bgpworkshop-policy.pdf.

[14] W. B. Norton, “A Study of 28 Peering Policies,”
http://drpeering.net/white-papers/Peering-
Policies/A-Study-of-28-Peering-Policies.html.

[15] N. Feamster, R. Johari, and H. Balakrishnan, “Implications of autonomy
for the expressiveness of policy routing,” inProc. of ACM SIGCOMM,
2005.

[16] L. Cittadini, G. Di Battista, M. Rimondini, and S. Vissicchio, “Wheel
+ ring = reel: The impact of route filtering on the stability of policy
routing,” IEEE/ACM Trans. on Netw., vol. 19, no. 4, pp. 1085 –1096,
aug. 2011.

[17] M. Suchara, A. Fabrikant, and J. Rexford, “BGP safety with spurious
updates.” inINFOCOM. IEEE, 2011, pp. 2966–2974.

[18] R. Viswanathan, K. K. Sabnani, R. J. Holt, and A. N. Netravali,
“Expected convergence properties of BGP,” inProc. of ICNP, 2005,
pp. 3–15.

[19] S. Epstein, K. Mattar, and I. Matta, “Principles of safepolicy routing
dynamics,” inProc. of ICNP, 2009, pp. 254–263.

[20] M. Arye, R. Harrison, R. Wang, P. Zave, and J. Rexford, “Toward a
lightweight model of BGP safety,” inProc. of WRiPE, October 2011.

[21] D. Wetherall, R. Mahajan, and T. Anderson, “Understanding BGP
misconfigurations,” inProc. of ACM SIGCOMM, 2002.

[22] N. Feamster and H. Balakrishnan, “Detecting BGP configuration faults
with static analysis,” inProc. of NSDI, May 2005.

[23] G. Siganos and M. Faloutsos, “Analyzing BGP policies: Methodology
and tool,” in Proc. of IEEE INFOCOM, 2004.

[24] T. Griffin and G. Wilfong, “A safe path vector protocol,”in Proc. of
IEEE INFOCOM, vol. 2, 2000, pp. 490 –499 vol.2.

[25] J. A. Cobb, M. G. Gouda, and R. Musunuri, “A stabilizing solution to
the stable path problem,” inProc. of the 6th international conference
on Self-stabilizing systems, 2003, pp. 169–183.

[26] C. T. Ee, V. Ramachandran, B.-G. Chun, K. Lakshminarayanan, and
S. Shenker, “Resolving inter-domain policy disputes,” inProc. of ACM
SIGCOMM, 2007, pp. 157–168.

[27] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “Policy disputes in path
vector protocols,” inProc. of ICNP, November 1999.

[28] D. Thaler and C. Hopps, “Multipath issues in unicast andmulticast
next-hop selection,” RFC 2991, http://tools.ietf.org/html/rfc2991, 2005.

[29] A. J. T. Gurney, L. Jia, A. Wang, and B. T. Loo, “Partial specification
of routing configurations,” inProc. of WRiPE, October 2011.

