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Abstract—GENI brings together a wide variety of heteroge-
neous networking infrastructure and technologies under a com-
mon platform. We propose programming exercises for graduate
students to introduce GENI and enable students to conduct high
fidelity networking experiments. In this paper, we focus on an
exercise to study congestion control and reliability using the
ProtoGENI aggregate. A planned second exercise aims to leverage
GENI OpenFlow aggregates to study firewalls and QoS mecha-
nisms. We believe that these lab exercises will expose students to
key networking concepts and recent research directions, e.g., in
the data center context.

I. INTRODUCTION

In this paper, we discuss our ongoing work on developing

programming exercises for use by instructors of a graduate

networking class (e.g., CS 536 in the Computer Science

Department at Purdue University). We are designing both:

(1) Materials to guide students through the exercises, and

(2) Instructor materials, including solutions to the exercises.

All exercises require executing experiments on the GENI

infrastructure, and understanding the performance that various

GENI nodes and links provide.

A key goal of using GENI (as opposed to other platforms

such as PlanetLab or DETER) is exploring the diversity

available in the GENI infrastructure, and leveraging new GENI

projects. GENI provides a common platform to authenticate,

describe, advertise and reserve resources for experiments.

Students can use a number of tools from the experimenter

portal such as Gush, Omni, Raven, and Flack.

The choice of the particular GENI aggregate to use will

depend on the goal of each exercise. For example, experiments

on the PlanetLab aggregate are useful in predicting path

properties over the Internet. The ORBIT aggregate has 400

wireless nodes arranged in a grid. GENI provides a unified

management interface for these aggregates and provides op-

portunities to conduct heterogeneous experiments. Suppose an

experimenter needs to study the performance of a Content

Distribution Network (CDN)-based live streaming application

for wireless customers. The experimenter can reserve (1)

ProtoGENI nodes to serve as the CDN and experiment with

load balancing/data management, and (2) ORBIT nodes to

simulate wireless customers and evaluate the user experience.

Our exercises assume knowledge of the C programming

language, basic operating systems concepts including multi-

threading, and basic networking concepts. The graduate net-

working course that will use the planned exercises covers

the following material: (1) Network services and applications,

including DNS, HTTP, SMTP, and peer-to-peer systems; (2)

Network transport architectures, TCP, UDP, and TCP con-

gestion control; (3) Routing and forwarding, including intra-

domain and inter-domain routing algorithms; (4) Link layers

and local area networks, especially Ethernet and WiFi; and

(5) A brief discussion of quality of service (QoS), network

measurement and management, and network experimentation

and performance analysis. The exercises can also be used in

a more advanced graduate networking course.

II. OVERVIEW

The planned exercises aim to teach the basics of network

programming, client/server architectures, how a reliable trans-

port protocol runs on top of an unreliable delivery mechanism,

how routing protocols operate, and how to differentially treat

network flows. All exercises require the students to collect,

analyze, and explain experimental results from a set of exper-

iments they conduct on GENI.

We have explored a number of ideas for lab exercises. The

ideas can be classified into three broad categories:

1) Resource allocation mechanisms,

2) Reliability and congestion control mechanisms, and

3) Packet forwarding, filtering, and quality of service mech-

anisms.

These correspond to application-layer/middleware,

transport-layer, and network-layer functions in the current

TCP/IP protocol stack.

In this paper, we will focus on the second category (Sec-

tion III), but we will also briefly describe ideas for the third

category (Section IV).

III. CASE STUDY: CONGESTION CONTROL

The Transmission Control Protocol (TCP) remains the most

popular and widely used transport protocol, contributing the

majority of Internet traffic. With the growing data center

traffic, and the increasing deployment of high bandwidth links

and applications, it is important for TCP to adapt to provide the

best service. Recent interest in the performance of Binary In-

crease Congestion control (BIC) and CUBIC on the end2end-

interest mailing list [1], in data center performance [7], [9],

[13], [14], and Google’s interest in TCP [3] suggest the

importance of the topic.

A. Goals

The exercise aims at introducing students to the concepts

of reliability and congestion control, and increasing their
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<?xml v e r s i o n =”1 .0 ” en co d i n g =”UTF−8”?>

<r s p e c xmlns =” h t t p : / / www. p r o t o g e n i . n e t / r e s o u r c e s / r s p e c / 2 ”

xmlns : x s i =” h t t p : / / www. w3 . o rg / 2 0 0 1 / XMLSchema−i n s t a n c e ”

x s i : sch emaLo cat i o n =” h t t p : / / www. p r o t o g e n i . n e t / r e s o u r c e s / r s p e c / 2

h t t p : / / www. p r o t o g e n i . n e t / r e s o u r c e s / r s p e c / 2 / r e q u e s t . xsd ”

t y p e =” r e q u e s t ” >

<node c l i e n t i d =” c e n t e r ”

e x c l u s i v e =” t r u e”>

<s l i v e r t y p e name=” raw−pc”>

<d i sk i mag e name=” u rn : p u b l i c i d : IDN+emulab . n e t +image+emulab−ops / / FEDORA10−STD” />

</ s l i v e r t y p e>

<i n t e r f a c e c l i e n t i d =” c e n t e r : i f 0 ” />

<i n t e r f a c e c l i e n t i d =” c e n t e r : i f 1 ” />

<i n t e r f a c e c l i e n t i d =” c e n t e r : i f 2 ” />

<i n t e r f a c e c l i e n t i d =” c e n t e r : i f 3 ” />

</node>

<node c l i e n t i d =” l e f t ”

e x c l u s i v e =” t r u e”>

<s l i v e r t y p e name=” raw−pc”>

<d i sk i mag e name=” u rn : p u b l i c i d : IDN+emulab . n e t +image+emulab−ops / / FEDORA10−STD” />

</ s l i v e r t y p e>

<i n t e r f a c e c l i e n t i d =” l e f t : i f 0 ” />

</node>

<node c l i e n t i d =” r i g h t ”

e x c l u s i v e =” t r u e”>

<s l i v e r t y p e name=” raw−pc”>

<d i sk i mag e name=” u rn : p u b l i c i d : IDN+emulab . n e t +image+emulab−ops / / FEDORA10−STD” />

</ s l i v e r t y p e>

<i n t e r f a c e c l i e n t i d =” r i g h t : i f 0 ” />

</node>

<l i n k c l i e n t i d =” l e f t L i n k”>

<i n t e r f a c e r e f c l i e n t i d =” l e f t : i f 0 ” />

<i n t e r f a c e r e f c l i e n t i d =” c e n t e r : i f 0 ” />

</ l i n k>

<l i n k c l i e n t i d =” r i g h t L i n k”>

<i n t e r f a c e r e f c l i e n t i d =” r i g h t : i f 0 ” />

<i n t e r f a c e r e f c l i e n t i d =” c e n t e r : i f 1 ” />

</ l i n k>

<node c l i e n t i d =” t o p ”

e x c l u s i v e =” t r u e”>

<s l i v e r t y p e name=” raw−pc”>

<d i sk i mag e name=” u rn : p u b l i c i d : IDN+emulab . n e t +image+emulab−ops / / FEDORA10−STD” />

</ s l i v e r t y p e>

<i n t e r f a c e c l i e n t i d =” t o p : i f 0 ” />

</node>

<node c l i e n t i d =” b o t t o m”

e x c l u s i v e =” t r u e”>

<s l i v e r t y p e name=” raw−pc”>

<d i sk i mag e name=” u rn : p u b l i c i d : IDN+emulab . n e t +image+emulab−ops / / FEDORA10−STD” />

</ s l i v e r t y p e>

<i n t e r f a c e c l i e n t i d =” b o t t o m : i f 0 ” />

</node>

<l i n k c l i e n t i d =” t o p Li n k”>

<i n t e r f a c e r e f c l i e n t i d =” t o p : i f 0 ” />

<i n t e r f a c e r e f c l i e n t i d =” c e n t e r : i f 2 ” />

</ l i n k>

<l i n k c l i e n t i d =” b o t t o mLi n k”>

<i n t e r f a c e r e f c l i e n t i d =” b o t t o m : i f 0 ” />

<i n t e r f a c e r e f c l i e n t i d =” c e n t e r : i f 3 ” />

</ l i n k>

</r sp ec>

Fig. 1: RSpec request used in the exercise

understanding of the performance of different types of GENI

infrastructure. The students will compare TCP behavior and

efficiency under different network conditions and TCP param-

eters. The students can also implement parts of the functions

that are typically included at the transport layer in today’s

TCP/IP stack.

B. Tools Used

This project leverages resources on the ProtoGENI aggre-

gate, using the ProtoGENI test scripts [4]. The ProtoGENI

tutorial [5] is a good starting point for students to become

familiar with the ProtoGENI aggregate.

Students will also need to familiarize themselves with: (1)

Traffic Control (tc) available in the GNU Linux distributions

on ProtoGENI nodes, found in the /sbin directory. In this

exercise, tc will be used to modify network conditions and

enable different scheduling policies. (2) Iperf [2] available on

the ProtoGENI nodes located at

/usr/local/etc/emulab/emulab-iperf. Iperf is used to

study the performance of TCP. All measurements should be

taken at the Iperf server (receiving end).

Fig. 2: Star topology of ProtoGENI nodes

C. Reserving ProtoGENI Nodes

After registering a slice using the ProtoGENI test scripts, the

student creates a sliver using the RSpec request in Fig. 1. This

RSpec represents a sliver containing hosts in a star topology

of four nodes connected to a center node with 100 Mbps links

as shown in Fig. 2.

The parameters of the interfaces on the “Center” node are

modified to mimic different network path properties between

the end hosts. Although one could use the delay-node rspec

instead, one cannot modify the properties of the delay node

once the sliver is created. Further, the delay node functionality

is not supported by all GENI aggregates. The TCP parameters

and congestion control mechanisms can be varied at the end

hosts to compare performance.

D. Tasks

Tasks for the students to complete in this exercise can

include any subset of the following:

1) Impact of Delay/Loss: This includes basic questions on

gathering goodput data and evaluating TCP performance

in the presence of delay and loss.

2) Comparison of Reno and CUBIC: ProtoGENI nodes

provide two TCP congestion control algorithms, CU-

BIC and Reno, that can be chosen at run-time. CU-

BIC [10] (and BIC [15]) were proposed for Gi-

gabit links. The CUBIC algorithm is enabled by

default. The available algorithms are listed in the

file tcp_available_congestion_control in the

directory /proc/sys/net/ipv4/. Congestion con-

trol algorithms can be chosen by editing the file

tcp_congestion_control in the same directory.

Based on this setup, we ask the students to compare

the goodputs of Reno and CUBIC under different net-

work conditions and traffic. We observed that we need

a long TCP Iperf session (∼30 minutes) to notice a

performance difference between Reno and CUBIC over

100 Mbps ProtoGENI links.

3) Study of Queuing Disciplines: We formulated questions

to help the students learn queuing disciplines and under-

stand their utility. For example, we present a scenario

with a misbehaving UDP flow in the network and ask

the students to demonstrate fairness among the flows



3

with fair queuing. Similarly, the performance benefits

of packet marking schemes such as Explicit Congestion

Notification (ECN) can be evaluated under different

network and traffic conditions.

4) Tuning TCP for Lossy Links: ProtoGENI nodes pro-

vide several TCP parameter files in the directory

/proc/sys/net/ipv4/. The traffic control (tc) pro-

gram allows users to introduce packet reordering. We

ask students to achieve the best TCP performance by

learning and tuning TCP knobs. For example, in net-

works with high re-ordering, one can improve the TCP

goodput by adjusting the knobs that help TCP tolerate

this re-ordering without assuming packet loss. Similarly,

students can answer questions on identifying scenarios

(traffic and network conditions) where Selective Ac-

knowledgments (SACK) is most beneficial and verifying

them experimentally.

5) Implementation of Available Bandwidth Estimator: This

programming exercise requires the students to imple-

ment a simple available bandwidth estimator based on

the notion of packet trains. The overhead, accuracy, and

time to calculate the available bandwidth can then be

evaluated. Alternately, customized available bandwidth

estimators can be developed that work well under spe-

cific network conditions (for example, high bandwidth

or lossy links).

6) Implementation of TCP Congestion Control Mecha-

nisms: Students can partially implement and tune a

congestion control module to work well with lossy links

or bursty traffic. The students will be provided with

a partial TCP implementation to modify and test their

congestion control algorithm.

E. Impact of TCP Segmentation Offload on Packet Loss

In developing this exercise, we found that careful examina-

tion of the available GENI resources and specification of the

RSpec request are necessary. For example, when designing an

experiment for the students to observe TCP loss recovery, we

found that the network interface cards on some GENI nodes

are capable of TCP segmentation offload (TSO), while others

are not. TSO is a computation-saving feature that allows the

host computer to send IP packets containing very large TCP

segments (in this case, the size of about five Ethernet frames)

to the hardware, which then divides those large IP packets into

frame-size segments for transmission on the wire. This issue

arose when hosts were allocated on a different aggregate from

that which was used for initial development of the exercise.

The problem with this from a pedagogical standpoint is that

TSO is generally disabled during loss recovery. This leads

to apparent bizarre behavior when examining TCP streams

from the host performing TSO. Fig. 3 presents a TCP time-

sequence plot for a host performing TSO (a), and a plot for

a host that is not using TSO (b), displaying the unexpected

behavior. A TCP time-sequence plot is used to examine the

progress of a TCP connection over time. It places time on the

horizontal axis, and the TCP sequence space on the vertical
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Fig. 3: TCP loss recovery with (a) and without (b) TSO

axis. Transmitted segments are plotted from the sender, and

the cumulative acknowledgment, SACK blocks, and advertised

receive window are plotted from the receiver.

In Fig. 3, the vertical lines with double arrowheads represent

TCP segments as transmitted by the TCP sender. The lower

stair-stepped line is the cumulative ACK received from the

TCP receiver, and the vertical T-barred lines marked with the

letter ’S’ are SACK blocks (indicating receipt of a segment

or segments higher in the sequence space than the cumulative

ACK point). The transmitted segment marked with the letter

’R’ is the retransmission of a segment the TCP sender believes

was lost (and was in fact lost in this example). The upper stair-

stepped line is the receiver’s advertised window, and does not

come into play in this scenario. Note that the segment that is

lost (and subsequently retransmitted) in the plot using TSO

appears to be only a small portion of a segment as originally

sent. Following this retransmission, the TCP sender appears

to greatly reduce its transmitted segment size during loss

recovery. While these observations are true from the viewpoint

of the TCP sender, they are not true “on the wire,” as the

segments leaving the TCP sender are repacketized by the

network interface and all appear to external hosts to be the

same size as the segments transmitted during loss recovery.

TCP segmentation offload, and the impact it has on perfor-

mance and TCP logic, is an interesting topic in itself. However,

when the purpose of an exercise is for students to study

TCP loss recovery, the introduction of behaviors such as TSO

effects that do not look like “textbook” loss recovery can add

unnecessary complexity to the situation. Careful examination
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Fig. 4: Experimental setup to implement firewall rules using

OpenFlow

of the resources available on the GENI aggregates to be used,

coupled with appropriate tweaks to the RSpec request or run-

time mitigation (such as disabling TSO on the end hosts, in

this example) is necessary.

IV. FUTURE WORK: QUALITY OF SERVICE/FILTERING

MECHANISMS

We are currently investigating a second exercise using

OpenFlow. OpenFlow provides a centralized control plane

management platform. OpenFlow-enabled switches help ex-

perimenters define flow rules to support fine-grained flow

management. Recently, OpenFlow has been used in traffic

and network management proposals in data centers [6], [8],

[11], [12]. In this section, we discuss possible programming

exercises that introduce OpenFlow to students, and guide them

in conducting simple experiments leveraging GENI OpenFlow

aggregates.

A. Goals

This exercise can have students use OpenFlow to implement

and evaluate different packet filtering and quality of service

(QoS) operations on network flows.

B. Tools Used

The exercise can leverage one of the GENI resource alloca-

tion tools to simplify requesting resources, and use OpenFlow-

capable switches and networks such as the GPO Lab Open-

Flow network.

C. Tasks

The students can explore forwarding functionality that

OpenFlow-capable switches allow and quantify their perfor-

mance on multiple aggregates. For example, they can im-

plement a stateful firewall capable of processing established

connections without contacting the OpenFlow controller.

Given a network depicted by Fig. 4, the students can develop

functionality to implement policies such as: (1) Internet hosts

may connect to TCP port 80 on “Server,” but no other port. (2)

“Server” may connect to “Remote Server” on port 8080, but

no other hosts on the right side of the firewall. (3) “Remote

Server” may connect to TCP ports 80 or 8080 on “Server”,

but no other ports. (4) “HostA” and “HostB” may connect to

any host on the right side of the firewall on any port, but no

host on the right side of the firewall may connect to “HostA”

or “HostB.”

The controller should examine the first packet of a flow and

update flow rules across the switches. All trailing packets are

handled by the switches.

The project can be extended to ask students to support

efficient traffic engineering functionality or enforce quality

of service (QoS) functionality on the flows. This would be

especially appropriate for more advanced graduate networking

courses.

V. CONCLUSIONS

This paper introduces programming exercises to graduate

students in a networking course using the GENI infrastructure.

GENI enables students to experiment with real networks of

a diverse nature. We formulate problems on the evaluation

of TCP congestion control and reliability properties, and de-

scribe our experiences with TCP segmentation offloading. We

also briefly discuss possible exercises using GENI OpenFlow

aggregates as part of our future work.
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