
FlowMate: Scalable On-line Flow Clustering
Ossama Younis and Sonia Fahmy

Abstract— We design and implement an efficient on-line ap-
proach, FlowMate, for clustering flows (connections) emanating
from a busy server, according to shared bottlenecks. Clusters can
be periodically input to load balancing, congestion coordination,
aggregation, admission control, or pricing modules.FlowMate
uses in-band (passive) end-to-end delay measurements to infer
shared bottlenecks. Delay information is piggybacked on feed-
back from the receivers, or, if impossible, TCP or application
round trip time estimates are used. We simulateFlowMate and
examine the effects of network load, traffic burstiness, network
buffer sizes, and packet drop policies on clustering correctness,
evaluated via a novel accuracy metric. We find that coordinated
congestion management techniques are more fair when integrated
with FlowMate. We also implement FlowMate in the Linux
kernel v2.4.17 and evaluate its performance on the Emulab
testbed, using both synthetic and tcplib-generated traffic. Our
results demonstrate that clustering of medium to long-lived flows
is accurate, even with bursty background traffic. Finally, we
validate our results on the Internet Planetlab testbed.

Index Terms— network monitoring, network tomography,
TCP, shared bottleneck inference, coordinated congestion man-
agement, load balancing

I. I NTRODUCTION

Network monitoring is critical to react appropriately to
network conditions, as well as to predict future network
behavior. Monitoring results can be used to make decisions
regarding network provisioning, traffic engineering, fault toler-
ance, pricing, security, and QoS support. Network monitoring,
however, poses many practical challenges, most notably the
high probing and logging overhead, lack of a centralized au-
thority, non-cooperative ISPs, privacy concerns, and difficulty
in capturing the highly dynamic nature of the network. One
way of overcoming the non-cooperative ISP problem is by
exclusively using end-to-end measurements. Theinferenceof
internal network characteristics via end-to-end measurements
is commonly referred to asnetwork tomography. Two types of
information can be inferred: (1) static information, such as link
capacities or buffer sizes, and (2) dynamic information which
depends on current network state, such as available bandwidth,
delays, link losses, and shared bottlenecks.

Network probing uses network traffic to collect measure-
ments, which can be input to inference mechanisms. Prob-
ing can be classified as active or passive. Active probing
entails sending control (out-of-band) traffic along selected
network paths, while passive measurements use actual (in-
band) network traffic. Active probing is more flexible since
it gives control over packet timing, packet sizes, and packet
distribution in the network. Injecting new traffic, however,
may alter the network state by increasing load, and may
consume a significant portion of the sender resources (e.g.,

Ossama Younis and Sonia Fahmy are with the Department of Computer
Sciences, Purdue University, USA

operating system processes or connections). An example active
probing application istraceroute, which returns the path to a
specified destination. Other active probing applications include
ping, periscope[1], and MGEN [2]. Passive measurements
are less flexible since they use uncontrolled actual traffic.
Passive measurements, however, do not increase network load
or consume resources. A simple example of passive probing
is the round trip time (RTT) estimated by TCP connections.
Passive measurement tools includetcpdumpand Cisco IOS
Netflow.

In this paper, we use passive delay measurements for
on-line, sender-side, partitioning of flows (transport-level or
application-level connections) into clusters of flows that share
common bottlenecks. The problem is formulated as: given a set
of flowsF = {f1, f2, . . . , fn}, we design a mapping protocol
P that periodically maps each flowfj, 1 ≤ j ≤ n, to exactly
one clusterci, 1 ≤ i ≤ k, k ≤ n, such that∀i, all flows
∈ ci, share a common bottleneck. Our approach, which we
call FlowMate, can be integrated with many applications (as
discussed in Section II).

Since TCP flows comprise the majority (80% or more)
of Internet traffic, FlowMate currently clusters TCP flows.
FlowMate, however, can be easily generalized to any flow for
which delay information can be obtained. Accurate clustering
requires a time scale larger than the life-time of short-lived
TCP connections (e.g., small HTTP/1.0 transfers) to converge.
Long-lived TCP connections (such as file downloads) still
comprise the dominant trafficload on the Internet. Mean
connection life-times are also increasing with the growing
popularity of peer-to-peer applications, such as KaZaA [3]
and Gnutella [4]. This is because peer-to-peer media file
transfers typically involve tens or hundreds of mega bytes. At
a sender, clustering such medium to long-lived connections
(called elephants in the literature [5]) can increase network-
adaptivity, responsiveness, and fairness among flows or hosts.
We integrate our algorithm with a simple coordinated con-
gestion management strategy to demonstrate the improved
fairness.

FlowMate has the following features that distinguish it
from other approaches in the literature: (1) no generation or
transmission of out-of-band probes, (2) on-line re-clustering
based on the latest measurements, (3) completely end-to-end:
sender side only, or with timetamping support at receivers,
and (4) low overhead and high scalability to large numbers of
flows.

The remainder of this paper is organized as follows. Sec-
tion II gives exampleFlowMate applications. Section III
discusses related work. Section IV describes theFlowMate
design in detail. Section V defines our proposed accuracy
metric. Section VI studies the performance ofFlowMate in
a number of simulation configurations with FTP, Telnet, and

2

HTTP traffic. Section VII discusses an alternative clustering
approach. Section VIII illustrates the performance ofFlow-
Mate integrated with coordinated congestion management.
Section IX describes the implementation ofFlowMate in
the Linux kernel, and presents our experimental results on
Emulab and on Planetlab. Finally, Section X summarizes our
conclusions and discusses future work.

II. FlowMateAPPLICATIONS

Many applications can utilizeFlowMate. In this section, we
discuss three examples.

A. Overlay Networks

Overlay networks among hosts provide easily deployable
solutions for the problems of group communication (multicas-
ting), optimized inter-domain routing, and content sharing and
distribution. Overlay network construction and adaptation can
be performed more intelligently if network state is considered
during neighbor assignment. In current peer-to-peer systems,
such as Gnutella [4], a new user selects its neighbors from
a randomly selected set of peers in the overlay structure.
In recent proposals such as [6], a new userA picks half
of its neighbors from the its closest “bin” of users (having
the smallest RTT fromA), and the other half is randomly
selected from the entire set of users. Such techniques can be
improved by consideringbottlenecks. For example, prior to
neighbor selection, userA can probe paths to other peers in
the proposed set of neighbors, and identify if these paths share
bottlenecks. UserA then selects neighbors whose flows do not
share bottlenecks.

B. Load Balancing

Load balancing decisions can be based upon network con-
ditions, such as bandwidth availability, delays, and shared bot-
tlenecks. For example, splitting content among cache servers
can be performed according to bandwidth between a primary
server and the cache servers. A primary server may choose to
assign highly dynamic web content to the closest caches. In
addition, a cache server that determines that flows destined to
a set of frequent clients typically share common bottleneck(s)
may notify the primary server. The primary server can then
decide to replicate the cached content at another cache server
to alleviate this bottleneck.

C. Coordinated Congestion Management

Current host congestion control mechanisms regulate the
sending rate of each individual flow according to network
conditions assessed by that particular flow. Recent research has
shown that coordinating congestion control decisions among
certain flows at a busy host (e.g., ftp/Web server) can increase
the collective performance of the flows [7], [8]. An important
problem in addressing coordinated congestion management is
the composition of clusters, in order to perform congestion
management decisions on a per-cluster basis. In current coordi-
nated congestion management approaches [9], [10], [11], [12],
flows between the same hosts (or same LANs) are assigned

to the same cluster. This strategy assumes that those flows
will likely share the same bottlenecks along their paths. This,
however, may not necessarily be true, due to network address
translation (NAT), quality of service (e.g., using several queues
at certain router ports), load balancing schemes, and dispersity
routing [13]. In these cases, flows destined to the same host
or LAN may be routed on different paths with different
bottlenecks, and, consequently, should not be coordinated.
More importantly, extending coordination benefits to flows that
share the same bottlenecks (but arenot destined to the same
host) can significantly enhance performance.

III. R ELATED WORK

Congestion coordination has been proposed and studied in
[13], [9], [7], [10], [8]. The congestion manager (CM) [7]
provides a general framework for applications to coordinate
congestion management decisions among flows between the
same hosts. Similar approaches also follow the same-host
paradigm, including TCP-Int [9], Ensemble-TCP [10], [12],
and TCP Fast Start [11]. Padmanabhan [8] studies the benefits
of performing coordinated congestion control, and identifies
topology discovery, delay and/or loss correlation, and en-
hanced notification as means of detecting shared bottlenecks
among flows.

Recently, a number of studies have investigated network
tomography (the inference of internal network characteristics
using end-to-end measurements) [14], [15], [16], [17], [18].
Katabi et al [17] use an entropy function to compute correla-
tion among a set of flowsat the receiver. This technique uses
passive measurements, but clustering correctness degrades
with heavy cross-traffic. More recent measurement results us-
ing Renyi (as opposed to Shannon) entropy demonstrate more
robust clustering [19]. Rubenstein et al [18] propose novel loss
and delay correlation tests among apair of flows to determine
shared bottlenecks. Poisson probes are injected to collect loss
or delay information. We adopt Rubenstein’s delay correlation
test, but address the challenges of its on-line application for
multiple flows at a busy server, using passive measurements.
Harfoush et al [16] use Bayesian probing instead of Markovian
probing to infer shared losses. As with Rubenstein’s approach,
this approach uses active probing. In contrast, Padmanabhan et
al. [20] use passive loss measurements for Bayesian inference
of lossy links in the Internet.

IV. FlowMateDESIGN

This section describesFlowMateand analyzes its complex-
ity. Please refer to [21] for a detailed description of algorithms
and data structures.

A. Basic Architecture

FlowMate is a module that can be invoked from various
other modules to provide information about flows sharing
common bottlenecks along their paths from a single sender
to multiple receivers. One possibleFlowMate organization is
depicted in Fig. 1. The TCP implementation at the sender
must be configured to timestamp packets before being sent.
Usable samples are later selected at the “Sampler” when

3

timestamped acknowledgments (ACKs) are received, as de-
scribed in Section IV-C. Sample delay lists are then provided
to the “Flow Correlator” module, which performs clustering
and sends the resultant clusters to other modules, e.g., load
balancer. Another possible organization ofFlowMate is at
the application layer. We discuss the tradeoffs among both
organizations in Section IX. In this work, we focus on the
FlowMateorganization depicted in Fig. 1.

Transport Layer

Lower Layers

ACKs

Lower Layers

Outgoing Packets Arriving Packets
Timestamped

Timestamped

Sender

Load

FlowMate

Sampler

Delay Lists

Correlator

ACKs

Flow

Timestamped

Balancer PricingCM

Flow Partitions

Transport Layer

Receiver

FlowMate

Fig. 1. One possibleFlowMate organization

B. Correlation Test

The delay correlation test that we use inFlowMate was
proposed in [18] to statistically identify shared bottlenecks
using Poisson-distributed probe packets. We apply an analo-
gous method on actual (non-Poisson-distributed) data packets.
Pearson’s correlation function [22] is applied to the delay
samples as follows:

rxy =
∑n

i=1 (xi − x)(yi − y)√∑n
i=1 (xi − x)2

∑n
i=1 (yi − y)2

(1)

where rxy is the correlation coefficient (with range[−1, 1])
of the two sample setsxi and yi whose averages arex
and y respectively, andn is the number of samples. By
definition, the closerrxy approaches+1 (−1), the more
positively (negatively) linear the samples(xi, yi) are. A linear
relationship between two variables means that their values fit
a straight line on a scatter plot. Ifrxy ≈ 0, the samples show
no linear relationship.

In [18], a cross measureis defined as the correlation
coefficient of sample sets of two different variables, whereas
an auto measureis defined as the correlation coefficient of
two sample sets of the same variable. The correlation test
among two flows is defined as follows [18]: (1) Compute the
cross measure, Mx, between pairs of packets in two flows
f1 and f2, spaced apart by timet > 0. (2) Compute the
auto measure, Ma, between packets of the same flow, spaced
apart by timeT > t. (3) If Mx > Ma, then the flows share
a common bottleneck; otherwise they do not. The intuition
behind this test is that if two flows share a bottleneck, then the
cross correlation coefficient should exceed the auto correlation
coefficient, if the spacing between packets of different flows at
the bottleneckis smaller thanthe spacing between packets of
the same flow. More details on how we compute the correlation
coefficients are given in Section IV-D.

C. Delay Computation

Delay correlation tests typically converge faster than loss
correlation tests, and yield more accurate results. Delay cor-
relation tests, however, impose the requirement of packet
timestamping. For the delay correlation test to work best, the
delays of packets on the forward path from sender to receiver
must be collected at the sender. One method for collecting
delay information is to utilize standard timestamping mecha-
nisms presented in [23]. These mechanisms use the “Options”
field in the TCP header [24] to include the time a packet
is sent by the sender, and the time an ACK is sent by the
receiver. The TCP timestamping option is currently supported
in TCP implementations in most operating systems, including
FreeBSD, Linux, and Windows (it is enabled by default in
the latest Linux and Windows TCP implementations). The
ACK send time gives an approximate indication of packet
reception time. It is not entirely accurate, however, because
the estimated delay is now dependent on the receiver load,
scheduling mechanisms, and TCP implementation details. We
experiment with this approach on Emulab in Section IX.

A second alternative is for the sender to use RTT samples
(which TCP anyway computes for retransmission timeout
computation purposes) [25], or throughput estimates [26]. The
receiver need not use the TCP timestamping option field (or
an equivalent application layer mechanism) in this case. Using
RTT information instead of forward delay may, however, de-
grade the clustering accuracy when dynamic bottlenecks in the
reverse direction alter the packet delay correlation properties.
Furthermore, the load and capabilities at the receiver affect
the RTT in the same manner they affect ACK send times
(discussed above). We have repeated all our experiments in
Section VI with RTT samples instead of one-way delays, and
the reduction in accuracy values was about 5%. Section IX
presents data from Emulab and Planetlab experiments using
RTT samples.

A third alternative is to extend the timestamp field of the
ACK to include the time at which the last packet being
ACKed was received, as shown in Fig. 2. (Alternatively, this
information can be added to the application layer payload
in the reverse direction.) We use this extended timestamping
approach in our simulation experiments in Section VI since
it is the most accurate. Note that clock-skewness between the
sender and receiver is not a problem, if it remains approxi-
mately constant throughout the flow duration (refer to [18] for
more details).

10 TS Echo Reply

1 1 4 4

1 4 4 4

Kind = 8

Kind = 8

TS Value

TS Recv. TimeTS Echo ReplyTS Value14

1

Fig. 2. Extending the TCP options field in ACK packets

D. In-Band Packet Sampling

We observe that the scalability of out-of-band delay corre-
lation tests for flows at a busy server (as in [18]) is limited
by the need to generate and transmit Poisson probes on all

4

flow paths. For example, a server with flows to one thousand
destinations has to set up another one thousand active probe
flows, which consumes a significant portion of server and
network resources.

To avoid generating and injecting out-of-band control traffic
in the network, we use selected data packets as samples.
The sampling process proceeds as follows. Assume flowf1

yields n1 samples, and flowf2 yields n2 samples. Without
loss of generality, assume thatn1 ≤ n2. Let xt(i) denote the
timestamp (send time) of samplexi from f1, andyt(j) denote
the timestamp of sampleyj from f2, where1 ≤ i ≤ n1, and
1 ≤ j ≤ n2. We merge the two setsxt(i) and yt(j) and
compute the mean (for all packets of the two flows) spacing,
t, between every two consecutive packets off1 andf2. That

is t =
∑

i≤n1,j≤n2
|xt(i)−yt(j)|

npairs
, where every samplext(i) is

paired with a peer sampleyt(j) that minimizes|xt(i)−yt(j)|
for all j. After computingt, the auto correlation coefficient can
be computed for any of the two flows. In this computation, we
select samples from the flow sample set with packet spacing
higher thant. Samples that are not used in the auto correlation
test (due to packet spacing violation) are marked and are
not used in cross correlation computation (for each particular
test). This is the primary restriction on the correctness of the
correlation tests (as explained in [18]), and not how probes
are distributed.

To validate our results, we repeated our experiments with the
following simple sampling approach. We selected data packets
that are closest to Poisson probe send times (at a rate of 10
Poisson samples per second), and then applied the spacing
restriction discussed above (Poisson probes are used in [18]).
Our results were not significantly different from the general
case without Poisson sampling (see [21] for more details).
Therefore, in Section VI, we only use the inter-packet spacing
restriction.

E. Triggering Clustering

It is important to trigger clustering only when sufficient
usable samples are available. Since each flow has its own
congestion window according to its start time and encountered
losses, some flows may have only transmitted a few packets
and thus have very few samples. Assume that the last clus-
tering process was triggered at timet. We trigger the next
clustering process at timet + d, whered is a period during
which all flows have received at least a minimum ofM delay
values. Assuming a minimum ofk usable samples are required
for correlation testing, the thresholdM is selected to be at least
twice the value ofk. We have experimentally determined that
k ≥ 10 is typically adequate. With low background traffic
load, at least 20 samples are required for accurate results,
because more samples are needed to capture the delay pattern.
The value ofk is also dependent on how packets of various
flows are interleaved. With little interleaving, more samples are
required for accurate clustering, as discussed in Section VI-
B.5. If a timedmax elapses before the thresholdM is reached
for all flows, clustering is anyway triggered. In this case, we
only consider flows with sufficient samples in the clustering
process. Flows which are not considered for clustering are not

grouped with any other flow (or with each other). To prevent
frequent clustering and its associated overhead, clustering
is not invoked before a perioddmin elapses since the last
clustering process.

F. The Clustering Process

Many clustering algorithms have been proposed in the
literature, especially in the context of data mining and pattern
recognition [27]. Since our objective is to obtain reasonably
accurate clusters with the least overhead, we employ a very
simple clustering mechanism. The clustering process takes
as input a set of flows (with sufficient samples) to be clus-
tered. We designate one flow in every cluster we form as
the cluster “representative.” A flow is only compared to the
cluster representative in order to determine whether it should
belong to the same cluster. This ensures that all flows that
are clustered together are highly correlated with the same
representative flow.FlowMateselects the first flow in a cluster
to be its representative. Switching the cluster representative
dynamically is currently under study (a simple approach is
evaluated in Section VII). A flow is compared toall cluster
representatives to determine if it should join an existing cluster,
or form (and represent) a new cluster.

Consider, however, the case when a new flowf is highly cor-
related with more than one cluster representative.FlowMate
takes the following conservative approach in this case. The
cross correlation coefficients in all successful tests of a flow
f are compared, andf joins the cluster whose representative
yielded the highest cross correlation coefficient. This is be-
cause a flow typically exhibits the highest correlation with the
correct cluster representative. Fig. 3 provides a summarized
pseudo-code ofFlowMate (for detailed pseudo-code, refer
to [21]). FlowMatealso includes the following (optional) test
(function re-organize()in the pseudo-code): whenever a new
cluster is created, all flows in other clusters, except for the
representatives, are compared to the new cluster representative
to determine if they have a higher correlation with the newly
created cluster. This technique increases accuracy in cases
when flow delay patterns are similar.

Note that the cross and auto correlation measures and the
delay statistics are maintained and continuously updated for
every pair of flows that have been tested. When clustering
is triggered, new samples update the mean and variance of
flow delays, and consequently, the corresponding cross and
auto measures. These statistics are maintained in the flow data
structures throughout a flow life-time. To illustrate this, recall
equation (1) presented in Section IV-B (and expanded here):

rxy =
∑n

i=1 (xiyi − xyi − yxi + xy)√∑n
i=1 (x2

i − 2xxi + x2)
∑n

i=1 (y2
i − 2yyi + y2)

=
∑n

i=1 xiyi − nxy√
(
∑n

i=1 x2
i − nx2)(

∑n
i=1 y2

i − ny2)

New samples for a pair of flows are used to update∑n
i=1 xiyi,

∑n
i=1 x2

i ,
∑n

i=1 y2
i , x, y, andn in this equation.

When clustering is triggered, the correlation coefficients are

5

Fig. 3. FlowMate pseudo-code
1. clusterList← NULL
2. numClusters← 0
3. FOR i ← 1 TO numFlows
4. IF (fi.numSamples< sampleThreshold)
5. CONTINUE // ignore fi

6. ELSE IF (numClusters = 0)
7. Create clusterC1

8. C1.representative =fi

9. clusterList.append(C1)
10. numClusters++
11. ELSE
12. highestCoeff← small magic number
13. selectedCluster← NULL
14. FOR j ← 1 TO numClusters
15. result← test(fi, Cj .representative)
16. IF (result = YES)
17. update selectedCluster
18. update highestCoeff
19. END FOR
20. IF (selectedCluster6= NULL)
21. selectedCluster.append(fi)
22. ELSE
23. numClusters++
24. Create clusterCnumClusters

25. CnumClusters.representative =fi

26. clusterList.append(CnumClusters)
27. re-organize(clusterList) // optional
28. END FOR

computed and stored along with the above terms, while the
delay samples themselves are discarded. This approach is
stable and scales well, but does not adapt to rapidly changing
bottlenecks. This is because old delay samples still impact
the delay statistics and correlation coefficients. An alternative
approach would be to maintain a set of recent delay samples
and re-compute the mean and variance of only these samples.
Older delay samples would be periodically discarded or given
less weight (effectively employing a sliding window of sam-
ples). This technique is more adaptive to rapidly changing
bottlenecks, at the expense of lower stability, and slightly
higher storage and re-computation overhead. Selecting which
of these two techniques to employ must be based upon
flow life-times, and how they compare to the constancy of
Internet path properties [28]. We use the first technique in our
experiments, since we do not experiment with extremely long-
lived flows or with highly dynamic bottlenecks (except for the
Internet experiments in Section IX-B).

Table I gives an example of clustering five flows, where the
expected output is three clusters. In the example,f4 passes
the correlation test with bothf1 and f2. It is clustered with
f2 because their cross correlation coefficient is the highest.
Observe that althoughf3 andf4 are already clustered before
f5 is introduced, they are compared withf5 after a new cluster
is created to check whether a re-organization is required.

TABLE I

EXAMPLE OF CLUSTERING5 FLOWS WITH 3 CORRECT CLUSTERS

{{f1 ,f3},{f2 ,f4},{f5}}
Flow Rep. Test Clusters

f1 - - {f1}
f2 f1 No {f1},{f2}
f3 f1 Yes

f2 No {f1,f3},{f2}
f4 f1 Yes

f2 Yes (larger) {f1,f3},{f2,f4}
f5 f1 No

f2 No {f1,f3},{f2,f4},{f5}
f3 f5 No {f1,f3},{f2,f4},{f5}
f4 f5 No {f1,f3},{f2,f4},{f5}

G. Time Complexity

In this section, we show thatFlowMatecomplexity is low,
and thusFlowMatecan be applied on-line.

Lemma 1:Assume thatN flows are being clustered,Sp is
the average cluster size, andP is the number of generated
clusters (on the average,P is N/Sp). FlowMate time com-
plexity is O(NP).

Proof. FlowMatecomputations are divided into two main
components: (1) sample selection, and (2) correlation tests.
Using appropriate bounds in the triggering condition limits
the number of delay values being processed for each flow.
Computing the coefficients depends on the number of selected
samples, which is less than the number of received delay
values. Each flow is tested against all cluster representa-
tives, which upper bounds the number of correlation tests by
NP . Hence, the complexity depends on the number of tests
multiplied by the number of operations required to compute
the coefficients (which is upper bound by a constant). The
asymptotic time complexity ofFlowMateis thereforeO(NP).
2

Observe that FlowMate does not require any pre-
computations to estimate the appropriate number of clusters.
Observe also that flows with insufficient samples are excluded
from clustering, which may further reduce complexity. Clus-
ters are created and re-adjusted as more flows are incorporated
in the clustering process. The complexity is typically lower
than comparing every pair of flows which isO(N2). FlowMate
clustering is a lower-cost approximation of the K-Means
clustering technique [29].FlowMateoverhead is lowest if only
a few large clusters are formed (due to the representative-
based testing approach). The worst case occurs if all flows
do not share any common bottlenecks and each forms a
separate cluster, which should not occur often. This is due
to the locality of server requests, as well as Internet topology
characteristics (power-law and small-world properties).

V. ACCURACY METRIC

Clustering inaccuracies are introduced by either (1) erro-
neously including a flow in a cluster where it does not belong
(this includes merging two or more clusters), or (2) splitting a
cluster into two or more sub-clusters. We use the term “false
sharing” (fs) to denote (1) above, i.e., erroneous inclusion of

6

a flow with a cluster it does not share bottlenecks with (we
borrow this term from [13]).

Measuring the accuracy of the output clusters in a unified
manner is challenging due to the possibility of simultaneous
occurrence of the two error types. The two error types have
different impact on the performance of applications using
FlowMate. For example, consider a coordinated congestion
management application applied to eight flows, as shown in
Fig. 4. Assume the correct clustering is two clusters with four
flows each. Assume that in one instance, output clusters are
four instead of two. Although coordination cannot be fully
exploited in this case, all flows clustered together indeed share
bottlenecks. Therefore, consequent coordination decisions are
not erroneous. In the second instance, the output is two clusters
with flows not sharing bottlenecks. In this case, when one flow,
say f1 experiences packet losses, the consequent decisions
taken by the congestion coordination application may incor-
rectly affect other flows, such asf7 (which may unnecessarily
enter the slow start phase). This difference between the two
cases requires the metric to account for different error types
with different weights according to their severity (unlike the
metric proposed in [17] which treats all error types equally).
We believe that false sharing is more severe than cluster
splits for most applications. Thus, the second instance in our
example is considered less desirable than the first one. Our
accuracy index (AI) described below reflects this requirement.

f4 do not (AI = 75%)
with f1, while f3 and
f2 enters slow start

f1 experiences packet losses

enter slow start (AI = 50%)
f7 and f8 unnecessarily enter

{f5, f6, f3, f4}
{f1, f2, f7, f8},

Output clusters

Flows: f1, f2, ..., f8
Correct clusters {f1,.., f4}, {f5,.., f8}

{f5, f6}, {f7, f8}
{f1, f2}, {f3, f4}

Fig. 4. Example of AI computation

Let N denote the total number of flows,Pc denote the set of
correct clusters,Po denote the set of clusters in theFlowMate
output,nfs denote the number of flows erroneously included
in a resulting cluster, andsj denote the number of sub-clusters
of a correct cluster∈ Pc that was split intosj sub-clusters in
Po. The cluster accuracy index (AI) is computed as follows:

Accuracy Index (AI) = 1−
∑|Po|

i=1 (nfs)i

N
−

∑|Pc|
j=1(sj − 1)

N
(2)

where(nfs)i of a clusterpi ∈ Po is computed as follows:
Mappi to a corresponding clusterpc ∈ Pc, such that|pi∩pc| is
maximized. The total number of flows in setf such that(f ∈
pi)∧ (f /∈ pc) is the number of flows erroneously included in
a cluster(nfs)i (i.e., number of false shared flows).

Observe that there is no case in whichall flows are
erroneously clustered. Therefore, the accuracy index varies
between a fraction (above 0) and 1. For a fixed number
of flows, as the number of correct clusters|Pc| increases
(decreases), the average number of flows per cluster decreases
(increases). Therefore, the merge effect is, on the average,

TABLE II

EXAMPLE OF COMPUTING THE ACCURACY INDEX(AI) FOR 10 FLOWS

WITH 2 CORRECT CLUSTERS(Pc = {1,..,5},{6,..,10})

Output ClustersPo AI Interpretation
All split: {1}, {2},· · ·,{10} 0.2 1 correct flow per

cluster
All merged:{1,2,· · ·,10} 0.5 only 1 correct cluster
Splits: {1,2,3}, {4,5},
{6,7,8}, {9,10}

0.8 2 errors (splits)

More splits: {1,2}, {3,4},
{5}, {6}, {7,8}, {9,10}

0.6 4 errors (splits)

False sharing: {1,· · ·,7},
{8,9,10}

0.8 2 errors (flows 6 and
7)

More false sharing:
{1,· · ·,9}, {10}

0.6 4 errors (flows 5 to 9)

Combined errors:{1,2,3},
{4,5,6,7}, {8,9,10}

0.7 3 errors (1 split + 2
false sharing)

Combined errors: {1,2},
{3,4}, {5,6}, {7,8}, {9,10}

0.6 4 errors (3 splits + 1
false sharing)

TABLE III

AVERAGE ACCURACY INDEX OVER ALL PERMISSIBLE CLUSTERS WHEN

THERE ARE3 CORRECT CLUSTERS(|Pc| = 3)

of flows 8 9 10 11 12 13 14
Average AI 0.55 0.41 0.38 0.5 0.36 0.47 0.35

diminished (exacerbated). The split effect is more uniform.
Our interpretation of accuracy considers a cluster split into
two clusters to be of equal severity (thus prompting an
equal deduction) to false sharing of one flow (while incorrect
merging of two clusters entails a penalty for each flow that
was incorrectly merged with the larger set). For example, if the
correct clusters are{1,2,3}, and{4,5}, and a merge occurred
(i.e.,{1,2,3,4,5}was output), thennfs is equal to 2 (size of set
{4,5}). This is because cluster splits have fewer undesirable
effects than false sharing and merging.

Consider an example of clustering six flows where the
correct clusters are{1,2,3} and{4,5,6}. If the clusters output
by FlowMate are {1,2}, {3,4,5}, and{6}, then the accuracy
index is computed as:1− 1

6 − (2−1)
6 = 0.67. In this case, one

sixth is deducted for flow 3, which was incorrectly clustered,
and another one sixth is deducted for the split of cluster
{4,5,6} into clusters{4,5} and {6}. Note that a single flow
is penalized only once, either for being clustered incorrectly
(false shared), or for not being merged with its correct cluster.
This is why the accuracy index is 50% in the right-hand
size of Fig. 4. Table II gives additional examples. Observe
that, on the average, a random clustering will likely result in
an erroneous number of clusters, in addition to false sharing
per cluster, yielding values typically less than 50% for the
accuracy (depending on the number of flows and number of
correct clusters|Pc|). Table III gives the average AI for all
permissible clusters of a number of flows for a case with 3
correct clusters. Results are congruent with our argument on
average accuracy of random clustering.

Fig. 5 further validates our argument by considering random
cluster assignments in different cases. We restrict the maxi-
mum cluster size (which we refer to as “cluster limit”) to a

7

TABLE IV

SIMULATION PARAMETERS

TCP flows 12–48, infinite FTP flows, Telnet flows, or
HTTP/1.1 flows

Cross traffic 24 flows, CBR (256 kbps each)
Background traffic to all receivers (256 kbps Pareto/traces)
Reverse traffic 64 kbps average rate for each (from re-

ceivers to sender)
Buffer size 250 packets (except in one experiment)
Drop policy Drop-Tail (RED in one experiment)

certain ratio of the total number of flows. For each cluster
limit, a random correct assignmentPc is selected. Another
random assignment of flows is selected as the outputPo,
and the AI is computed. This process is repeated 1000 times
and the average AI is reported. The figure illustrates that the
average accuracy for random clustering assignments highly
depends on the cluster limit, more than on the total number
of flows. This is intuitive, since a larger number of correct
clusters yields more false sharing errors than cluster splits.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40 80 120 160 200 240 280 320 360 400 440 480

A
c
c
u
r
a
c
y

I
n
d
e
x

Number of Flows

Cluster limit = 15%
Cluster limit = 30%
Cluster limit = 50%
Cluster limit = 70%

Fig. 5. Accuracy of random cluster assignments with respect to different
cluster size limits

VI. SIMULATION EXPERIMENTS

We have implementedFlowMate in the ns-2 network simu-
lator [30]. In this section, we investigateFlowMaterobustness
with different background traffic models and traces, and with
various foreground (to be clustered) traffic types, including
FTP, Telnet and HTTP. We also study the effect of router
buffer sizes, router drop policies, andFlowMate parameters.
More results can be found in [21].

Table IV summarizes the simulation parameters. Two
topologies (one somewhat symmetric and one asymmetric)
are used in the experiments. In the first topology (Fig. 6),
a single source establishes a number of concurrent TCP
connections with receivers on three different branches. The
upper two branch links are bottlenecks with bandwidths 1.5
Mbps and 3 Mbps, respectively. The third branch link has a
bandwidth of 10 Mbps, but is congested by a number of cross
CBR flows. All other links have a capacity of 10 Mbps. A
number of multiplexed Pareto flows (originating at the same
source) are generated as background traffic. A number of other
multiplexed Pareto flows are generated by the receivers in the
reverse direction.

Fig. 7 depicts the second simulation topology, where the
upper two branch links have limited bandwidth, while the

4 ms2 ms

4 ms

9 ms

5 ms

TCP flows

Reverse
traffic

destination
Cross−traffic r5

r3

r4r2r1

Background Traffic

17 m
s

D(n)

D(h+1)

D(h)

D(k+1)

D(k)

D(1)

Source

Bottleneck links
Cross−traffic

generator

2 ms

2 ms

12ms

14ms

11 ms

1 ms

3 m
s

Fig. 6. Simple simulation configuration

link on the third branch is congested by high background
traffic load. Background traffic is injected using a real traffic
trace (the “Star Wars” movie [31]). One “Star Wars” flow is
transmitted on each of the three main branches starting from
router r2 to a randomly selected receiver on each branch,
so as not to create a bottleneck on the main shared path. In
both topologies, three clusters of flows comprise the expected
clustering: one cluster for each one of the three branches.
Simulation time is 60 seconds. This allows the effect of the
transients to be visible.

D8 D7

5ms

D9

13ms
D10

r9

12ms

1ms
Cross−traffic
destination

4ms

3ms

2ms

Reverse

r6
D1

D2

D3r11r7

Bottleneck due
to high cross−
traffic load

Cross−traffic
generator

5ms 2ms

traffic

11ms

9ms
r13

1ms

2ms D5

D4

D6

Bottleneck links

Source
2ms

12ms

14ms

r5
14ms

r8

3ms

19ms

9ms

8ms

2ms 3ms

17ms

r10
D115ms

D124ms

Background traffic

13ms
r1

TCP flows

r12r4r2

r3

Fig. 7. More complex simulation configuration

A. FlowMateAccuracy

In this section, we discuss the results of experiments on
the topology depicted in Fig. 6. In our first experiment,
we compute the accuracy index when clustering 24, 36, or
48 TCP flows. To interpret the results easily, we trigger
clustering at fixed intervals ofdmax, and donot trigger it
earlier, even if sufficient samples are received beforedmax.
All the other triggering rules apply (not beforedmin, and
flows with insufficient samples are discarded). The value used
for dmax is 6 seconds. Triggering clustering according to the
number of samples (as proposed in Section IV-E) may improve
system performance if it occurs betweendmin anddmax. Note
that we compute the accuracy index by comparing against a
static correct clustering, even though the background traffic
variations entail a dynamic clustering goal. We select this more

8

conservative approach for ease of accuracy index computation,
and to show the worst case index value.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6 12 18 24 30 36 42 48 54 60

A
c
c
u
r
a
c
y

I
n
d
e
x

Time (sec)

24 flows, 12 receivers
36 flows, 12 receivers
48 flows, 12 receivers

(a) Performance with different
loads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6 12 18 24 30 36 42 48 54 60
A
c
c
u
r
a
c
y

I
n
d
e
x

Time (sec)

Experiment 1: 2 start times
Experiment 2: 3 start times
Experiment 3: 4 start times

(b) Performance with staggered
start times

Fig. 8. Accuracy index ofFlowMate for the simple simulation configuration

Fig. 8(a) illustrates that in steady state, performance is
reasonable (average index> 90%). During the initial tran-
sient period, which includes the first one or two clustering
invocations, sample delay patterns are not unique for each
cluster of flows, so accuracy is lower. After the transient
period, accuracy is higher. Observed inaccuracies are mostly
due to a few cluster splits. Flows used in this experiment start
10 to 50 ms apart. We also perform experiments with more
staggered start times with 36 TCP flows and 12 receivers.
In the first experiment, half of the flows begin at time zero
(using a 40 ms mean interval between flow start times),
and the remaining 18 start around 30 seconds later. In a
second experiment, one third of the flows start near time zero,
another third after approximately 18 seconds, and the last
third after approximately 36 seconds. Finally, we conduct a
third experiment where flows are divided into 4 sets, starting
at times near 0, 18, 30, and 48 seconds. The performance
results are depicted in Fig. 8(b). A large number of flows
starting during the same period causes an abrupt degradation in
accuracy, unlike the case where flows are added gradually. The
performance is still reasonably good in steady state, and if a
dynamic accuracy metric (that considers transient bottlenecks)
is used, the accuracy index increases.

We have found that varying the maximum correlation in-
terval durationdmax does not have a profound impact on
FlowMate results. Results fordmax values between 2 and
10 seconds follow almost the same pattern as the results
with 6 seconds given in this paper (refer to [21]). Below 2
seconds, samples are few, and many flows are discarded from
the clustering process. When the correlation period is too long
(above 10 seconds), accuracy is not significantly enhanced. We
have also observed that during underloaded transient periods,
the frequency of false sharing is typically higher than that of
cluster splits. This is why the AI is lower during these periods
than during more loaded steady states, when errors are mostly
due to cluster splits. This behavior was observed throughout
all simulation experiments in this section.

B. Impact of Network Conditions

The performance ofFlowMate is affected by network con-
ditions. Router buffer size is an important network parameter

since the delay correlation test performs better in networks
with large buffer sizes [18]. The packet drop policy and
foreground and background traffic patterns may also impact
the results. We demonstrate the effect of these parameters
on the topology shown in Fig. 7. The “Star Wars” trace is
used as a source of self-similar background traffic, except
when varying background traffic load. In background traffic
experiments, a number of Pareto sources are multiplexed, in
order to easily experiment with different background rates and
on/off periods. 24–36 TCP flows are used as foreground traffic,
evenly divided among all 12 receivers, and, as before, the
correct clustering is three clusters– one for each main branch.

1) Buffer Size: Although the delay correlation is more
clearly manifested in bottlenecked routers with long queues,
varying buffer sizes from 50 to 500 packets does not result in
significant performance variation in steady state, as illustrated
in Fig. 9. Variation in performance is more pronounced during
transient periods, which is expected any time a large number of
flows start at the sender simultaneously. We believe that having
routers with larger buffers typically enhances performance,
though.

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300 350 400 450 500

A
c
c
u
r
a
c
y

I
n
d
e
x

Buffer Size (Packets)

q=50 to 500

(a) Average accuracy index (av-
eraged over the simulation time)
with different router buffer sizes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6 12 18 24 30 36 42 48 54 60

A
c
c
u
r
a
c
y

I
n
d
e
x

Time (sec)

Drop Tail
DropTail/RED

ALL RED

(b) Effect of packet drop policy
on accuracy

Fig. 9. Impact of buffer sizes and drop policy

2) Packet Drop Policy:The prevailing drop policy in to-
day’s Internet routers is Drop-Tail. We use this policy in all
our experiments, except in this experiment, where we use
Random Early Detection (RED). Fig. 9(b) shows the resulting
accuracy index in three cases. One case uses the Drop-Tail
policy for all router queues, another case uses both Drop-
Tail and RED queues, and the last case uses only RED
in all queues. Results show that using RED for all queues
reduces the accuracy. This agrees with the results presented
in [16] about Markovian probing performance with the RED
queuing discipline. The reason for RED interference is that
random packet drop alters samples and introduces noise to
the correlation process. Variations among different flow delay
patterns are also reduced by RED, which complicates the
process of determining the best cluster for a certain flow. This
is also consistent with the results presented in [18]. However,
even with the use of policies other than DropTail in a subset
of the routers on a path,FlowMate still performs reasonably
well.

3) Background Traffic Load:We study the performance of
FlowMate in our two configurations (Fig. 6 and Fig. 7) with

9

different background traffic loads. To generate background
traffic with various loads, we multiplex a number of Pareto
sources, each with average rate of 400 kbps. The Pareto
sources are synchronized to start at the same time (1 second
before foreground traffic starts). The load values shown on the
x-axis in Fig. 10(a) are computed according to the first branch,
which has the least physical bandwidth. Load is slightly lower
on other branches. Simulation results show thatFlowMate
is robust with heavy background traffic. We also conducted
another experiment in which the ratio of the on/off periods
of the Pareto sources is varied to demonstrate the effect of
different burst sizes. The results illustrate that performance is
consistent, which indicates that different on/off period ratios
have a relatively minor effect on the clustering accuracy.

4) Foreground Traffic Load:In our experiments thus far,
we have used FTP applications as our foreground traffic
sources. In this experiment, we demonstrate the effect of
higher burstiness in foreground traffic, and determine the
number of samples required for correct clustering. We use
Telnet traffic with bursty packet inter-arrivals, and control the
packet mean inter-arrival time,t. As shown in Fig. 10(b),
a large value oft reduces the number of samples available
for correlation, and consequently reduces accuracy. Fort =
100 ms, the figure depicts significant performance degradation,
since very few samples are used in the correlation tests. In
most of the cases where we observed cluster splits, the number
of available samples was less than 10 per flow. Degraded
performance continues throughout the simulation period. We
conclude that large average packet inter-arrival times limit
FlowMateeffectiveness, since the reduced number of samples
either disables the clustering entirely or adversely impacts the
results. This does not a pose a serious problem, however, since
the applications discussed in Section II are not applicable to
very low-rate flows.

5) HTTP Traffic: Problems arise when HTTP traffic is
considered. First, most HTTP connections are short-lived [5].
This implies that a connection may very well terminate before
clustering is triggered, even for a smalldmin value. Second,
since HTTP packets are sent in short bursts, and since we only
select samples whose inter-packet spacing exceeds the inter-
flow packet spacing, we may have no available samples during
many intervals. The above two problems are exacerbated by
the delayed ACKs option, which delays receiver ACKs in
order to piggyback them on any available data in the reverse
direction. In [32], the use of parallel HTTP connections was
measured over a year on a server running FreeBSD. Results
show that a client typically does not use more than four parallel
HTTP connections with the server simultaneously.

Fortunately, these problems are mitigated by HTTP/1.1 with
persistent or pipelined connections [33]. The HTTP/1.1 spec-
ification entails that connections not be terminated after each
request/response, as in the case of HTTP/1.0. A connection
remains alive to be used for other requests, and only times out
if it stays idle for a specified interval of time. Although this
resolves the short connection problem, burstiness remains an
important concern. A study presented in [34] advises against
using parallel persistent connections between a server and a
client

TABLE V

HTTP SIMULATION PARAMETERS

Number of web clients 12, 18, and 24
Number of sessions/client 20
Mean number of pages/session 50
Mean inter-page interval 10 ms
Mean page size 12 kB
Mean number of embedded objects/page2
Mean object size 120 kB

FlowMate was applied to HTTP/1.1 traffic on the con-
figuration in Fig. 6 (results for the other configuration are
similar [21]). We used the SURGE model [35] for web
workload traffic generation. This model is implemented in
“nsweb” [36]. Table V summarizes the HTTP/1.1 parameters
used in our experiments. SURGE parameters are chosen as
in [35], while other parameters used in the experiments are
similar to those in [36]. Fig. 10(c) depicts the performance
of FlowMate using different numbers of web clients with
12 receivers. Performance is similar with different numbers
of clients. We compute accuracy by comparing against pre-
defined correct clusters throughout the simulation, and do not
account for the fact that bursty HTTP connections may have
samples with totally disjoint sets of send times. Therefore,
FlowMate correctlyreports that there is no linear correlation
(i.e., the flows are not sharing a bottleneck at the same time).
The reported AI, however, is too conservative in this case.

We conclude that clustering HTTP flows significantly de-
pends on two factors: connection life-time and traffic bursti-
ness. While it is still possible forFlowMate to perform
reasonably well with some burstiness, connection life-time
is crucial in determining if clustering is applicable. When
clustering is triggered, short-lived flows have either already
terminated and their information has been deleted, or they do
not exceed the minimum threshold of samples required to be
considered in the correlation process. As discussed above for
the case of Telnet, this does not a pose a serious problem since
the applications discussed in Section II are not applicable to
very short-lived flows, or flows which are temporarily dormant.

VII. M AXIMUM DISTANCE CLUSTERING

In this section, we propose an alternative clustering ap-
proach forFlowMate. In the standardFlowMate clustering
(discussed in Section IV-F), flows are only tested against
cluster representatives. This limits the number of correlation
tests required, rendering on-line clustering feasible. This sim-
plicity, of course, comes at the expense of reduced accuracy.
To mitigate this problem, we investigate an approach which
we call maximum distance clustering. In this approach, two
representative flows for each cluster (that has two or more
flows) are designated. The representatives are the two flows in
this cluster that have the lowest cross correlation coefficient.
A new flow is tested against both representatives. If the
correlation test passes with both representatives, we must
determine whether the new flow should replace one of the
two representatives in its role as cluster representative. The
new flow becomes a representative if its cross correlation

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6 12 18 24 30 36 42 48 54 60

A
c
c
u
r
a
c
y

I
n
d
e
x

Time (sec)

t=10ms
t=50ms

t=100ms

(a) With different background average
load

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40 45 50 55 60 65 70 75 80 85 90 95

A
c
c
u
r
a
c
y

I
n
d
e
x

% background load

Configuration 1
Configuration 2

(b) With bursty Telnet traffic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6 12 18 24 30 36 42 48 54 60

A
c
c
u
r
a
c
y

I
n
d
e
x

Time (sec)

12 clients
18 clients
24 clients

(c) With HTTP/1.1 traffic

Fig. 10. Accuracy with different traffic loads and types

coefficient with one of the flows is lower than the cross
correlation coefficient among the two representatives.

For example, letf1 andf2 be the two representatives of a
clusterpi with a cross correlation coefficient of 0.7. Consider
a new flow f3 which passes the correlation test with both
representatives, with cross correlation coefficients 0.8 and 0.6,
respectively. The cluster representatives now becomef2 and
f3. The time complexity of this clustering approach is the
same as the standard approach (see Section IV-G).

We compare the performance of the two clustering ap-
proaches with different foreground traffic types: FTP, Telnet,
and HTTP/1.1. We use the configuration depicted in Fig. 7,
with the same parameters we used in evaluating the standard
approach. For Telnet traffic, we observe that the standard
(simple) clustering works well until the packet mean inter-
arrival time exceeds 40 ms. The degradation in performance
for mean inter-arrival time of 100 ms is depicted in Fig. 11.
The figure shows thatMaximum Distance Clusteringexhibits
higher accuracy. For FTP and HTTP/1.1 traffic, the results
with the two clustering approaches are similar. This is not sur-
prising, since the burstiness and connection life-time concerns
with HTTP traffic (and the abundance of FTP traffic) impact
FlowMateaccuracy more than the clustering mechanism.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6 12 18 24 30 36 42 48 54 60

A
c
c
u
r
a
c
y

I
n
d
e
x

Time (sec)

Simple Clustering
Maximum Distance Clustering

Fig. 11. Accuracy of the two clustering approaches with Telnet traffic and
inter-packet mean inter-arrival time = 100 ms

VIII. C OORDINATED CONGESTIONMANAGEMENT

In this section, we demonstrate oneFlowMateapplication,
namely, coordinated congestion management. As discussed
in Section II, clusters of flows can be provided as input
to any coordinated congestion management scheme, such as

the congestion manager (CM) [7]. We implement a simple
coordination mechanism that operates as follows. Each flow
maintains its own congestion window. When loss is detected
by any member of a cluster, all cluster member windows
are reduced to react to incipient congestion. On the other
hand, all cluster members increase their windows when there
are no packet losses forthree consecutive window transmis-
sions for any member in the cluster. Thus, flows react more
conservatively to detected available bandwidth. Simulation
experiments are conducted using the configuration in Fig. 7.
Figs 12(a) and (b) show the number of ACKed packets during
a simulation period of 120 seconds for flows in one of the
resulting clusters, without and withFlowMate and simple
coordination. Fig. 12(b) illustrates that the flow throughput
values are more similar and consequently fairness among flows
sharing a common bottleneck increases withFlowMate. We
believe that using flow clusters generated byFlowMate in
schemes such as [9], [7], [10], [11], [12] will extend the
benefits of these congestion coordination schemes to flows
with different destinations but common bottlenecks. Moreover,
FlowMatewill also prevent false sharing of state among flows
with different bottlenecks.

0

200

400

600

800

0 20 40 60 80 100 120

#

A
C
K
e
d

p
a
c
k
e
t
s

Time (sec)

(a) Flows in one cluster without
coordination

0

200

400

600

800

0 20 40 60 80 100 120

#

A
C
K
e
d

p
a
c
k
e
t
s

Time (sec)

(b) Flows in one cluster with
coordination usingFlowMate

Fig. 12. UsingFlowMate with congestion coordination

IX. I MPLEMENTATION AND EXPERIMENTS

We have implementedFlowMate in the Linux kernel
(v2.4.17) [37]. Timestamping is enabled by default in this ker-
nel implementation, which facilitates delay collection. How-
ever, if timestamping is not enabled, RTT values can be

11

used instead of forward delays. ImplementingFlowMate in
the kernel space (as opposed to user space) simplifies its
operation for two reasons. First, it provides easy access to flow
information and accurate delay samples, since no boundaries
between kernel and user spaces are crossed. Second, it aids in
timely provisioning ofFlowMate output, especially to other
kernel-level modules that may need this information.

As illustrated in Fig. 1,FlowMate is typically implemented
as a separate module at the transport layer. In order to keep the
receiverFlowMate-unaware, we use the ACK timestamps to
represent the packet reception time at destinations. Although
this reduces clustering accuracy to some extent (as discussed in
Section IV-C), traffic burstiness and background load remain
the dominant factors in end-to-end delay variation, and hence
this technique is more accurate than RTT samples.

FlowMaterequires little interaction with the transport layer.
Fig. 13 provides a closer view ofFlowMate’s interaction
with other modules, where the solid arrows represent con-
trol flow (function calls), and the dotted arrows represent
data flow. The transport layer (TCP) notifies theSampler
of arriving flow information (delay samples), and theFlow
Correlator outputs the computed flow clusters. Notification
is accomplished via a simple function call from the main
TCP module (togathersamples()) when an ACK packet is
received. The parameters to this function are: (1)sockid,
which represents the flow identifier, (2) ACK send time (tsval),
whichapproximatelyrepresents the packet reception time at its
destination, (3) Timestamp echo reply (tsecr), which represents
the timestamp of the generated packet (at the sender), and (4)
Round trip delay (rtt), which can be used instead of forward
delay, in case of disabled timestamping.

get_flow_info()

Applications

gather_samples
(sock_id, tsval, tsecr, rtt)

User
Space

Kernel
Space

FlowMate

Sampler

Flow Information

Repository

Transport Layer Control

Flow
Correlator

partition()

Trigger
Partitioning

Partitions
Flow

tsecr, rtt)

add_sample
(sock_id, tsval,

store_flow_info()

Fig. 13. Control and data flow amongFlowMatemodules and transport layer
modules

The forward delay value is computed by subtractingtsecr
from tsval at the Sampler(Fig. 13). Samplerstores sample
delays into theFlow Information Repositoryduring the sam-
pling phase. When clustering is triggered, sample delay lists
and the correlation history are input to theFlow Correlator
module, and a new cluster list is constructed. The delay lists
used in computations are discarded, while correlation history
statistics are sent back to the repository for future use (as

explained in Section IV-F). The output (flow clusters) can
be provided to any module at the transport layer, such as
coordinated congestion management. This output can also be
used by higher layers, such as overlay networking modules,
through an appropriate API.

Our implementation only adds about 1800 lines of code
to the TCP/IP code (about 1500 in C files and 300 for
header files). Only two function calls are added to the original
TCP code– one for creation of theCorrelator, and the other
for collecting samples. To compute the approximate memory
requirements for data structures, we consider theFlow Infor-
mation Repositorywhich contains sample lists and correlation
history. A sample requires 24 Bytes. With appropriate bounds
on the maximum number of samples per correlation interval
(e.g., 100), a sample list for one flow requires about 2.4
kBytes. A CorrSet, which contains cross and auto correlation
coefficients of two flows, requires 116 Bytes. The number of
storedCorrSet items in the correlation history lists of flows
depends on the number of performed correlation tests, which is
O(NP) (product of number of flows and number of clusters),
as discussed in Section IV-G. Therefore, the memory required
for the Flow Information Repositoryfor 100 flows and 10
clusters≈ 2.4×1024×100+116×100×10 ≈ 360 kBytes.
This is an extremely small percentage of the memory available
on today’s servers.

A. Emulab Experiments

We useEmuLab(part ofNetBed) [38]– an emulation testbed
at the university of Utah. The testbed provides the capability of
remotely configuring machines and links, usingns-like scripts
and a web interface. Each machine can run either a default
operating system (Redhat Linux or FreeBSD) or a customized
operating system version. The server (source machine) in our
experiments runs our modified Linux kernel that includes
FlowMate. Other machines (routers and receivers) in our
experiments run standard Linux.

We generate foreground traffic (TCP) and background traffic
(UDP) using two traffic generation tools and real file transfers.
One tool that generates TCP and UDP traffic isTG (Traffic
Generator) [39]. TG provides a simple syntax for writing
scripts that run on servers and receivers to open/close ports, set
the mode of operation (server/receiver), start/stop traffic, and
configure traffic type and rate. In order to generate FTP traffic,
we used Netspec [40]. Netspec can generate emulated TCP and
UDP traffic with specific support for popular applications, such
as FTP, Telnet, CBR/VBR streams, and HTTP traffic.

To evaluate the clustering accuracy, we simulate the three-
branch topology illustrated in Fig. 14. Two bottlenecks lie
on the upper two branches (bottleneck link capacities are
0.5 Mbps and 1.5 Mbps), while the lowest branch has no
bottlenecks. Bandwidth on the shared link is high (100 Mbps)
to avoid bottlenecks near the source. Bandwidth is 10 Mbps
on all other links. Propagation delay is indicated on each link
in the figure.

We generate TCP traffic from the source (server) to all
destinationsDi, where1 ≤ i ≤ 8. Background traffic consists
of exponential UDP flows from the source to all destinations.

12

r0

15ms

r5

r8

r7

Bottleneck links
D3

16ms11ms

7ms

4ms

4ms

12ms

10ms

r6

r4

18ms

r3

r1

D1

D2

6msSource

Background traffic

Foreground traffic

5ms

Reverse
traffic

r2 14ms

21m
s

9ms

4ms

8ms

D8

D7

D5

D6

8ms

12ms

r9 D4

Fig. 14. Configuration used in Emulab experiments

Their mean packet inter-arrival times are in the range of
30−40 ms. All background flows start 1−2 seconds earlier
than the foreground traffic start time (t0). UDP traffic in the
reverse direction (from receivers to source) is also generated
to interfere with returning ACKs. We generate one exponential
UDP flow on each branch with packet inter-arrival times in the
range of 10−20 ms. In our experiments, the correct clusters
are: {F1, F2}, {F3, F4, F5}, where Fj is the set of flows
destined to receiverDj , 1 ≤ j ≤ 5. We expect each of the
remaining three flows to be clustered separately, since they do
not share bottlenecks with each other or with other flows.

The first experiment assesses theFlowMate clustering ac-
curacy for 16 TCP foreground flows (2 flows per destination),
in the presence of 8 background UDP flows (1 flow per
destination), and 3 UDP flows in the reverse direction. All
flows are generated using TG with exponential TCP flows as
foreground traffic, each starting within a random[0..150] ms
interval from the initial start time (t0). Other parameters are
similar to those in simulations: Drop-Tail policy for buffer
management and buffer sizes of 150 packets.

Fig. 15(a) shows the accuracy index results for very similar
source sending rates (the solid line) and for another experiment
with different source sending rates (the dashed line). For
similar sending rates, each flow has a mean packet inter-arrival
time in the range of 10−12 ms. For different sending rates,
each flow has a mean packet inter-arrival time in the range of
10−25 ms, i.e., some flows may have double the sending rate
of others. The results show accurate clustering.

We also compare performance when RTT samples are used,
as opposed to using forward delays (Section IV-C discusses
the pros and cons of both alternatives). We use different
source rates in this experiment. Fig. 15(a) shows that the
accuracy with RTTs (dotted line) is slightly lower than that
with forward delays (dashed line) for different rates. The
performance remains reasonably good, which implies that
using RTT samples is still practical. Almost all the errors that
occurred in this experiment were due to cluster splits.

We conducted another experiment using Netspec to clus-
ter FTP flows. UDP flows are used as background traffic.
Fig. 15(b) shows that clustering accuracy is high for 8 and

for 16 foreground flows. Again, most of the errors observed
were due to cluster splits. We observed similar results when
we conducted 8 real file transfers, one per receiver. The results
show thatFlowMateis robust with different numbers of flows.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6 12 18 24 30 36 42 48 54 60

A
c
c
u
r
a
c
y

I
n
d
e
x

Correlation period (sec)

Similar sending rates
Different sending rates

Different rates, RTT samples

(a) With TG exponential fore-
ground traffic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90

A
c
c
u
r
a
c
y

I
n
d
e
x

Correlation period (sec)

8 FTP flows
16 FTP flows

(b) With Netspec FTP fore-
ground traffic

Fig. 15. Accuracy ofFlowMate in Emulab Experiments

In addition, we experimented with different values for the
timer granularity (default granularity is 10 ms), and found that
they have little impact. We used a timer granularity of 1 ms
in our experiments (the finest supported granularity by this
kernel is 1/1024 second).

B. Internet Experiments

We have investigated the performance ofFlowMateon the
Internet. We use one machine at Purdue University (PU) as
the source node and nodes from Planetlab testbed [41] as the
destination nodes. To increase the likelihood of bottlenecks,
we use hosts in different continents. Fig. 16 depicts our
experimental topology.

BR1 BR2

PU

USA

Source

UCLA

UMASS Europe
UK DK

FR2

FR1

South America

KR1 KR2

Asia

JP
JP−1

Fig. 16. Internet experimental topology

We transfer a file of size 30 MB to each destination in the
graph simultaneously using thesftp utility. Our experimental
configuration consists of the following hosts: (1) two hosts,
UMASS and UCLA, at the University of Massachusetts and
the University of California at Los Angeles, respectively.
These hosts do not share most of the path to the PU node,
(2) two hosts, BR1 and BR2, in Brazil (South America) that
share the entire path from our source machine, (3) three hosts
in Europe that share the path until a node in the United
Kingdom. This is verified using thetracerouteutility. Two of
the European nodes are in France (Eurecom, FR1, and Inria,
FR2), and the third is in Denmark (DK), and (4) three hosts in
Asia, two of which are co-located in Korea (KR1 and KR2),
and the third is in Japan. The Korean nodes share a gateway

13

TABLE VI

AVAILABLE BANDWIDTH AND TIME TAKEN TO TRANSFER A 30 MB FILE

FROM THE PU NODE TO DIFFERENT HOSTS

Host Measurement Transfer Available
time (a.m.) interval

(sec)
bandwidth
(Mbps)

UMASS 2:30/10:30 40/45 > 50 / > 0
UCLA 2:30/10:30 55/60 > 30 / > 0
BR1 2:30/10:30 185/635 8.7 / 0.4
BR2 2:30/10:30 190/630 8.5 / (0.45-0.6)
FR1 2:30/10:30 150/155 2.5 / (2.3-3.3)
FR2 2:30/10:30 100/170 (6.1-6.7) / (0-29.8)
DK 2:30/10:30 145/140 > 4.32 / (0-70)
KR1 2:30/10:30 325/220 6.9 / > 0
KR2 2:30/10:30 300/195 > 0 / > 0
JP 2:30/10:30 385/485 39 / > 0

TABLE VII

FLOWMATE INTERNET EXPERIMENTAL RESULTS

Host1 Host2 Time (a.m.) % shared time
UMASS UCLA 2:30/10:30. 8.3% / 16.6%
BR1 BR2 2:30/10:30 26% / 87%
KR1 KR2 2:30/10:30 96% / 52.5%

JP 2:30/10:30 0% / 0%
KR2 JP 2:30/10:30 0% / 27.5%
FR1 FR2 2:30/10:30 81.8% / 60.2%

DK 2:30/10:30 61.5% / 22%
FR2 DK 2:30/10:30 77.3% / 33.3%

in Japan with the Japanese node. Prior to performing the file
transfers, we expected flows sharing most of the path to be
clustered together most of the time if their bandwidth in the
non-shared part is not severely limited.

We carried out experiments at two different times on
11/6/2003 in order to experiment with loads at different time
zones. We report the results at 2:30 a.m. (EST), which corre-
sponds to morning time in Europe and afternoon time in Asia,
and at 10:30 a.m., which corresponds to afternoon time in
Europe and night time in Asia. We use thePathloadutility [42]
to estimate the available bandwidth prior to file transfers. The
file average transfer time and available bandwidth for each
destination host are given in Table VI. We computeFlowMate
clusters every five seconds using RTT samples and give the
results in Table VII.

As expected,{BR1, BR2} and {KR1, KR2} are clustered
during most of the transfer interval, especially when the
available bandwidth is low. Nodes BR1 and KR1 appear to
be more loaded than their peers BR2 and KR2, respectively:
the RTT values reported by their flows show higher variance.
The Eurecom (FR1) and INRIA (FR2) flows are clustered
together during the morning more than in the afternoon, when
bottlenecks are more likely. Flows traveling to{FR1, FR2}
and DK are frequently clustered, which implies that the path
up to the UK common node on their path sometimes contains
a shared bottleneck. Flows traveling to the two nodes in the
US were not clustered most of the time, which is due to the
abundant bandwidth on the only two hops they share.

The only unexpected result in Table VII is that the JP flow
is not clustered with either KR1 or KR2. Using ping, we found
that the RTT values are significantly different between the JP

packets and the KR1 (and KR2) packets, and the variance in
the RTT values of packets going to JP is much lower than that
for either KR1 or KR2. Using traceroute, we found that paths
to JP and{KR1, KR2} are shared until a gateway JP-1, which
is very close to JP. Pathload also indicated that the bandwidth
from PU to JP is usually much higher than that to{KR1,
KR2}. Therefore, we deduced that a bottleneck may occur
only on the path from JP-1 to{KR1, KR2}, which explains
the results of JP and{KR1, KR2} in Table VII.

We also find that false sharing only occurs in our mea-
surements in a few cases with similarities in delay patterns
for non-congested flows. However, no two flows were in-
correctly clustered for more than three consecutive clustering
intervals. Cluster splits are more prevalent in the results than
false sharing. Both false sharing and cluster splits may not
necessarily be erroneous, however, since Internet bottlenecks
change dynamically, and the flows in our experiments share a
few hops before they split.

X. CONCLUSIONS ANDFUTURE WORK

In this paper, we have presentedFlowMate, a system that
exploits end-to-end packet delay information to periodically
cluster flows originating at a busy server, based upon whether
they share bottlenecks.FlowMatedoes not require generation
or transmission of out-of-band probe traffic for collecting delay
information. FlowMate is likely to produce multi-member
clusters at a busy server, due to the locality of requests,
and the power-law and small-world characteristics of Internet
topology. Therefore,FlowMatecomplexity, which depends on
the number of clusters, is reasonable.FlowMateaccuracy was
observed to be high in various configurations with different
propagation delays, bottlenecks, buffer sizes, and drop poli-
cies. The primary factor that degrades performance is the
burstiness of the flows being clustered themselves, as seen in
our HTTP/1.1 and Telnet results. Background traffic load and
burstiness do not have a detrimental effect, since we consider
the history of correlation statistics. Fairness of coordinated
congestion control is observed to significantly increase with
FlowMate.

We have implementedFlowMate in the Linux kernel
v2.4.17, and experimented with it using an emulation testbed
and on the Internet. Results show high accuracy for both
synthetic and tcplib-generated traffic, even withFlowMate-
unaware receivers. In our future work, we plan to integrate
FlowMate into overlay network middleware.

ACKNOWLEDGMENTS

We would like to thank Jay Lepreau and the entire Emu-
lab/Netbed team at the University of Utah, Venkat Padman-
abhan, the anonymous reviewers, Dan Rubenstein (Columbia
University), and Anja Feldmann and Jorg Wallerich (Uni-
versity of Munich) for their help. This research has been
sponsored in part by NSF grant ANI-0238294 (CAREER),
and the Schlumberger Foundation.

14

REFERENCES

[1] K. Harfoush, A. Bestavros, and J. Byers, “PERISCOPE: An active
measurement API,” Proceedings of PAM, March 2002.

[2] MGEN, “http://manimac.itd.nrl.navy.mil/MGEN/,” 2003.
[3] KaZaA, “www.kazaa.com,” 2003.
[4] Gnutella, “www.gnutella.com,” 2003.
[5] S. Jin, L. Guo, I. Matta, and A. Bestavros, “The War Between Mice and

Elephants,” inProceedings of IEEE ICNP, November 2001.
[6] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-

Aware Overlay Construction and Server Selection,” inProceedings of
the IEEE INFOCOM, New York, 2002.

[7] H. Balakrishnan and S. Seshan, “An Integrated Congestion Management
Architecture for Internet Hosts,” inRFC 3124 and MIT technical report
MIT/LCS/TR-771, 2001, also appears in ACM SIGCOMM 1999.

[8] V. N. Padmanabhan, “Coordinated Congestion Management and Band-
width Sharing for Heterogeneous Data Streams,” inProceedings of
NOSSDAV, 1999.

[9] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm, and
R. H. Katz, “TCP Behaviour of a Busy Web Server: Analysis and
Improvements,” inProceedings of IEEE INFOCOM, March/April 1998.

[10] L. Eggret, J. Heidemann, and J. Touch, “Effects of Ensemble-TCP,” in
ACM Computer Communication Review, January 2000.

[11] V. Padmanabhan and R. Katz, “TCP Fast Start: A Technique For
Speeding up Web Transfers,” inIEEE GLOBECOM 98 Internet Mini-
Conference, November 1998.

[12] J. Touch, “TCP Control Block Interdependence,” RFC 2140, April 1997.
[13] S. A. Akella, S. Seshan, and H. Balakrishnan, “The Impact of False

Sharing on Shared Congestion Management,” inThe Eleventh IEEE
International Conference on Network Protocols (ICNP), November
2003, also CMU-CS-01-135.

[14] R. Caceres, N. Duffield, J. Horowitz, D. Towsley, and T. Bu, “Multicast-
based Inference of Network-internal Characteristics: Accuracy of Packet
Loss Estimation,” inProceedings of the IEEE INFOCOM, New York,
March 1999, http://www.ieee-infocom.org/1999/papers/03a04.pdf.

[15] N. Duffield, F. L. Presti, V. Paxson, and D. Towsley, “Inferring
Link Loss Using Striped Unicast Probes,” inProceedings of the
IEEE INFOCOM, Anchorage, Alaska, April 2001, http://www.ieee-
infocom.org/2001/papers/687.pdf.

[16] K. Harfoush, A. Bestavros, and J. Byers, “Robust identification of shared
losses using end-to-end unicast probes,” inProceedings of the IEEE
International Conference on Network Protocols (ICNP), October 2000.

[17] D. Katabi, E. Bazzi, and X. Yang, “A Passive Approach for Detecting
Shared Bottlenecks,” inProceedings of IEEE ICCCN, October 2001.

[18] D. Rubenstein, J. F. Kurose, and D. F. Towsley, “Detecting Shared Con-
gestion of Flows via End-to-end Measurement,” inProceedings of ACM
SIGMETRICS (Measurement and Modeling of Computer Systems), 2000,
pp. 145–155, extended version to appear in IEEE/ACM Transactions on
Networking.

[19] D. Katabi and C. Blake, “Inferring Congestion Sharing and Path Char-
acteristics for Packet Interarrival times,” MIT-LCS-TR-828, December
2001.

[20] V. Padmanabhan, L. Qiu, and H. J. Wang, “Passive Network Tomog-
raphy Using Bayesian Inference,” inInternet Measurements Workshop,
Marseille, France, November 2002.

[21] O. Younis and S. Fahmy, “On Efficient On-line Grouping of Flows with
Shared Bottlenecks at Loaded Servers,” Purdue University/Technical
Report CSD-TR-02-018, August 2002.

[22] H. Wadsworth, Ed.,Handbook of Statistical Methods for Engineers and
Scientists, 2nd ed. McGraw-Hill, 1998.

[23] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for High
Performance,” RFC 1323, May 1992.

[24] J. Postel, “Transmission Control Protocol,” RFC 793, September 1981.
[25] H. Chang, R. Gopalakrishna, and V. Prabhakar, “Intelligent Grouping of

TCP Flows for Coordinated Congestion Management,” Purdue Univer-
sity/Technical Report CSD-TR-01-017, 2001.

[26] T. Tuan and K. Park, “Multiple Time Scale Congestion Control for Self-
Similar Network Traffic,”Performance Evaluation, vol. 36, pp. 359–386,
1999.

[27] P. Berkhin, “Survey of Clustering Data Mining Techniques,” Accrue
Software, 2002.

[28] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker, “On the Constancy of
Internet Path Properties,” Internet Measurements Workshop (IMW’01),
2001.

[29] R. O. Duda, P. E. Hart, and D. G. Stork, Eds.,Pattern Classification
and Scene Analysis, Part 1: Pattern Classification, 2nd ed. John Wiley,
2001.

[30] UCB/LBNL/VINT groups, “UCB/LBNL/VINT Network Simulator,”
http://www.isi.edu/nsnam/ns/, May 2001.

[31] M. W. Garrett and W. Willinger, “Analysis, Modeling and Generation
of Self-Similar VBR Video Traffic,” inProceedings of ACM SIGCOMM
Conference, London, UK, 31st - 2nd 1994, pp. 269–280.

[32] M. Allman, “A Web Server’s View of the Transport Layer,”ACM
SIGCOMM Computer Communications Review (CCR), vol. 30, no. 5,
pp. 10–20, June 2000.

[33] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1,” RFC 2616,
June 1999.

[34] Z. Liu, N. Niclausse, and C. Jalpa-Villaneuva, “Traffic Model and
Performance Evaluation of Web Servers,”Performance Evaluation,
vol. 46, no. 2, pp. 77–100, 2001.

[35] P. Barford and M. Crovella, “Generating Representative Web Workloads
for Network and Server Performance Evaluation,” inProceedings of
ACM SIGMETRICS, July 1998.

[36] J. Wallerich, “Design and implementation of WWW workload genera-
tor for the ns-2 network simulator,” August 2001, http://www.net.uni-
sb.de/∼jw/nsweb (also on ns-2 web page).

[37] L. Kernel, “http://www.kernel.org,” 2002.
[38] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,

M. Hibler, C. Barb, and A. Joglekar, “An Integrated Experimental
Environment for Distributed Systems and Networks,” inProc. of the
Fifth Symposium on Operating Systems Design and Implementation.
Boston, MA: USENIX Association, Dec. 2002, pp. 255–270.

[39] T. T. Generator, “http://www.postel.org/tg/,” SRI International and
USC/ISI Center for Experimental Networking, January 2002.

[40] N. A. tool for Network Experimentation and Measurement,
“http://www.ittc.ku.edu,” Information and Telecommunication
Community Center, University of Kansas, April 1999.

[41] Planetlab, “http://www.planet-lab.org,” 2003.
[42] P. 1.1.0, “http://www.cc.gatech.edu/fac/Constantinos.Dovrolis/pathload.html,”

April 2003.

Ossama Younis(S ’02 / ACM S ’02) received his B.S.
and M.S. degrees from the Computer Science Department,
Alexandria University, Egypt, in 1995 and 1999, respectively.
Since 2000, he has been pursuing his Ph.D. degree at the
Department of Computer Sciences, Purdue University. His
current research interests include sensor networks, Internet
routing and tomography, and network security. His email
address is: oyounis@cs.purdue.edu

Sonia Fahmy(S ’96–A ’00–M’03 / ACM ’94) received her
PhD degree at the Ohio State University in August 1999. Since
then, she has been an assistant professor at the Computer Sci-
ences department at Purdue University. Her research interests
are in the design and evaluation of network architectures and
protocols. She is currently investigating Internet tomography,
overlay networks, network security, and wireless sensor net-
works. Please see http://www.cs.purdue.edu/homes/fahmy/ for
more information. Her email address is: fahmy@cs.purdue.edu

