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Abstract—We design and implement an efficient on-line ap- operating system processes or connections). An example active
proach, FlowMate, for clustering flows (connections) emanating probing application igraceroute which returns the path to a

from a busy server, according to shared bottlenecks. Clusters can gnecified destination. Other active probing applications include
be periodically input to load balancing, congestion coordination,

aggregation, admission control, or pricing modules.FlowMate ping, penscope[l],.and MGEN [2]. Passive measurementg
uses in-band (passive) end-to-end delay measurements to infera’€ less flexible since they use uncontrolled actual traffic.
shared bottlenecks. Delay information is piggybacked on feed- Passive measurements, however, do not increase network load
back from the receivers, or, if impossible, TCP or application or consume resources. A simple example of passive probing
round trip time estimates are used. We simulateFlowMate and is the round trip time (RTT) estimated by TCP connections.

examine the effects of network load, traffic burstiness, network p . t tools incl d d Ci 10S
buffer sizes, and packet drop policies on clustering correctness, assive measurement tools incluggdumpan ISCO

evaluated via a novel accuracy metric. We find that coordinated Netflow

congestion management techniques are more fair when integrated  In this paper, we use passive delay measurements for
with FlowMate. We also implement FlowMate in the Linux on-line, sender-side, partitioning of flows (transport-level or

kemel v2.4.17 and evaluate its performance on the Emulab g qjication-level connections) into clusters of flows that share

testbed, using both synthetic and tcplib-generated traffic. Our botl ks. Th bl is f lated as: qi t
results demonstrate that clustering of medium to long-lived flows COMMon BOILIENECKS. The Probiem IS TorMmulsted as. given a se

is accurate, even with bursty background traffic. Finally, we Of flows 7 = {fi, fa,..., f»}, we design a mapping protocol
validate our results on the Internet Planetlab testbed. P that periodically maps each floy;, 1 < j < n, to exactly

Index Terms—network monitoring, network tomography, one clusterc;, 1 < i < k, k < n, such thatvi, all ﬂOV_VS
TCP, shared bottleneck inference, coordinated congestion man- € ¢i, share a common bottleneck. Our approach, which we
agement, load balancing call FlowMate can be integrated with many applications (as

discussed in Section II).
l. INTRODUCTION Since TCP fl.ows comprise the majority (80% or more)
L . i of Internet traffic, FlowMate currently clusters TCP flows.

Network monitoring is critical to react appropriately 0 qy\ate however, can be easily generalized to any flow for
network conditions, as well as to predict future networgich delay information can be obtained. Accurate clustering
behavior. Monitoring results can be used to make dec's'oﬂﬁquires a time scale larger than the life-time of short-lived

regarding _network p_rovisioning, traffic engineering, fault_ to'_erTCP connections (e.g., small HTTP/1.0 transfers) to converge.
ance, pricing, security, and QoS support. Network monitoring, g jived TCP connections (such as file downloads) still

however, poses many practical challenges, most notably prise the dominant traffitoad on the Internet. Mean
high probing and logging overhead, lack of a centralized afapnection life-times are also increasing with the growing

_thority, n(_)n—coope_rative ISPs, privacy concerns, and diﬁicu'@(opularity of peer-to-peer applications, such as KazaA [3]
in capturing the highly dynamic nature of the network. Ong. Gnytella [4]. This is because peer-to-peer media file

way OT overcqming the non-cooperative ISP problem is kWansfers typically involve tens or hundreds of mega bytes. At
exclusively using end-to-end measurements. ifierenceof 5 sender, clustering such medium to long-lived connections

!nternal netlvvorI; cha(;actenstlcs \Iila end-to-ehnd measuren;era&%”ed elephants in the literature [5]) can increase network-
Is commonly referred to asetwork tomographyTwo types of -y nyivity, responsiveness, and fairness among flows or hosts.

information can be inferred: (1) static information, such as Ilr\lf\,e integrate our algorithm with a simple coordinated con-

capacities or buffer sizes, and (2) dynamic information whi stion management strategy to demonstrate the improved
depends on current network state, such as available bandwi ness

delays, Imkk Ios;es, and shared fottl;pecks. I FlowMate has the following features that distinguish it
Networh.p[]o ing uses networl ;[ra ic to co ECt MeasUretom other approaches in the literature: (1) no generation or
ments, which can be input to inference mechanisms. Proisnsmission of out-of-band probes, (2) on-line re-clustering

ing can be classified as active or passive. Active probifgise on the latest measurements, (3) completely end-to-end:

entails sending control (out-of-band) traffic along Selec"%nder side only, or with timetamping support at receivers,

network paths, while passive measurements use actual Uy (4) jow overhead and high scalability to large numbers of
band) network traffic. Active probing is more flexible sincg,, <

it gives control over packet timing, packet sizes, and packet-l-he remainder of this paper is organized as follows. Sec-
distribution in the network. Injecting new traffic, however; ., gives exampleFlowMate applications. Section Il
may alter the network state by increasing load, and M@ysq sses related work. Section IV describes BievMate
consume a significant portion of the sender resources (etﬂasign in detail. Section V defines our proposed accuracy
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Sciences, Purdue University, USA a number of simulation configurations with FTP, Telnet, and



HTTP traffic. Section VII discusses an alternative clusterirtg the same cluster. This strategy assumes that those flows
approach. Section VIl illustrates the performanceFddw- will likely share the same bottlenecks along their paths. This,
Mate integrated with coordinated congestion managemehbwever, may not necessarily be true, due to network address
Section IX describes the implementation BfowMate in translation (NAT), quality of service (e.g., using several queues
the Linux kernel, and presents our experimental results ahcertain router ports), load balancing schemes, and dispersity
Emulab and on Planetlab. Finally, Section X summarizes orouting [13]. In these cases, flows destined to the same host

conclusions and discusses future work. or LAN may be routed on different paths with different
bottlenecks, and, consequently, should not be coordinated.
II. FlowMateAPPLICATIONS More importantly, extending coordination benefits to flows that

share the same bottlenecks (but am destined to the same

Many applications can utilizElowMate In this section, we A
host) can significantly enhance performance.

discuss three examples.

I11. RELATED WORK

) . Congestion coordination has been proposed and studied in
Overlay networks among hosts provide easily deployab[lﬁ,,], [9], [7], [10], [8]. The congestion manager (CM) [7]

solutions for the problems of group communication (multicag;oyides a general framework for applications to coordinate
ting), optimized inter-domain routing, and content sharing a ngestion management decisions among flows between the
distribution. Overlay network construction and adaptation ¢ o hosts. Similar approaches also follow the same-host
be performed more i.ntelligently if network state is CO”Sidereﬁjaradigm, including TCP-Int [9], Ensemble-TCP [10], [12],
during neighbor assignment. In current peer-to-peer system§y Tcp Fast Start [11]. Padmanabhan [8] studies the benefits
such as Gnutella [4], a new user S(_alects its neighbors frqu performing coordinated congestion control, and identifies
a randomly selected set of peers in the overlay Str”Ctufﬁpology discovery, delay and/or loss correlation, and en-

In recent proposals such as [6], a new uskmicks half onceq notification as means of detecting shared bottlenecks
of its neighbors from the its closest “bin” of users (havmglmong flows

the smallest RTT fromd), and the other half is randomly * pacently a number of studies have investigated network
selected from the entire set of users. Such techniques can g ranhy (the inference of internal network characteristics
|mproved by cqns@erm@ottlenecks For example, prior to_ using end-to-end measurements) [14], [15], [16], [17], [18].

neighbor selection, used can probe paths to other peers i aiapi et al [17] use an entropy function to compute correla-
the proposed set of neighbors, and identify if these paths share, among a set of flowat the receiver This technique uses

bottlenecks. User then selects neighbors whose flows do ngf,sqjve measurements, but clustering correctness degrades

share bottlenecks. with heavy cross-traffic. More recent measurement results us-
ing Renyi (as opposed to Shannon) entropy demonstrate more
B. Load Balancing robust clustering [19]. Rubenstein et al [18] propose novel loss

Load balancing decisions can be based upon network c@fd delay correlation tests amongair of flows to determine
ditions, such as bandwidth availability, delays, and shared bghared bottlenecks. Poisson probes are injected to collect loss
tlenecks. For example, splitting content among cache servefglelay information. We adopt Rubenstein’s delay correlation
can be performed according to bandwidth between a primdBgt, but address the challenges of its on-line application for
server and the cache servers. A primary server may chooséldltiple flows at a busy server, using passive measurements.
assign highly dynamic web content to the closest caches.H@rfoush et al [16] use Bayesian probing instead of Markovian
addition, a cache server that determines that flows destinedtgbing to infer shared losses. As with Rubenstein’s approach,
a set of frequent clients typically share common bottleneck{)s approach uses active probing. In contrast, Padmanabhan et
may notify the primary server. The primary server can thed- [20] use passive loss measurements for Bayesian inference
decide to replicate the cached content at another cache seffdPssy links in the Internet.
to alleviate this bottleneck.

A. Overlay Networks

IV. FlowMateDESIGN

C. Coordinated Congestion Management This section describgslowMateand analyzes its complex-

Current host congestion control mechanisms regulate t'I% Please refer to [21] for a detailed description of algorithms
nd data structures.

sending rate of each individual flow according to networR
conditions assessed by that particular flow. Recent research has )

shown that coordinating congestion control decisions amoflg Basic Architecture

certain flows at a busy host (e.qg., ftp/Web server) can increasd-lowMate is a module that can be invoked from various
the collective performance of the flows [7], [8]. An importanbther modules to provide information about flows sharing
problem in addressing coordinated congestion managementasmon bottlenecks along their paths from a single sender
the composition of clusters, in order to perform congestidn multiple receivers. One possibldowMate organization is
management decisions on a per-cluster basis. In current coodtipicted in Fig. 1. The TCP implementation at the sender
nated congestion management approaches [9], [10], [11], [1&8Just be configured to timestamp packets before being sent.
flows between the same hosts (or same LANS) are assigigshble samples are later selected at the “Sampler” when



timestamped acknowledgments (ACKs) are received, as @&- Delay Computation

scribed in Section IV-C. Sample delay lists are then providedpejay correlation tests typically converge faster than loss
to the “Flow Correlator” module, which performs clusteringqrrelation tests, and yield more accurate results. Delay cor-
and sends the resultant clusters to other modules, e.g., 198@tion tests, however, impose the requirement of packet
balancer. Another possible organization lfowMate is at  timestamping. For the delay correlation test to work best, the
the application layer. We discuss the tradeoffs among bqiBjays of packets on the forward path from sender to receiver
organizations in Section IX. In this work, we focus on theyyst be collected at the sender. One method for collecting

FlowMate organization depicted in Fig. 1. delay information is to utilize standard timestamping mecha-

FlowMate nisms presented in [23]. These mechanisms use the “Options”

| Tinestamped Sender Recelver field in the TCP header [24] to include the time a packet

i | ACKs Transport Layer is sent by the sender, and the time an ACK is sent by the
Dk [H:WMa[eyA Transport Layer

Flow
! |Correlator | |

: A receiver. The TCP timestamping option is currently supported

L Lower Layers | | 1 in TCP implementations in most operating systems, including

R I S v FreeBSD, Linux, and Windows (it is enabled by default in
the latest Linux and Windows TCP implementations). The
ACK send time gives an approximate indication of packet

: : Outgoing Packets Arriving Packets ! . . . .

Load |l ol TR - receptlc_)n time. It is r_10t entirely accurate, however,_because
the estimated delay is now dependent on the receiver load,
scheduling mechanisms, and TCP implementation details. We

Fig. 1. One possibl&lowMate organization experiment with this approach on Emulab in Section IX.

A second alternative is for the sender to use RTT samples
(which TCP anyway computes for retransmission timeout
computation purposes) [25], or throughput estimates [26]. The
receiver need not use the TCP timestamping option field (or

The delay correlation test that we use FlowMate was an equivalent application layer mechanism) in this case. Using
proposed in [18] to statistically identify shared bottleneck8TT information instead of forward delay may, however, de-
using Poisson-distributed probe packets. We apply an anajsade the clustering accuracy when dynamic bottlenecks in the
gous method on actual (non-Poisson-distributed) data packegyerse direction alter the packet delay correlation properties.
Pearson’s correlation function [22] is applied to the deldyurthermore, the load and capabilities at the receiver affect
samples as follows: the RTT in the same manner they affect ACK send times

" _ B (discussed above). We have repeated all our experiments in
oy = >im1 (i —T)(yi —7) (1) Section VI with RTT samples instead of one-way delays, and
Ve (@i =22, (v —9)? the reduction in accuracy values was about 5%. Section IX
) ) o ) presents data from Emulab and Planetlab experiments using
wherer,, is the correlation coefficient (with range-1,1])) gTT samples.

of the two sample sets; and y; whose averages arg A third alternative is to extend the timestamp field of the

and y respectively, andn is the number of samples. By \ck to include the time at which the last packet being

definition, the closerr,, approaches+l (—1), the more acked was received, as shown in Fig. 2. (Alternatively, this
positively (negatively) linear the samples;, y;) are. A linear jhformation can be added to the application layer payload
relatiqnship between two variables means that their values;fitihe reverse direction.) We use this extended timestamping

a straight line on a scatter plot. #,, ~ 0, the samples show gn5r0ach in our simulation experiments in Section VI since

no linear relationship. it is the most accurate. Note that clock-skewness between the

In [18], a cross measurds defined as the correlationsender and receiver is not a problem, if it remains approxi-

coefficient of sample sets of two different variables, whereggately constant throughout the flow duration (refer to [18] for
an auto measurds defined as the correlation coefficient ofyore details).

two sample sets of the same variable. The correlation test
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B. Correlation Test

among two flows is defined as follows [18]: (1) Compute the L L 4 4

cross measurelM,, between pairs of packets in two flows | kina=8] 10 |75 value T Echo Repy|

f1 and f,, spaced apart by time > 0. (2) Compute the 1 1 4 4 4
auto measureM,, between packets of the same flow, spaced [Kind =8| 14 [TS Value [T Echo Rep)| TS Recv. Time|

apart by timeT' > t. (3) If M, > M,, then the flows share _ _ ) o
a common bottleneck; otherwise they do not. The intuitiorfd: 2 Extending the TCP options field in ACK packets

behind this test is that if two flows share a bottleneck, then the

cross correlation coefficient should exceed the auto correlation

coefficient, if the spacing between packets of different flows Bt In-Band Packet Sampling

the bottlenecks smaller thanthe spacing between packets of We observe that the scalability of out-of-band delay corre-
the same flow. More details on how we compute the correlatitation tests for flows at a busy server (as in [18]) is limited

coefficients are given in Section IV-D. by the need to generate and transmit Poisson probes on all



flow paths. For example, a server with flows to one thousagdouped with any other flow (or with each other). To prevent
destinations has to set up another one thousand active préeguent clustering and its associated overhead, clustering
flows, which consumes a significant portion of server arid not invoked before a period,,;, elapses since the last
network resources. clustering process.

To avoid generating and injecting out-of-band control traffic
in the net\(vork, we use selected data packets as sampfesypq Clustering Process
The sampling process proceeds as follows. Assume ffow
yields n; samples, and flowfs yields no samples. Without
loss of generality, assume that < n.. Let 2;(i) denote the
timestamp (send time) of sample from f7, andy,(j) denote

Many clustering algorithms have been proposed in the
literature, especially in the context of data mining and pattern
recognition [27]. Since our objective is to obtain reasonably
the timestamp of samplg; from f,, wherel < i < ny, and a_ccurate clust_ers with the_least overhead, we employ a very

simple clustering mechanism. The clustering process takes

1 < j < ny. We merge the two sets; (i) and y;(j) and \ ) -
compute the mean (for all packets of the two flows) spacinp,S input a set of flows (with sufficient samples) to be clus-

¢, between every two consecutive packetsfofand f». That ered. We designate one flow in every cluster we form as
[z (8) =y (5)] the cluster “representative.” A flow is only compared to the

Is t = S , where every sample (i) is  cluster representative in order to determine whether it should
paired with a peer samplg(j) that minimizeslz;(i) —:(j)| belong to the same cluster. This ensures that all flows that
for all j. After computing, the auto correlation coefficient canare clustered together are highly correlated with the same
be computed for any of the two flows. In this computation, wespresentative flowFlowMateselects the first flow in a cluster
select samples from the flow sample set with packet spacigbe its representative. Switching the cluster representative
higher thant. Samples that are not used in the auto correlati@iynamically is currently under study (a simple approach is
test (due to packet spacing violation) are marked and afgaluated in Section VII). A flow is compared &l cluster
not used in cross correlation computation (for each particul@presentatives to determine if it should join an existing cluster,
test). This is the primary restriction on the correctness of tle form (and represent) a new cluster.
correlation tests (as explained in [18]), and not how probesConsider, however, the case when a new flasvhighly cor-
are distributed. related with more than one cluster representatilewMate

To validate our results, we repeated our experiments with thgkes the following conservative approach in this case. The
following simple sampling approach. We selected data packet®ss correlation coefficients in all successful tests of a flow
that are closest to Poisson probe send times (at a rate offlfte compared, antljoins the cluster whose representative
Poisson samples per second), and then applied the spagirgded the highest cross correlation coefficient. This is be-
restriction discussed above (Poisson probes are used in [18}use a flow typically exhibits the highest correlation with the
Our results were not significantly different from the gener@orrect cluster representative. Fig. 3 provides a summarized
case without Poisson sampling (see [21] for more detailf)seudo-code oFlowMate (for detailed pseudo-code, refer
Therefore, in Section VI, we only use the inter-packet spacing [21]). FlowMate also includes the following (optional) test

restriction. (function re-organize()in the pseudo-code): whenever a new
cluster is created, all flows in other clusters, except for the
E. Triggering Clustering representatives, are compared to the new cluster representative

{o determine if they have a higher correlation with the newly

It is important to trigger clustering only when sufficien ) X ; .
ated cluster. This technique increases accuracy in cases

usable samples are available. Since each flow has its oWwfi

congestion window according to its start time and encounterd§en flow delay patterns are similar.
losses, some flows may have only transmitted a few packet§\|°te that the cross and auto correlation measures and the

and thus have very few samples. Assume that the last cldelay sta_tistics are maintained and continuously updated.for
tering process was triggered at timeWe trigger the next SVETY pair of flows that have been tested. When clustering

clustering process at time+ d, whered is a period during is triggered, new samples update the mean aqd variance of
which all flows have received at least a minimumigfdelay [0V delays, and consequently, the corresponding cross and
values. Assuming a minimum éfusable samples are required"“to measures. These statistics are maintained in the flow data

for correlation testing, the threshald is selected to be at leastStructures throughout a flow life-time. To illustrate this, recall
twice the value of. We have experimentally determined thagduation (1) presented in Section IV-B (and expanded here):

k > 10 is typically adequate. With low background traffic

load, at least 20 samples are required for accurate resul{ts, B Sy (@i — Ty — Yxi + TY)
because more samples are needed to capture the delay pattéth. \/ n 2 o— PR — 2 o 5
: ) . (xf —2mx; + 7 (Y7 —2gy; + 1
The value ofk is also dependent on how packets of various 2=t (%3 . ! ) 2 (07 = 250 +77)
flows are interleaved. With little interleaving, more samples are  _ > i1 TiYi — NTY
required for accurate clustering, as discussed in Section VI- , — —
d : V(a2 =) (DI, 2 — )

B.5. If atimed,,., elapses before the threshdld is reached
for all flows, clustering is anyway triggered. In this case, we New samples for a pair of flows are used to update
only consider flows with sufficient samples in the clusterind_" | z;y;, >, 22, > i, ¥?, T, J, andn in this equation.

process. Flows which are not considered for clustering are Myhen clustering is triggered, the correlation coefficients are



. TABLE |
Fig. 3. FlowMate pseudo-code

1. C|USteI’LISt<— NULL EXAMPLE OF CLUSTERING5 FLOWS WITH 3 CORRECT CLUSTERS

2. numClusters— 0 o fsh i fah 53}

3.FOR i «— 1 TO numFlows [ Flow [ Rep. [ Test [ Clusters

4, IF (f;.numSamples: sampleThreshold) fi - - fi

5. CONTINUE /I ignore f; f2 1 No S} df2)

6. ELSE IF (numClusters = 0) Is 2 \N(%S AT

7. Create clustelC; fa fi Yes

8. C,.representative =f; f2 Yes (larger) {f1.f3}{f2.fa}

9. clusterList.append(;) f5 2 mg T

10. numClusters++ 7s Js No Frlsh ik U

11. ELSE fa fs No fu.fs}dfe.fa}dfs

12. highestCoeff— small magic number

13. selectedCluster— NULL

14. FOR j « 1 TO numClusters ) )

15. result— test(f;, C;.representative) G. Time Complexity

16. IF (result = YES) In this section, we show th&lowMate complexity is low,

17. update selectedCluster and thusFlowMate can be applied on-line.

18. update highestCoeff Lemma 1:Assume thatV flows are being clustered, is

19. END FOR the average cluster size, ad®l is the number of generated
20. IF (selectedClustes NULL) clusters (on the averagé is N/S,). FlowMate time com-

21. selectedCluster.appernye) plexity is O(N P).

22. ELSE Proof. FlowMatecomputations are divided into two main
23. numClusters++ components: (1) sample selection, and (2) correlation tests.
24. Create clusteCpumciusters Using appropriate bounds in the triggering condition limits
25. CnumCiusters-representative =f; the number of delay values being processed for each flow.
26. clusterList.appendi,umciusters) Computing the coefficients depends on the number of selected
27. re-organize(clusterList) /I optional samples, which is less than the number of received delay
28.END FOR values. Each flow is tested against all cluster representa-

tives, which upper bounds the number of correlation tests by
NP. Hence, the complexity depends on the number of tests
multiplied by the number of operations required to compute

computed and stored along with the above terms, while tH Coefficients (which is upper bound by a constant). The
delay samples themselves are discarded. This approacﬁisl)émpmtIC time complexity dFlowMateis thereforeO(N P).
stable and scales well, but does not adapt to rapidly chang )

bottlenecks. This is because old delay samples still impacfOPServe thatFlowMate does not require any pre-
the delay statistics and correlation coefficients. An alternatig@mPutations to estimate the appropriate number of clusters.

approach would be to maintain a set of recent delay samp Qserve als_o that fl_ows with insufficient samples are excluded
f[gjn clustering, which may further reduce complexity. Clus-

and re-compute the mean and variance of only these samp - 4
Older delay samples would be periodically discarded or givé‘ﬁrs are created and re-adjusted as more flows are incorporated

less weight (effectively employing a sliding window of samin the clustering process. The complexity i32 typically lower
ples). This technique is more adaptive to rapidly changi§2n comparing every pair of flows which@{ N*). FlowMate
bottlenecks, at the expense of lower stability, and slightf]UStering is a lower-cost approximation of the K-Means
higher storage and re-computation overhead. Selecting whfdHStering technique [29FlowMateoverhead is lowest if only

of these two techniques to employ must be based up@nfew Iargg clusters are formed (due to the reprgsentatwe—
flow life-times, and how they compare to the constancy based testing approach). The worst case occurs if all flows
Internet path properties [28]. We use the first technique in ofp MOt share any common bottlenecks and each forms a
experiments, since we do not experiment with extremely lon eparate cluster, which should not occur often. This is due

lived flows or with highly dynamic bottlenecks (except for th 0 the locality of server requests, as well as Internet topology
Internet experiments in Section 1X-B). characteristics (power-law and small-world properties).

Table | gives an example of clustering five flows, where the
expected output is three clusters. In the examplepasses
the correlation test with bothf; and fs. It is clustered with Clustering inaccuracies are introduced by either (1) erro-
f2 because their cross correlation coefficient is the highestously including a flow in a cluster where it does not belong
Observe that althouglf; and f, are already clustered before(this includes merging two or more clusters), or (2) splitting a
f5 is introduced, they are compared wifhafter a new cluster cluster into two or more sub-clusters. We use the term “false
is created to check whether a re-organization is required. sharing” (fs) to denote (1) above, i.e., erroneous inclusion of

V. ACCURACY METRIC



a flow with a cluster it does not share bottlenecks with (we

borrow this term from [13]).

Measuring the accuracy of the output clusters in a unified

TABLE I
EXAMPLE OF COMPUTING THE ACCURACY INDEX(AIl) FOR10FLOWS
WITH 2 CORRECT CLUSTERY P, = {1,..,5},{6,..,10})

manner is challenging due to the possibility of simultaneous| Output Clusters”, [ Al [ Interpretation |

occurrence of the two error types. The two error types have| All split: {1}, {2},---,{10} [ 0.2 1| CtorreCt flow per
i i i H i cluster

FlowMate For example, consider  coordinatd songestion| AMITGed L2 10 [ 05 | orly 1 corect dlsie
TR : X | Splits: {1,2,3}, {4,5}, | 0.8 | 2 errors (splits)

management application applied to eight flows, as shown in (67,8, {9,10}

Fig. 4. Assume the correct clustering is two clusters with four | More splits: {1,2}, {3,4}, | 0.6 | 4 errors (splits)

flows each. Assume that in one instance, output clusters are {5}, {6}, {7,8}, {9,10

four instead of two. Although coordination cannot be fully Fglgel sharing: {1, -7}, | 0.8 5 errors (flows 6 an

exploited in this case, all flows clustered together indeed shar i,,(;ré g false  sharing] 0.6 4)errors {flows 50 9)

bottlenecks. Therefore, consequent coordination decisions arge {1, --,9}, {10}

not erroneous. In the second instance, the output is two clusters Combined errors:{{1,2,3;, | 0.7 | 3 errors (1 split + 2

with flows not sharing bottlenecks. In this case, when one flow,| {4.5.6,%, {8,9,10 false sharing) _

say fi1 experiences packet losses, the consequent decisionscOmblneol errors: {1,2}, [ 0.6 | 4 erors (3 splits + 1

. o L . {3,4}, {5,6}, {7,8}, {9,10} false sharing)

taken by the congestion coordination application may incor-

rectly affect other flows, such g% (which may unnecessarily

enter the slow start phase). This difference between the two TABLE Il

cases requires the metric to account for different error type8vERAGE ACCURACY INDEX OVER ALL PERMISSIBLE CLUSTERS WHEN

with different weights according to their severity (unlike the THERE ARE 3 CORRECT CLUSTERY| | = 3)

metric proposed in [17] which treats all error types equallyj: 7 of flows 5 5 i) T R 3 7

We believe that false sharing is more severe than clustetverage Al 0.55 | 0.41 | 0.38 | 0.5 | 0.36 | 0.47 | 0.35

splits for most applications. Thus, the second instance in our
example is considered less desirable than the first one. Our
accuracy index (Al) described below reflects this requirement.

Flows: f1,f2, ..., f8

Output clusters

f4 do not (Al = 75%)

Correct clusters {f1,.., f4}, {f5,.., 8}

1 experiences packet losses l

f2 enters slow start {7 and 8 unnecessarily enter
with f1, while f3 and  enter slow start (Al = 50%)

Fig. 4. Example of Al computation

diminished (exacerbated). The split effect is more uniform.
Our interpretation of accuracy considers a cluster split into
two clusters to be of equal severity (thus prompting an
equal deduction) to false sharing of one flow (while incorrect

{fL, mﬁ ?f?fz f8}, merging of two clusters entails a penalty for each flow that
{fs, f6}, {7, f8} {fs, f6, 13, 4} was incorrectly merged with the larger set). For example, if the

correct clusters arél,2,3}, and{4,5}, and a merge occurred
(i.e.,{1,2,3,4,3 was output), them, is equal to 2 (size of set
{4,5}). This is because cluster splits have fewer undesirable
effects than false sharing and merging.

Consider an example of clustering six flows where the

Let NV denote the total number of flow®, denote the set of correct clusters ar¢l,2,3} and{4,5,6}. If the clusters output
correct clustersP, denote the set of clusters in tRlowMate by FlowMateare {1,2}, {3,4,5, and{6}, then the accuracy

output,n s, denote the number of flows erroneously includeithdex is computed ad: — % —

-1

= 0.67. In this case, one

in a resulting cluster, ang; denote the number of sub-clustersixth is deducted for flow 3, which was incorrectly clustered,
of a correct clustee P, that was split intos; sub-clusters in and another one sixth is deducted for the split of cluster
P,. The cluster accuracy index (Al) is computed as follows{4,5,6} into clusters{4,5} and {6}. Note that a single flow

P,
i

(nfs)1 _ Z =

Accuracy Index (AI)=1—

where (ny,); of a clusterp;, € P, is computed as follows:
Map p; to a corresponding cluster. € P., such thatp;Np.| is
maximized. The total number of flows in sgtsuch that(f €

N

is penalized only once, either for being clustered incorrectly
(false shared), or for not being merged with its correct cluster.
This is why the accuracy index is 50% in the right-hand
size of Fig. 4. Table Il gives additional examples. Observe
that, on the average, a random clustering will likely result in
an erroneous number of clusters, in addition to false sharing
per cluster, yielding values typically less than 50% for the

pi) A (f ¢ pe) is the number of flows erroneously included iraccuracy (depending on the number of flows and number of

a cluster(ny,); (i.e., number of false shared flows).

correct cluster§P,|). Table Il gives the average Al for all

Observe that there is no case in whieltl flows are permissible clusters of a number of flows for a case with 3
erroneously clustered. Therefore, the accuracy index varig@rect clusters. Results are congruent with our argument on
between a fraction (above 0) and 1. For a fixed numbaverage accuracy of random clustering.

of flows, as the number of correct clustelB.| increases

Fig. 5 further validates our argument by considering random

(decreases), the average number of flows per cluster decreasester assignments in different cases. We restrict the maxi-
(increases). Therefore, the merge effect is, on the averageym cluster size (which we refer to as “cluster limit”) to a



TABLE IV Bottleneck links , <&

SIMULATION PARAMETERS Cross-traffic

TCP flows 12-48, infinite FTP flows, Telnet flows, dr generater

HTTP/1.1 flows 12ms
Cross traffic 24 flows, CBR (256 kbps each) TCP flows
Background traffic | to all receivers (256 kbps Pareto/traces) 2ms 4ms
Reverse traffic 64 kbps average rate for each (from re- @ — Y

ceivers to sender) Background Traffic
Buffer size 250 packets (except in one experiment)
Drop policy Drop-Tail (RED in one experiment) Cross-afc

destination

certain ratio of the total number of flows. For each cluster e simulat . ]
limit, a random correct assignmem®. is selected. Another F'9- 8- Simple simulation configuration
random assignment of flows is selected as the oufput

and the Al is compu_ted. This process is repeated 1000 ti B% on the third branch is congested by high background
and the average Al is reported. The figure illustrates that t ffic load. Background traffic is injected using a real traffic

average accuracy for random clustering assignments higlﬂjgce (the “Star Wars” movie [31]). One “Star Wars” flow is
depends on the cluster limit, more than on the total numti%nsmitted on each of

of flows. This is intuitive, since a larger number of corre%uter 2 to a randoml

| ield fal hari h | i y selected receiver on each branch,
clusters yields more false sharing errors than cluster splits.q, o5 ot to create a bottleneck on the main shared path. In

both topologies, three clusters of flows comprise the expected

1

o9l Qluster 1imt = 150 —— clustering: one cluster for each one of the three branches.
o8l Quater Himt 22| Simulation time is 60 seconds. This allows the effect of the
Cluster linmt = 70% e . ..
5o7y ] transients to be visible.
06} —
%0.5— g T g A
5 L | Bottleneck links
203§k Cross-—traffic =" » 2me
0.2f generator , \
/ 5ms 2ms
o1 1oms| | 22y (1)) g |
0 S S TCP flows ‘ /
40 80 120 160 200 240 280 320 360 400 440 480 — ) «S
Number of Fl ows A 19ms SN 8ms o 5ms o oms ‘/

2ms 3ms 3ms 2/773
Z \ D8 D7 m
= {00

Fig. 5. Accuracy of random cluster assignments with respect to differerftackaround traffic

cluster size limits
Bottleneck due

to high cross— ~
traffic load

Reverse

traffic

VI. SIMULATION EXPERIMENTS Img | D10
3 . . Cross-traffic
We have implementeBlowMatein the ns-2 network simu- destination 14ms o | on1
. . . . 9,
lator [30]. In this section, we investigakdowMaterobustness s @
Ims D12

with different background traffic models and traces, and with
various foreground (to be clustered) traffic types, includin,gg. 7
FTP, Telnet and HTTP. We also study the effect of router
buffer sizes, router drop policies, afkdowMate parameters.
More results can be found in [21].

Table IV summarizes the simulation parameters. Twd- FlowMateAccuracy
topologies (one somewhat symmetric and one asymmetric)n this section, we discuss the results of experiments on
are used in the experiments. In the first topology (Fig. 6he topology depicted in Fig. 6. In our first experiment,
a single source establishes a number of concurrent T@ compute the accuracy index when clustering 24, 36, or
connections with receivers on three different branches. Th8 TCP flows. To interpret the results easily, we trigger
upper two branch links are bottlenecks with bandwidths 1dbustering at fixed intervals ofl,..., and donot trigger it
Mbps and 3 Mbps, respectively. The third branch link hasearlier, even if sufficient samples are received betdrg...
bandwidth of 10 Mbps, but is congested by a number of cro8d the other triggering rules apply (not befor,;,, and
CBR flows. All other links have a capacity of 10 Mbps. Aflows with insufficient samples are discarded). The value used
number of multiplexed Pareto flows (originating at the sanfer d,,,. is 6 seconds. Triggering clustering according to the
source) are generated as background traffic. A number of othember of samples (as proposed in Section IV-E) may improve
multiplexed Pareto flows are generated by the receivers in thestem performance if it occurs betweép;,, andd,,,.... Note
reverse direction. that we compute the accuracy index by comparing against a

Fig. 7 depicts the second simulation topology, where ttstatic correct clustering, even though the background traffic
upper two branch links have limited bandwidth, while th&ariations entail a dynamic clustering goal. We select this more

More complex simulation configuration



conservative approach for ease of accuracy index computatisimce the delay correlation test performs better in networks
and to show the worst case index value. with large buffer sizes [18]. The packet drop policy and

foreground and background traffic patterns may also impact
the results. We demonstrate the effect of these parameters

1 T . . « ” .
og/f ¥ — N ——..—1 on the topology shown in Fig. 7. The “Star Wars” trace is
s _oe v used as a source of self-similar background traffic, except
3 0.7+ 307 . . .
2o 2. when varying background traffic load. In background traffic
gos fos experiments, a number of Pareto sources are multiplexed, in
3 0.4 24 flows, 12 receivers —— 204 Experiment 1: 2 start times —— . : . H
o3 @ floe Breves o o9  Bomimnt 2 3stat tims e order to easily experiment with different background rates and
o 0.2 on/off periods. 24-36 TCP flows are used as foreground traffic,
1 0.1 . . .
0 o evenly divided among all 12 receivers, and, as before, the
6 12 18 24 30 36 42 48 54 60 6 12 18 24 30 36 42 48 54 60 . . .
Time (sec) Time (seq) correct clustering is three clusters— one for each main branch.
(a) Performance with different (b) Performance with staggered 1) BUHer_Slze:A_lthOUQh the delay Correlatlon IS more
loads start times clearly manifested in bottlenecked routers with long queues,

varying buffer sizes from 50 to 500 packets does not result in
Fig. 8. Accuracy index oFlowMatefor the simple simulation configuration significant performance variation in steady state, as illustrated
in Fig. 9. Variation in performance is more pronounced during
Fig. 8(a) illustrates that in steady state, performance ti&nsient periods, which is expected any time a large number of
reasonable (average index 90%). During the initial tran- flows start at the sender simultaneously. We believe that having
sient period, which includes the first one or two clusteringuters with larger buffers typically enhances performance,
invocations, sample delay patterns are not unique for eaglyugh.
cluster of flows, so accuracy is lower. After the transient
period, accuracy is higher. Observed inaccuracies are mostly
due to a few cluster splits. Flows used in this experiment start : 1

10 to 50 ms apart. We also perform experiments with more /\/\// ool

staggered start times with 36 TCP flows and 12 receivers.; o7
In the first experiment, half of the flows begin at time zero "’ e
(using a 40 ms mean interval between flow start times), 3o 4750 0 500 —— S04 Drop Tail ——

Dr opTai | / RED -
oo ALL RED

and the remaining 18 start around 30 seconds later. In a‘,, .

second experiment, one third of the flows start near time zero, 01

another third after approximately 18 seconds, and the last *’s w s 0 z0 w0 w0 a0 w0 50 "1 1 2w % @ 8 s 60

third after approximately 36 seconds. Finally, we conduct a e s e e

third experiment where flows are divided into 4 sets, starting (2) Average accuracy index (av-  (b) Effect of packet drop policy

at times near 0, 18, 30, and 48 seconds. The performanceSvrif‘ﬁZ?ﬁg;'eer:tt?gufgpg:fftfg’rns?zngg) on aceuracy

results are depicted in Fig. 8(b). A large number of flows

starting during the same period causes an abrupt degradatiogdgng. Impact of buffer sizes and drop policy

accuracy, unlike the case where flows are added gradually. The

performance is still reasonably good in steady state, and if &) Packet Drop Policy:The prevailing drop policy in to-

dynamic accuracy metric (that considers transient bottleneckig)y’s Internet routers is Drop-Tail. We use this policy in all

is used, the accuracy index increases. our experiments, except in this experiment, where we use
We have found that varying the maximum correlation inRandom Early Detection (RED). Fig. 9(b) shows the resulting

terval durationd,,., does not have a profound impact omaccuracy index in three cases. One case uses the Drop-Tail

FlowMate results. Results forl,,.., values between 2 andpolicy for all router queues, another case uses both Drop-

10 seconds follow almost the same pattern as the resuftil and RED queues, and the last case uses only RED

with 6 seconds given in this paper (refer to [21]). Below # all queues. Results show that using RED for all queues

seconds, samples are few, and many flows are discarded fie@uces the accuracy. This agrees with the results presented

the clustering process. When the correlation period is too lofig[16] about Markovian probing performance with the RED

(above 10 seconds), accuracy is not significantly enhanced. ¥¥&uing discipline. The reason for RED interference is that

have also observed that during underloaded transient perio@sdom packet drop alters samples and introduces noise to

the frequency of false sharing is typically higher than that @fie correlation process. Variations among different flow delay

cluster splits. This is why the Al is lower during these periocbatterns are also reduced by RED, which complicates the

than during more loaded steady states, when errors are moptycess of determining the best cluster for a certain flow. This

due to cluster splits. This behavior was observed throughggitalso consistent with the results presented in [18]. However,

all simulation experiments in this section. even with the use of policies other than DropTail in a subset
- of the routers on a pathslowMate still performs reasonably
B. Impact of Network Conditions well.

The performance oflowMateis affected by network con-  3) Background Traffic LoadWe study the performance of
ditions. Router buffer size is an important network parametBtowMatein our two configurations (Fig. 6 and Fig. 7) with



TABLE V

different background traffic loads. To generate background
HTTP SIMULATION PARAMETERS

traffic with various loads, we multiplex a number of Pareto

sources, each with average rate of 400 kbps. The Paretg Number of web clients 12,18, and 24
. . Number of sessions/client 20
sources are synchronized to start at the same time (1 seconfl Mean number of pages/session 50
before foreground traffic starts). The load values shown on the| Mean inter-page interval 10 ms
z-axis in Fig. 10(a) are computed according to the first branch,| Méan page size 12 kB
. ) . . o | Mean number of embedded objects/page
which has the least physical bandwidth. Load is slightly lower | mean object size 120 kB

on other branches. Simulation results show tRadwMate
is robust with heavy background traffic. We also conducted
another experiment in which the ratio of the on/off periods
of the Pareto sources is varied to demonstrate the effect oflowMate was applied to HTTP/1.1 traffic on the con-
different burst sizes. The results illustrate that performancefiguration in Fig. 6 (results for the other configuration are
consistent, which indicates that different on/off period raticgmilar [21]). We used the SURGE model [35] for web
have a relatively minor effect on the clustering accuracy. workload traffic generation. This model is implemented in
4) Foreground Traffic Load:In our experiments thus far, “nsweb” [36]. Table V summarizes the HTTP/1.1 parameters
we have used FTP applications as our foreground traffised in our experiments. SURGE parameters are chosen as
sources. In this experiment, we demonstrate the effect inf[35], while other parameters used in the experiments are
higher burstiness in foreground traffic, and determine tisémilar to those in [36]. Fig. 10(c) depicts the performance
number of samples required for correct clustering. We usé FlowMate using different numbers of web clients with
Telnet traffic with bursty packet inter-arrivals, and control th&2 receivers. Performance is similar with different numbers
packet mean inter-arrival time, As shown in Fig. 10(b), of clients. We compute accuracy by comparing against pre-
a large value oft reduces the number of samples availablgefined correct clusters throughout the simulation, and do not
for correlation, and consequently reduces accuracy.tFer account for the fact that bursty HTTP connections may have
100 ms, the figure depicts significant performance degradati@@mples with totally disjoint sets of send times. Therefore,
since very few samples are used in the correlation tests. RlpwMate correctlyreports that there is no linear correlation
most of the cases where we observed cluster splits, the numfber, the flows are not sharing a bottleneck at the same time).
of available samples was less than 10 per flow. Degrad&te reported Al, however, is too conservative in this case.
performance continues throughout the simulation period. WeWe conclude that clustering HTTP flows significantly de-
conclude that large average packet inter-arrival times liniends on two factors: connection life-time and traffic bursti-
FlowMateeffectiveness, since the reduced number of sampleess. While it is still possible folFlowMate to perform
either disables the clustering entirely or adversely impacts tteasonably well with some burstiness, connection life-time
results. This does not a pose a serious problem, however, siiscerucial in determining if clustering is applicable. When
the applications discussed in Section Il are not applicable ¢tustering is triggered, short-lived flows have either already
very low-rate flows. terminated and their information has been deleted, or they do
5) HTTP Traffic: Problems arise when HTTP traffic isnot exceed the minimum threshold of samples required to be
considered. First, most HTTP connections are short-lived [Sjonsidered in the correlation process. As discussed above for
This implies that a connection may very well terminate befotbe case of Telnet, this does not a pose a serious problem since
clustering is triggered, even for a smadll,;,, value. Second, the applications discussed in Section Il are not applicable to
since HTTP packets are sent in short bursts, and since we ovdyy short-lived flows, or flows which are temporarily dormant.
select samples whose inter-packet spacing exceeds the inter-
flow packet spacing, we may have no available samples during
many intervals. The above two problems are exacerbated by
the delayed ACKs option, which delays receiver ACKs in In this section, we propose an alternative clustering ap-
order to piggyback them on any available data in the revepgmach for FlowMate In the standard-lowMate clustering
direction. In [32], the use of parallel HTTP connections wa@iscussed in Section IV-F), flows are only tested against
measured over a year on a server running FreeBSD. Resultsster representatives. This limits the number of correlation
show that a client typically does not use more than four parall@sts required, rendering on-line clustering feasible. This sim-
HTTP connections with the server simultaneously. plicity, of course, comes at the expense of reduced accuracy.
Fortunately, these problems are mitigated by HTTP/1.1 wiffo mitigate this problem, we investigate an approach which
persistent or pipelined connections [33]. The HTTP/1.1 spewe call maximum distance clusteringn this approach, two
ification entails that connections not be terminated after eadpresentative flows for each cluster (that has two or more
request/response, as in the case of HTTP/1.0. A connectftows) are designated. The representatives are the two flows in
remains alive to be used for other requests, and only times this cluster that have the lowest cross correlation coefficient.
if it stays idle for a specified interval of time. Although thisA new flow is tested against both representatives. If the
resolves the short connection problem, burstiness remainscanrelation test passes with both representatives, we must
important concern. A study presented in [34] advises agaimgtermine whether the new flow should replace one of the
using parallel persistent connections between a server antiva representatives in its role as cluster representative. The
client new flow becomes a representative if its cross correlation

VII. M AXIMUM DISTANCE CLUSTERING
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Fig. 10. Accuracy with different traffic loads and types

coefficient with one of the flows is lower than the crosthe congestion manager (CM) [7]. We implement a simple
correlation coefficient among the two representatives. coordination mechanism that operates as follows. Each flow
For example, letf; and f,; be the two representatives of amaintains its own congestion window. When loss is detected
clusterp; with a cross correlation coefficient of 0.7. Consideby any member of a cluster, all cluster member windows
a new flow f3 which passes the correlation test with botlare reduced to react to incipient congestion. On the other
representatives, with cross correlation coefficients 0.8 and (hénd, all cluster members increase their windows when there
respectively. The cluster representatives now becggmand are no packet losses fdinree consecutive window transmis-
f3. The time complexity of this clustering approach is theions for any member in the cluster. Thus, flows react more
same as the standard approach (see Section IV-G). conservatively to detected available bandwidth. Simulation
We compare the performance of the two clustering apxperiments are conducted using the configuration in Fig. 7.
proaches with different foreground traffic types: FTP, Telnekigs 12(a) and (b) show the number of ACKed packets during
and HTTP/1.1. We use the configuration depicted in Fig. @, simulation period of 120 seconds for flows in one of the
with the same parameters we used in evaluating the standaasulting clusters, without and witklowMate and simple
approach. For Telnet traffic, we observe that the standardordination. Fig. 12(b) illustrates that the flow throughput
(simple) clustering works well until the packet mean intemalues are more similar and consequently fairness among flows
arrival time exceeds 40 ms. The degradation in performargigaring a common bottleneck increases witbwMate We
for mean inter-arrival time of 100 ms is depicted in Fig. 1lbelieve that using flow clusters generated BlpwMate in
The figure shows tha¥laximum Distance Clusteringxhibits schemes such as [9], [7], [10], [11], [12] will extend the
higher accuracy. For FTP and HTTP/1.1 traffic, the resulbenefits of these congestion coordination schemes to flows
with the two clustering approaches are similar. This is not suwith different destinations but common bottlenecks. Moreover,
prising, since the burstiness and connection life-time concefewMatewill also prevent false sharing of state among flows
with HTTP traffic (and the abundance of FTP traffic) impaawith different bottlenecks.
FlowMate accuracy more than the clustering mechanism.
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Fig. 11. Accuracy of the two clustering approaches with Telnet traffic and

inter-packet mean inter-arrival time =100 ms Fig. 12. UsingFlowMate with congestion coordination

VIIl. COORDINATED CONGESTIONMANAGEMENT IX. IMPLEMENTATION AND EXPERIMENTS

In this section, we demonstrate oRtowMate application, We have implemented-lowMate in the Linux kernel
namely, coordinated congestion management. As discusée?l4.17) [37]. Timestamping is enabled by default in this ker-
in Section II, clusters of flows can be provided as inputel implementation, which facilitates delay collection. How-
to any coordinated congestion management scheme, suclewas, if timestamping is not enabled, RTT values can be
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used instead of forward delays. ImplementiRpwMate in  explained in Section IV-F). The output (flow clusters) can
the kernel space (as opposed to user space) simplifiesbiés provided to any module at the transport layer, such as
operation for two reasons. First, it provides easy access to floaordinated congestion management. This output can also be
information and accurate delay samples, since no boundanssd by higher layers, such as overlay networking modules,
between kernel and user spaces are crossed. Second, it aidsrisugh an appropriate API.
timely provisioning of FlowMate output, especially to other Our implementation only adds about 1800 lines of code
kernel-level modules that may need this information. to the TCP/IP code (about 1500 in C files and 300 for
As illustrated in Fig. 1FlowMateis typically implemented header files). Only two function calls are added to the original
as a separate module at the transport layer. In order to keep TP code— one for creation of th@orrelator, and the other
receiverFlowMateunaware, we use the ACK timestamps tdor collecting samples. To compute the approximate memory
represent the packet reception time at destinations. Althouglyuirements for data structures, we considerRlosv Infor-
this reduces clustering accuracy to some extent (as discussemdtion Repositoryhich contains sample lists and correlation
Section IV-C), traffic burstiness and background load remadhistory. A sample requires 24 Bytes. With appropriate bounds
the dominant factors in end-to-end delay variation, and henge the maximum number of samples per correlation interval
this technique is more accurate than RTT samples. (e.g., 100), a sample list for one flow requires about 2.4
FlowMaterequires little interaction with the transport layerkBytes. A CorrSet which contains cross and auto correlation
Fig. 13 provides a closer view oflowMates interaction coefficients of two flows, requires 116 Bytes. The number of
with other modules, where the solid arrows represent costoredCorrSetitems in the correlation history lists of flows
trol flow (function calls), and the dotted arrows represeitepends on the number of performed correlation tests, which is
data flow. The transport layer (TCP) notifies tBampler O(NP) (product of number of flows and number of clusters),
of arriving flow information (delay samples), and tidow as discussed in Section IV-G. Therefore, the memory required
Correlator outputs the computed flow clusters. Notificatiorfor the Flow Information Repositoryior 100 flows and 10
is accomplished via a simple function call from the maiclusters~ 2.4 x 1024 x 100+116 x 100 x 10 ~ 360 kBytes.
TCP module (togathersamples() when an ACK packet is This is an extremely small percentage of the memory available
received. The parameters to this function are: ¢bgkid, on today’s servers.
which represents the flow identifier, (2) ACK send tine/@l),
which approximatelyrepresents the packet reception time at i
destination, (3) Timestamp echo reptgdcl), which represents
the timestamp of the generated packet (at the sender), and (Ve useEmuLab(part ofNetBed [38]- an emulation testbed
Round trip delay rt), which can be used instead of forwardt the university of Utah. The testbed provides the capability of

delay, in case of disabled timestamping. remotely configuring machines and links, usimglike scripts
and a web interface. Each machine can run either a default

1 User operating system (Redhat Linux or FreeBSD) or a customized
operating system version. The server (source machine) in our
‘ (Transport Layer Gontral ) | ! experiments runs our modified Linux kernel that includes
| gather_samples [} [Flow | FlowMate Other machines (routers and receivers) in our
| (sock.id, toval tseer, ) | Partitions experiments run standard Linux.

o We generate foreground traffic (TCP) and background traffic
@“@ 1 Kernel (UDP) using two traffic generation tools and real file transfers.
 Space One tool that generates TCP and UDP trafficTis (Traffic

ti. Emulab Experiments

Applications

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

partition()

! add_sample store_flgw,_info() Tri

! H _tow,_| gger . . ..

! (f:;:r—'f&)‘svav get flowl info) _(Partitoning Generator) [39]. TG provides a simple syntax for writing

‘ 1 scripts that run on servers and receivers to open/close ports, set

! the mode of operation (server/receiver), start/stop traffic, and

FlowMate | ' configure traffic type and rate. In order to generate FTP traffic,

| Repository j we used Netspec [40]. Netspec can generate emulated TCP and

. 3 UDP traffic with specific support for popular applications, such

‘ : as FTP, Telnet, CBR/VBR streams, and HTTP traffic.

Fig. 13. Control and data flow amoffigowMatemodules and transport layer To evaluate the_ C|UStenng,aCC,uraCy’ we simulate the thr.ee-

modules branch topology illustrated in Fig. 14. Two bottlenecks lie

on the upper two branches (bottleneck link capacities are

The forward delay value is computed by subtractisgcr 0.5 Mbps and 1.5 Mbps), while the lowest branch has no

from tsval at the Sampler(Fig. 13). Samplerstores sample bottlenecks. Bandwidth on the shared link is high (100 Mbps)

delays into theFlow Information Repositorguring the sam- to avoid bottlenecks near the source. Bandwidth is 10 Mbps

pling phase. When clustering is triggered, sample delay lisia all other links. Propagation delay is indicated on each link

and the correlation history are input to tiéow Correlator in the figure.

module, and a new cluster list is constructed. The delay listsWe generate TCP traffic from the source (server) to all

used in computations are discarded, while correlation histasgstinationsD;, wherel < i < 8. Background traffic consists

statistics are sent back to the repository for future use (akexponential UDP flows from the source to all destinations.
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/- for 16 foreground flows. Again, most of the errors observed
. were due to cluster splits. We observed similar results when
L0mg we conducted 8 real file transfers, one per receiver. The results

show thatFlowMateis robust with different numbers of flows.
< Bottleneck links 4ms
Foreground traffic \fb e .4-

11ms 7176m3 0.9

. 08 . 0.8

Background traffic

$07 S
Reverse = 06 Zos6
traffic y 305
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Fig. 14. Configuration used in Emulab experiments
g d P ground traffic ground traffic

fg 15. Accuracy ofFflowMate in Emulab Experiments
Their mean packet inter-arrival times are in the range o

30—40 ms. All background flows start-12 seconds earlier
than the foreground traffic start timey). UDP traffic in the
reverse direction (from receivers to source) is also genera
to interfere with returning ACKs. We generate one exponent|
UDP flow on each branch with packet inter-arrival times in thl?e
range of 168-20 ms. In our experiments, the correct clusters
are: {Fy, F»}, {F3, Fy, F5}, where F; is the set of flows .
destined to receiveD;, 1 < j < 5. Vi/e expect each of the B. Internet Experiments

remaining three flows to be clustered separately, since they ddVe have investigated the performanceFdéwMateon the

not share bottlenecks with each other or with other flows. Internet. We use one machine at Purdue University (PU) as

The first experiment assesses fHewMate clustering ac- the source node and nodes from Planetlab testbed [41] as the
curacy for 16 TCP foreground flows (2 flows per destinationg{estination nodes. To increase the likelihood of bottlenecks,
in the presence of 8 background UDP flows (1 flow pe¥e use hosts in different continents. Fig. 16 depicts our
destination), and 3 UDP flows in the reverse direction. AgXperimental topology.
flows are generated using TG with exponential TCP flows as
foreground traffic, each starting within a randd®.150] ms Source
interval from the initial start timet(). Other parameters are
similar to those in simulations: Drop-Tail policy for buffer
management and buffer sizes of 150 packets.

Fig. 15(a) shows the accuracy index results for very similar
source sending rates (the solid line) and for another experiment
with different source sending rates (the dashed line). For
similar sending rates, each flow has a mean packet inter-arrival BRL BR2
time in the range of 1012 ms. For different sending ratesgig 16 internet experimental topology
each flow has a mean packet inter-arrival time in the range of
10-25 ms, i.e., some flows may have double the sending rateye transfer a file of size 30 MB to each destination in the
of others. The results show accurate clustering. graph simultaneously using thdtp utility. Our experimental

We also compare performance when RTT samples are useshfiguration consists of the following hosts: (1) two hosts,
as opposed to using forward delays (Section IV-C discus9eMASS and UCLA, at the University of Massachusetts and
the pros and cons of both alternatives). We use differetiie University of California at Los Angeles, respectively.
source rates in this experiment. Fig. 15(a) shows that tfaese hosts do not share most of the path to the PU node,
accuracy with RTTs (dotted line) is slightly lower than thaf2) two hosts, BR1 and BR2, in Brazil (South America) that
with forward delays (dashed line) for different rates. Thehare the entire path from our source machine, (3) three hosts
performance remains reasonably good, which implies that Europe that share the path until a node in the United
using RTT samples is still practical. Almost all the errors thatingdom. This is verified using thracerouteutility. Two of
occurred in this experiment were due to cluster splits. the European nodes are in France (Eurecom, FR1, and Inria,

We conducted another experiment using Netspec to cliFER2), and the third is in Denmark (DK), and (4) three hosts in
ter FTP flows. UDP flows are used as background traffidsia, two of which are co-located in Korea (KR1 and KR2),
Fig. 15(b) shows that clustering accuracy is high for 8 arehd the third is in Japan. The Korean nodes share a gateway

In addition, we experimented with different values for the
{néer granularity (default granularity is 10 ms), and found that
?\ y have little impact. We used a timer granularity of 1 ms

our experiments (the finest supported granularity by this
rnel is 1/1024 second).

UMASS

Europe
UK DK

. — e

O—
‘ . FR2

FR1

KR2

South{America
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packets and the KR1 (and KR2) packets, and the variance in
the RTT values of packets going to JP is much lower than that
for either KR1 or KR2. Using traceroute, we found that paths

Host t“i"rﬁgs(‘;r;m)e”t mransfer | pvalabe to JP and{KR1, KR2} are shared until a gateway JP-1, which
o (sec) (Mbps) is very close to JP. Pathload also indicated that the bandwidth
UMASS 2:30/10:30 40745 >50/>0 from PU to JP is usually much higher than that {&iR1,
UCLA 2:30/10:30 55/60 >307>0 KR2}. Therefore, we deduced that a bottleneck may occur
gs; ;fggﬁgfgg iggﬁggg 2'25?6445 75 only on the path from JP-1 t§KR1, KR2}, which explains
FRI 53071030 1507158 257 (2333) the results of JP an¢KR1, KRZ}_ in Table VII. _
FR2 2:30/10:30 100/170 (6.1-6.7) / (0-29.8) We also find that false sharing only occurs in our mea-
Egl gfggﬁgfgg é‘z‘gg‘z‘g 594}3;2 é (0-70) surements in a few cases with similarities in delay patterns
RRD 53071030 3007195 S 0750 for non-congested flows. However, no two rovys were in-
JP 2:30/10:30 385/485 39/>0 correctly clustered for more than three consecutive clustering
intervals. Cluster splits are more prevalent in the results than
TABLE VI false sharing. Both false sharing and cluster splits may not
FLOWMATE INTERNET EXPERIMENTAL RESULTS necessarily be erroneous, however, since Internet bottlenecks
change dynamically, and the flows in our experiments share a
[ Hostl | Host2 | Time (a.m.) | % shared time | few hops before they split.
UMASS UCLA 2:30/10:30. 8.3% / 16.6%
BR1 BR2 2:30/10:30 26% J 87%
KR1 KR2 2:30/10:30 96% J 52.5%
JP 2:30/10:30 0% 7 0% X. CONCLUSIONS AND FUTURE WORK
KR2 JP 2:30/10:30 0% / 27.5%
FRI s gfggﬁgfgg e ; Al In this paper, we have presentBtbwMate a system that
ER2 DK 5-30/10:30 77.3% 1 33.3% exploits end-to-end packet delay information to periodically

cluster flows originating at a busy server, based upon whether
they share bottleneckElowMate does not require generation
or transmission of out-of-band probe traffic for collecting delay
in Japan with the Japanese node. Prior to performing the figormation. FlowMate is likely to produce multi-member
transfers, we expected flows sharing most of the path to Bgsters at a busy server, due to the locality of requests,
clustered together most of the time if their bandwidth in thgnd the power-law and small-world characteristics of Internet
non-shared part is not severely limited. topology. Thereforef-lowMate complexity, which depends on

We carried out experiments at two different times othe number of clusters, is reasonalfttawMateaccuracy was
11/6/2003 in order to experiment with loads at different timgbserved to be high in various configurations with different
zones. We report the results at 2:30 a.m. (EST), which corigropagation delays, bottlenecks, buffer sizes, and drop poli-
sponds to morning time in Europe and afternoon time in Asigies. The primary factor that degrades performance is the
and at 10:30 a.m., which corresponds to afternoon time fjurstiness of the flows being clustered themselves, as seen in
Europe and night time in Asia. We use tRathloadutility [42]  our HTTP/1.1 and Telnet results. Background traffic load and
to estimate the available bandwidth prior to file transfers. Thgirstiness do not have a detrimental effect, since we consider
file average transfer time and available bandwidth for eagfe history of correlation statistics. Fairness of coordinated
destination host are given in Table VI. We compEtewMate congestion control is observed to significantly increase with
clusters every five seconds using RTT samples and give thewMate
results in Table VII. We have implementedlowMate in the Linux kernel

As expected{BR1, BR2 and {KR1, KR2} are clustered y2.4.17, and experimented with it using an emulation testbed
during most of the transfer interval, especially when thgnd on the Internet. Results show high accuracy for both
available bandwidth is low. Nodes BR1 and KR1 appear #nthetic and tcplib-generated traffic, even wittowMate
be more loaded than their peers BR2 and KR2, respectiveliiaware receivers. In our future work, we plan to integrate
the RTT values reported by their flows show higher variancgjowMateinto overlay network middleware.
The Eurecom (FR1) and INRIA (FR2) flows are clustered
together during the morning more than in the afternoon, when
bottlenecks are more likely. Flows traveling {FR1, FR2
and DK are frequently clustered, which implies that the path
up to the UK common node on their path sometimes containsWe would like to thank Jay Lepreau and the entire Emu-
a shared bottleneck. Flows traveling to the two nodes in theb/Netbed team at the University of Utah, Venkat Padman-
US were not clustered most of the time, which is due to thgbhan, the anonymous reviewers, Dan Rubenstein (Columbia
abundant bandwidth on the only two hops they share. University), and Anja Feldmann and Jorg Wallerich (Uni-

The only unexpected result in Table VIl is that the JP flowersity of Munich) for their help. This research has been
is not clustered with either KR1 or KR2. Using ping, we foundponsored in part by NSF grant ANI-0238294 (CAREER),
that the RTT values are significantly different between the #nd the Schlumberger Foundation.
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