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Abstract—We investigate the effect of TCP Explicit Congestion Noti-
fication (ECN) with a new response strategy that is more aggressive in
the short term, but preserves TCP long term behavior, without modify-
ing the router marking rate. A less aggressive ECN decrease gives more
incentives for end systems to become ECN-compliant, as ECN serves
as an early warning sign in this case. Our analysis and simulation re-
sults demonstrate the effectiveness of the new algorithm in improving
throughput and reducing fluctuations. We model a multiple bottleneck
scenario with various types of traffic, and evaluate the effect of a num-
ber of parameters, including TCP flavor, increase/decrease parameters,
buffer size, and random early detection (RED) parameters.

Keywords— TCP congestion control, explicit congestion notification
(ECN), random early detection (RED), active queue management, addi-
tive increase multiplicative decrease (AIMD)

I. INTRODUCTION

End system congestion avoidance mechanisms have been a
topic of active research since the early 1980s [1], [2], [3], [4],
[5]. The TCP congestion avoidance algorithm uses additive in-
crease when no losses are detected and multiplicative decrease
with loss. The congestion window is halved in response to a
single packet drop and is linearly increased by one segment
every round trip time (RTT) during the congestion avoidance
phase. Thus the increase slope is 1 and the decrease fraction
is �� , or what we refer to as AIMD ( � , � ) or AIMD (1,0.5).

Router-based control gained attention in 1993 when Floyd
and Jacobson proposed the Random Early Detection (RED)
scheme [6]. A lot of research has focused on refining drop
mechanisms [7], [8], [9], [10]. The main aim of these schemes
is to drop packets before buffer overflow to give an early
warning to the sources, avoid TCP synchronization and bias
against bursty connections, and punish misbehaving flows.
RED drops probabilistically when the average buffer occu-
pancy lies between two thresholds, and drops all packets when
the maximum threshold is exceeded. The Explicit Conges-
tion Notification (ECN) mechanism proposes that RED only
mark (and not drop) the packets when buffer occupancy lies
between the two thresholds. Although the source response to
ECN should match its response to packet drop, [11] indicates
that this matching requirement is a long term one. This allows
the possibility of less aggressive reduction in the short term.
We explore this idea in this paper.

We react to the receipt of ECN with a relatively small win-
dow decrease, but modify the increase parameter to increase
less aggressively for a period of time. Our algorithm resets
the increase and decrease parameters back to (1,0.5) in the
event of retransmission timeouts or duplicate ACKs following
the ECN decrease. This smooth ECN response corresponds
to its motivation to serve as an early warning sign of con-
gestion; and the improved performance we show in this pa-
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per gives incentives for hosts to become ECN-compliant. The
AIMD parameters for ECN are carefully chosen to preserve
the long term behavior of TCP without modifying the router
marking rate from standard RED. The window size and hence
sending rate are less oscillatory, improving overall throughput
and delay variance. We model the algorithm throughput and
steady state marking and dropping probabilities. We investi-
gate different increase and decrease values only as a response
to ECN, since (1,0.5) are standardized for TCP [12], but the
response to ECN is not enforced in [13]. Simulation results
with short/long lived FTP, UDP and web connections, mul-
tiple bottleneck configurations, and various TCP flavors and
parameters, show the effectiveness of our strategy.

The paper is organized as follows. Section II gives some
background on TCP congestion control, active queue manage-
ment and explicit congestion indication in the Internet. Sec-
tion III discusses related work. Section IV explains and mod-
els our algorithm, and section V simulates it in a number
of network configurations with various parameters. Finally,
section VI summarizes our conclusions and discusses future
work.

II. BACKGROUND

We first summarize the TCP congestion control mecha-
nisms, and then discuss active queue management and explicit
congestion notification.

A. TCP Congestion Control

A TCP connection begins in the “slow start” phase [1]. The
sender initially sets its congestion window, cwnd, to 1 or 2 seg-
ments [12]. For each ACK received, the cwnd is increased by
one segment, resulting in an exponential increase of the cwnd
over round trips. TCP uses the slow start threshold,ssthresh,
to indicate the appropriate window size depending on cur-
rent network load. The slow start phase continues as long as
cwnd is less than ssthresh. As soon as it exceeds ssthresh,
TCP goes into “congestion avoidance.” In congestion avoid-
ance, for each ACK received, cwnd is increased by 1/cwnd
segments, which is approximately equivalent to increasing the
cwnd by one segment every round trip (an additive increase).
The TCP sender assumes there is congestion when it times out
waiting for an ACK or when it receives 3 duplicate acknowl-
edgments. ssthresh is halved (a multiplicative decrease). The
Additive Increase Multiplicative Decrease (AIMD) system has
been shown to be stable under certain assumptions [14], [15],
[16].

B. Random Early Detection

RED maintains a long term average of the queue length
(buffer occupancy) of a router using a low-pass filter. If this



average queue length falls below a certain minimum thresh-
old, all packets are admitted into the queue. If the average
queue length exceeds a certain maximum threshold, all incom-
ing packets are dropped. When the queue length lies between
the minimum and maximum thresholds, incoming packets are
dropped/marked with a linearly increasing probability up to
a maximum drop probability value, ������� . RED includes an
option known as the “gentle” variant. With gentle RED, the
packet drop probability varies linearly from �����	� to 1 as the
average queue size varies from 
�� ����� to twice 
�� ���	� .

C. The ECN Mechanism

The Explicit Congestion Notification (ECN) option [11],
[13] allows active queue management mechanisms such as
RED to probabilistically mark (rather than drop) packets when
the average queue length lies between two thresholds, if both
the sender and receiver are ECN-capable (determined at con-
nection setup time). In this case, the receiver echoes back
to the sender the fact that some of its packets were marked,
so the sender knows that the network is approaching a con-
gested state. The sender should therefore reduce its conges-
tion window as if the packet was dropped, but need not reduce
it drastically, e.g., set it to one or two segments [13]. The
sender should only react once per RTT to congestion indica-
tions. With ECN, both gentle RED and vanilla RED mark
(not drop) packets when the average queue size lies between
the two thresholds, but gentle RED drops less aggressively be-
tween the maximum threshold and twice the maximum thresh-
old. The main advantages of ECN are that TCP does not have
to wait for a timeout and some packet drops can be avoided.

III. RELATED WORK

A number of studies have been conducted on RED and ECN
performance. Variations of RED include flow RED [7], stabi-
lizing RED [8], and BLUE [17]. The effect of RED parameter
values on web traffic is studied in [9], and the effect of mark-
ing from the front of the queue is investigated in [10]. A re-
cent performance study on ECN with real traffic is presented
in [18]. Ott [19] investigates ECN with various response al-
gorithms. The study considers environments where non-ECN
compatibility is not required and the marking rate can be in-
creased, as with the REM, AVQ and PI controller proposals.

Design of AIMD algorithms has also been an active re-
search area. The additive increase ( � ) and multiplicative de-
crease ( � ) parameters have been studied in early work [14],
[15], but more recently Yang and Lam [20] have derived the
relationship between the two parameters necessary for TCP
friendliness. They recommend 0.875 ( ������������ ������� ��!��� )
for multiplicative decrease and 0.3125 for additive increase as
a response to loss (not as a response to ECN). In [21], [22], the
authors propose equation-based congestion control (based on
TCP models in [23]) and compare it with TCP using a num-
ber of AIMD parameters. The authors use a slightly different
relationship between the additive increase and multiplicative
decrease parameters from [20] (they use �"�

#%$ �'&)(
*

�,+�( which
gives smaller � values than that in [20] for the range of �
values we are interested in). As in [20], the authors of [22]
focus on AIMD parameters in general, and not in the context
of ECN as we do in this paper. Another class of AIMD algo-

Fig. 1. Pseudo-code for ECN with modified AIMD parameters

When an ACK with ECN is received:
Reduce ssthresh and cwnd by ��-/./0
Set IncreaseSlope to � -/./0

On a timeout or 3 duplicate ACKs:
Reduce ssthresh and cwnd normally
Reset IncreaseSlope to 1

Congestion avoidance:
cwnd = cwnd +

1'2�35476 �	8 6,9;:=<?>@635A�2;B

rithms, binomial algorithms, is studied in [24] for streaming
applications.

A study that investigates the response to ECN without
changing the marking rate is [25]. The authors propose an
algorithm to react to ECN and at the same time remove TCP’s
bias to short RTT connections by modifying the window in-
crease slope to become proportional to CED!D �

(hence the rate
increase slope is proportional to C D�D ). The main problem
with [25] is that RTT bias elimination should be independent
of ECN marking. Further, the algorithm is not TCP-friendly
and is highly sensitive to the RED maximum drop probability.
We address each of these issues in our work. We only study
the ECN reaction, however. Differentiated services with intel-
ligent traffic conditioners have addressed the RTT sensitivity
problem in [26].

IV. PROPOSED ECN ADDITIVE INCREASE
MULTIPLICATIVE DECREASE BEHAVIOR

In this section, we describe our new ECN response algo-
rithm and model it in connection with active queue manage-
ment (AQM) routers such as RED.

A. New ECN Response

The main objective of this algorithm is to modify ECN re-
sponse in order to improve throughput, reduce rate fluctuations
and reduce delay variance. The pseudo-code for the basic al-
gorithm is given in figure 1. The algorithm uses 2 parameters

�F-/.G0 and �H-/.G0 to indicate the required increase and de-
crease parameters. Our performance study indicates (in sec-
tion V) that (0.2,0.875) are good choices for ( � -/.G0 , � -/.G0 ).
The algorithm reduces the congestion window and slow start
threshold by �H-/.G0 in response to an ECN-marked packet, and
uses a modified slope IncreaseSlope in the ensuing congestion
avoidance phase. The increase slope is set to � -G./0 with ECN,
and reset to 1 with a timeout or receipt of 3 duplicate ACKs.
Note that the congestion window increase and decrease fol-
lows TCP algorithms for all congestion indications other than
ECN. Thus, � -/./0 need not be reset with timeouts or 3 dupli-
cate ACKs. The main idea is to match the use of the additive
parameter with the corresponding decrease parameter that was
applied. This less aggressive ECN decrease is more consistent
with the use of ECN as an early warning sign, giving incen-
tives for hosts to become ECN-capable. We call this algorithm
ECN( �JI � ).
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Fig. 2. Evolution of window size including ( ������� ,
� ����� ) for ECN

B. TCP Sending Rate

We extend the TCP sending rate model developed in [27],
[23] to include the new response ( � -/./0 , �H-/./0 ) to ECN.
With the new ECN behavior, there are three congestion in-
dication types: ECN, TD (Triple-Duplicate ACKs) and TO
(Time-Outs). Figure 2 shows a sample evolution of win-
dow size using (1, 0.5) for triple duplicate acknowledgments
and ( �F-/.G0 , �)-/.G0 ) for ECN. D $ ��� �
	 � * and D�-G./0 represent the
amount of data sent during periods starting after TD and ECN
respectively.

We use the same notation as in [23]. The sending rate (or
bandwidth) � is defined as in [23] except that �� ��� is divided
into �� D $ ��� ��	 � * � and �� D�-/.G0�� , and �� ��� becomes �� � $ ��� �
	 � * �
and �� �E-/.G0�� . We introduce � which denotes the fraction of
ECN indications among the sum of ECNs and TDs. Note that
ECN indications are only counted once per round-trip time.�� D $ ��� ��	 � * � and �� D -/./0 � represent the mean number of pack-
ets sent during a TDP (a period starting from Triple-Duplicate
ACKs up to the next congestion indication) and ECNP (a
period starting from ECN up to the next congestion indica-
tion) respectively. Similarly, �� � $ ��� �
	 � * � and �� � -G./0 � are the
mean durations of TDP and ECNP respectively. � is the prob-
ability that a loss indication ending a TDP is a timeout; �� C��
represents packets sent during timeout sequence; and ������! "�
is the duration of the timeout sequence as in [23]. Therefore,
the sending rate � can be modeled as:

�"� #%$'& �)(%�� D $ ��� �
	 � * �)*+�,�� D -/.G0 �)*-� �.�� C��#%$�& �)(%�� � $ ��� ��	 � * �)*/�0�� � -/.G0 �1*2� �3���� �! � (1)

where � �
2 $ -/.G0 *2 $ �!4 * + 2 $ -/./0 * and � #65 ( denotes the number

of congestion indications by method
5

. � is defined as the
total congestion indication probability, including � # 87:9;( ,
� # D�<�( and � # D�=>( . �� D $ ��� �
	 � * � and �� � $ ��� ��	 � * � are equal to�� �>� and �� ��� in [23] respectively. �� D�-/.G0�� and �� �!-G./0'�
can be obtained from �� �>� and �� ��� in [20]. The value of?
, the number of packets acknowledged by a single ACK, is

set to 2 as in [23]. We use approximated forms to simplify
computations:

�� D $ ��� ��	 � * ��� $�& �
� * @ AB � (2)

�� � $ ��� ��	 � * ����C D�D # @ AB � * $ ( (3)

�� D -/.G0 ��� $�& �
� * @ � -/.G0#%$�& � �

-G./0 ( � (4)

�� � -/.G0 ��� C D�D #DC A #E$�& � -/./0 (
�F-/./0 #%$ * �)-G./0:( � * $ ( (5)

From (1) to (5) (we also remove the F7:9 subscript),

�"� ��& >> * #E$�& �)(HG I# > *+� G J$ ��& (LK * > *-� ���& >

C D�D #D#%$M& �)(HG I# > *+� G I $ ��& (
*J $ �,+�(
* > * $ (N*-� D ��O $ > *�'& >

(6)

� can be approximated for small values of � as:� # CED!D�I �GIE�)(QP $
C D�D #D#%$M& �)( G I ># *+� G I $ �'&)(

* >J $ ��+�(
* (R* D <DSUT (7)

where D <DS�T � D �HV.W � #%$ I B @ B �A ( � #E$ * B,X � � (
C. RED-ECN as a Feedback Control System

We model � modified ( � -/./0 , � -G./0 ) TCP flows sharing
a single RED-ECN router as in [28] to determine the equilib-
rium point

# ��8 I Y 8 ( where �H8 is the packet drop/mark proba-
bility and Y 8 is the average queue length in steady state. We
extend [28] to model ECN( �JI � ) at the sender and RED-ECN
at the router. RED serves as a feedback control system in
this context. Unlike previous work, we consider a RED-ECN
router that can both mark and drop in different ranges of av-
erage queue length (as the ECN proposal specifies). Assume
the modified TCP flows have the same average round trip time
C D�D , such that C D�D � C D�D � * Y[Z  , where C D�D � is the
propagation time that excludes queuing delay and Y[Z  repre-
sents queuing delay.  is the bottleneck link capacity and Y is
the average queue size.

The modified TCP sending rate from section IV-B is used to
represent the bandwidth, \� , in two different modes, marking
and dropping, as a function of � :\� # C D�D�I �GIE�)( �^] � # CED!D�I �GI $ ( �`_ �ba �)������ # CED!D�I �GI �L( �bc �)����� (8)

Assume that the link bandwidth is fully utilized:\� # C D�D � * Y[Z  I �/ID�0( ���Z � (9)

At the router, we use RED-ECN, d # Ye( , as a feedback control
function in the “gentle” mode defined in section II-C. � de-
notes the maximum queue size. Note that RED-ECN marks
packets when Y@�gf 2 a Yh_iY%����� , but drops packets whenYFjkY%����� :
d # Ye( �mlnno nnp

� �`a Y8_qY �gf 2r & rtsNuwvrtsNxEy & rtsRuzv � ����� Y �gf 2 a YF_qY �����
�'& > s{xEyrtsNxEy # Y & Y ���	� (N* � ����� Y ����� a YF_ X Y �����$ X Y@�����`a Y|aq�

(10)
Finally, we have two relations between � and Y . One is from
the inverse function of \� in (9) and the other one is from (10):] Y �  # \� & � # �GI �Z �N( & C D�D � (� �}d # Ye( (11)

The equilibrium point
# � 8 I Y 8 ( obtained from the above equa-

tions is illustrated in figure 3. Note that the
5

-axis on the figure
is divided into two parts, corresponding to marking and drop-
ping.
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Fig. 5. Predicted versus simulated throughputs

D. Prediction versus Measurement

We run simulations using ns-2.1b6 [29] on the simple con-
figuration shown in figure 4 in order to investigate the effec-
tiveness of the throughput and feedback models proposed in
the previous sections. We use 20 unlimited FTP TCP connec-
tions with 5 sessions at each sending node. The timer granular-
ity is 100 ms and the segment size is 1000 Bytes. Gentle RED
(described in section II-C) is used. A buffer size of 168 kBytes
is used where the 
��)����� value is 14 kBytes while 
��)����� is 42
kBytes. Total simulation time is 100 seconds.

We examine the accuracy of the throughput model for var-
ious number of flows (figure 5). The

5
-axis indicates simula-

tion values while the � -axis represents predicted values from
our throughput model. The closer the points are to the � � 5
line, the more accurate the model is. The figure shows that our
model predicts throughput values not too far from the simu-
lated ones.

We also compare the steady-state equilibrium points# � 8 I Y 8 ( acquired from our model with simulation measure-
ments. Figure 6(a) depicts the steady-state equilibrium point# ��8 I Y 8 ( predicted by the model. The predicted Y and � �d # Ye( from equation (11) intersect at approximately (0.08, 40).
The model � � d # Ye( uses 14 packets as 
�� �gf 2 on the y-axis,
42 for 
��)����� , and 84 for

X 
��H���	� used in “gentle” RED. RED-
ECN marks if �;_ �H������� � � $ and drops if � j �H������� ��� $ .
Figure 6(b) illustrates that the actual average RED queue size
(from the simulations) lies between 40 and 42 kBytes. The
measured packet mark/drop probability over the entire simu-
lation is approximately 8% (not shown). This verifies that our
model works well with an active queue management scheme
such as RED-ECN.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 Q
ue

ue
 S

iz
e 

(P
ac

ke
ts

)

Marking/Drop Probability P

Model q(p)
Model p=H(q)

(a) Prediction of steady-state
average queue

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 S

iz
e 

(P
ac

ke
ts

)

Time (sec)

Average Queue
Actual Queue

(b) Actual average queue size
from simulation
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V. PERFORMANCE ANALYSIS

We first discuss the simulation setup and the performance
metrics, and then analyze the results.

A. Simulation Setup

The network simulator ns-2.1b6 [29] is used in this study.
We use the Generic Fairness Configuration-2 (GFC-2), illus-
trated in Figure 7, which contains multiple bottlenecks and
connections with different round-trip times. We use D = 5
ms. There are a total of 22 unlimited bulk-data FTP TCP
connections in each direction, 6 UDP connections modeled as
0.5 Mbps CBR (Constant Bit Rate), and 22 Web traffic flows.
The web traffic is generated using a Poisson Process where the
inter-object, inter-page and inter-session times are defined by
an exponential distribution. Simulation time is 60 seconds.

We use a timer granularity of 100 ms and a segment size of
1000 bytes. All routers in our simulations use gentle RED with
packet marking for ECN [30]. As previously explained, with
gentle RED, the packet drop probability varies linearly from
�H����� to 1 as the average queue size varies from 
�������� to twice

�� ����� . The buffer size used is 168 kBytes. The 
�� �gf 2 value
used is �� � � the buffer size and 
�� ����� value is �I � the buffer
size (

B � 
��)�gf 2 ) as recommended by RED designers [30]. We
run 5 simulations and average them. We fix the random num-
ber generator seed for each run to obtain comparable results
when we compare different algorithms.

We use the following performance metrics: (1) Goodput
(Mbps): Total data received at the application level by all
receivers during the simulation time, divided by the simulation
time; (2) Packet Drop Ratio: The ratio of dropped packets
to the total number of packets sent during the simulation time;
and (3) Response Time (seconds): The (mean and maximum)
time between when the request of a web client is triggered
and when the last requested page from a server arrives at that
client.

B. Results and Discussion

Table I shows the performance of TCP-Reno without ECN,
with ECN, and ECN( �JI � ) for the GFC-2 configuration. We

B(1) D(1) E(2)
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A(1) F(1) B(1) H(2) C(3) G(7)
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Fig. 7. The Generic Fairness Configuration-2



use �F-G./0 of 0.2 and �H-/.G0 of 0.875 [22] in this set of simu-
lations. From the table, it is clear that ECN( � I � ) exhibits bet-
ter performance than TCP-Reno without ECN or with ECN.
ECN( � I � ) total goodput (HTTP, FTP and UDP) is around 4
Mbps higher than TCP-Reno without ECN and around 3 Mbps
higher than TCP-Reno with ECN. In addition, ECN( �JI � ) ex-
hibits the shortest mean response time for web traffic. With
respect to packet drop ratio, ECN( � I � ) achieves significant
improvement over TCP-Reno without ECN and with ECN for
various traffic types.

B.1 Responsiveness of ECN( � I � )

Although ECN( �JI � ) achieves higher performance than
TCP Reno without ECN or with ECN as shown above, the
less dramatic reduction of congestion window as a response
to ECN in ECN( �JI � ) may cause slow responsiveness to a
sudden surge of traffic. Recently, equation-based congestion
control such as TFRC [21] has been shown to respond ade-
quately to dynamic congestion because of the self-clocking
mechanism [24]. In order to investigate the responsiveness
of ECN( � I � ), we add 10 unlimited bulk-data sessions to the
GFC-2 configuration. These additional sessions all start trans-
mission after 20 seconds of the simulation time, and stop at
time 40 seconds (20 seconds before the 60-second simulation
ends). The RED drop probability without ECN, and the mark
or drop probability with ECN, at the queue at the links from
R2 and from R3 are shown in figure 8 for the 3 algorithms
(in separate simulation runs). We do not observe significantly
more high values with ECN( �JI � ) than with ECN during the
period of sudden congestion. Table II indicates that ECN( � I � )
outperforms TCP Reno without ECN and with ECN in this
scenario as well for ( � I � ) = (0.2,0.875).

B.2 Effect of �F-/.G0 and �H-/.G0
This section explores various pairs of ( � -G./0 , �)-G./0 ) val-

ues to investigate their effects on performance. All param-
eter values other than � -/./0 and � -/./0 are set as before.
All the ( � -/./0 , � -/.G0 ) pairs used follow the rule proposed
in [22] except for (1,0.9). We choose (1,0.9) to compare val-
ues that follow the rule in [22] with a more aggressive ( � -/.G0 ,

� -G./0 ) pair. From table III, we see that (0.1, 0.9355), (0.2,
0.875), (0.4, 0.7647) and (0.8, 0.5789) show marked good-
put improvement over (1, 0.5) (with (0.2, 0.875) performing
best). ( �F-G./0 , �)-G./0 ) values that follow the TCP-friendly
rule achieve good performance in terms of goodput as well
as Web response time. Although (1, 0.9) exhibits competitive
performance, its aggressiveness may be harmful to other TCP
connections.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have modified the TCP response to ECN
marks using ECN as an early warning sign. We use a more ag-
gressive short term behavior, while preserving the long term
behavior equivalent to packet drop. We model the through-
put and steady-state drop/marking probability to consider the
modified TCP response to ECN, verify that our model is accu-
rate. Our simulation results in a multiple bottleneck scenario
with bulk FTP, bursty web connections and UDP have shown
that our ECN response strategy does indeed reduce fluctua-
tions, improve goodput, and reduce delay, thus providing in-

centives for host ECN-compliance. The increase and decrease
parameters (0.2, 0.875) appear to be the best choice for pre-
serving the long-term behavior of TCP and achieving the op-
timum performance.

A number of issues remain to be studied. In terms of eval-
uating the effect of the increase and decrease parameters �
and � , Floyd [22] shows that the bandwidth ratio of AIMD

with ( � , � ) is
�

�,+�(���� J� #
�
$ ��& (

* times the goodput of AIMD with

(1,0.5). The drop ratio of AIMD with ( � , � ) is also shown
to be J � $ �,+�(

*
#
�
$ �'&)(

* times packet drop ratio of AIMD with (1,0.5).
We will model ECN( � , � ) similarly and compare its behavior
to ECN(1,0.5). We are also evaluating the use of feedback
information to adapt the traffic conditioner at a differentiated
services ingress edge router [26].
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