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Abstract—Network monitoring capabilities are critical for both
network operators and networked applications. In the context of
an experimental test facility, network measurement is important
for researchers experimenting with new network architectures
and applications, as well as operators of the test facility itself.
The Global Environment for Network Innovations (GENI) is a
sophisticated test facility comprised of multiple “control frame-
works.” In this paper, we describe the design and implementation
of S

3 Monitor, a scalable and extensible monitoring service for
GENI. A key feature of S

3 Monitor is a flexible design that
allows easy “plug in” of new network measurement tools. We
discuss our deployment experiences with S

3 Monitor on GENI,
and give experimental results to quantify the performance and
system footprint of S

3 Monitor. We find that the S
3 Monitor

service is light-weight and scales well as the number of paths to
be monitored increases.

I. INTRODUCTION

End-to-end network measurements such as delay, loss, and

available bandwidth are essential for network monitoring, eval-

uation of network architectures, and optimizing and managing

network services. The importance of a planned measurement

infrastructure that can be shared among multiple users and

applications is well-recognized [1], [2], [3], [4], [5], [6], [7]. In

the Global Environment for Network Innovations (GENI) [8],

monitoring and measurement are critical to both infrastructure

operators for fault localization and tuning, and for experi-

menters using GENI for their networking research. Sharing

a network measurement service can significantly reduce mea-

surement overhead, increase accuracy, and remove the burden

of performing network measurements from individual users.

In this paper, we describe the design, implementation, and

operational experience with a system, the Scalable Sensing

Service (or S3 Monitor for short), that provides a framework

for users to take controlled active measurements between

GENI [8] nodes. The system significantly extends our pro-

totype service [9] deployed on PlanetLab [10], and ports it to

the GENI environment with its multiple control frameworks.

A key feature of our design is extensibility, allowing the user

to utilize arbitrary measurement tools, as long as they are

adequately described, and we give such a description mecha-

nism. For example, to measure available bandwidth between

two GENI nodes, the user may choose to use pathChirp [11],

pathload [12], Spruce [13], or develop and use a new tool.

Similarly, to measure bottleneck capacity, the user may select

pathrate [14], CapProbe [15], or other approaches [16], [17],

[18]. A second key feature is portability, as the resources

available via GENI are heterogeneous. We describe our expe-

riences in creating a portable yet flexible and small-footprint

distributed measurement system using interpreted code with

minimal run-time requirements.

The S3 Monitor service includes a web interface for users to

schedule measurements across GENI nodes, manage ongoing

measurements, and retrieve measurement results [19]. The

service manages the dissemination of measurement schedules

to GENI nodes, and the retrieval of measurement results from

these GENI nodes on behalf of the user. Measurement results

are stored in a repository by the system for later reference until

purged by the user. A GENI experimenter can therefore deploy

our service to a GENI experiment, and use its facilities to

collect network measurements within the experiment “slices.”

The remainder of this paper is organized as follows. Sec-

tion II gives some background and outlines the goals of

our system. Section III gives an overview of the system

architecture. Section IV describes our extensible design and

implementation that allow using new measurement tools.

Section V quantifies the system performance and resource

utilization using a set of benchmarks. Section VI discusses

the lessons learned from our experiences with the system im-

plementation and deployment. Section VII summarizes related

work. Finally, Section VIII concludes the paper and discusses

future work.

II. BACKGROUND AND GOALS

Network measurement data is most useful if measurements

can be requested by users on-demand at desired times and

frequencies, using desired measurement tools. While several

studies have researched or developed measurement infrastruc-

tures, e.g., [1], [3], [4], our approach is guided by the obser-

vation that the utility of a measurement service is significantly

increased by the extensibility of the queries it can answer, as

well as its graceful handling of heavy measurement request

load.

Previous work either does not allow on-demand requests,

uses hard-coded measurement tools, or lets each user indepen-

dently invoke measurement tools and then places static filters

on their traffic. In contrast to these extremes, we have designed978-1-4673-0298-2/12/$31.00 c© 2012 IEEE



and implemented an extensible yet safe service for handling

on-demand measurement queries. Our S3 Monitor service is

tailored to GENI experimenters. Before discussing our design

goals, we present a brief overview of the GENI infrastructure

to introduce the terminology used throughout the paper.

A. GENI: The Global Environment for Network Innovations

GENI is a National Science Foundation initiative for creat-

ing a Global Environment for Network Innovations to foster

research and experimentation with emerging network archi-

tectures. GENI provides a collaborative and exploratory in-

frastructure to network researchers, also referred to as experi-

menters, for performance evaluation and correctness validation

of their proposed network architectures and systems. GENI ex-

perimenters can request and create virtualized custom network

environments, called slices, consisting of programmable hosts

from different clusters, also known as control frameworks

or aggregates. Current aggregates include PlanetLab [10],

ProtoGENI (with nodes in Utah and Kentucky) [20], and

Million Node GENI [21]. The GENI infrastructure can connect

the end-host resources using a programmable network within

the cluster, or federate across multiple clusters over a wide-

area backbone network.

The resources for a slice (including the hosts and the con-

nectivity among them) are requested using GENI’s resource

specification language, an XML format called RSpec [22]. The

user can describe his/her own configuration of resources in

RSpec, and use it to request a GENI slice. In response to

the slice request, the user receives a manifest (following a

related RSpec schema) that contains slice-specific information

about the allocated resources (e.g., dynamically assigned IP

addresses, host names, and node names). There are different

services available in the GENI framework to allocate network

resources described in the RSpec. All these services also pro-

vide a manifest in response, describing the allocated resources.

B. Design Goals

The deployment of our measurement service on GENI

clusters and the need to make the service available to ex-

perimenters imposed several constraints on the design. There

were three key requirements from prospective users of the S3

Monitor service:

• Portability: The GENI infrastructure has multiple clus-

ters. Since the experimenters need flexibility to test out

their research ideas on different clusters, we designed

our S3 Monitor service to be portable across clusters.

Even within each cluster, our service had to be portable

across a variety of hardware and software platforms (e.g.,

operating systems, network connectivity).

• Extensibility: As GENI experimenters develop and test

new network protocols and services on the GENI clusters,

they may also need to develop novel measurement and

monitoring tools. Hence, all components of S3 Monitor

service should provide an extensible framework and APIs

to allow the ability to plug-in, control, collect, and

query data from these new tools. There should be no

requirement that the tools are written with S3 Monitor

integration as a design goal. Instead, S3 Monitor should

have the capability of utilizing third-party tools directly.

• Management and experiment plane separation: The

GENI clusters allow an experimenter to request net-

worked resources with particular features and network

connectivity. During the course of an experiment, S3

Monitor measures the network properties of the ex-

perimental plane. GENI experimenters often vary the

testbed/slice network, sometimes even disconnecting

some nodes in the topology, to evaluate their research.

Hence, S3 Monitor is designed to support a separate

management plane that maintains connectivity with ex-

perimental nodes to control the measurements.

C. Design Decisions

Based on the above requirements, we made the following

design decisions for architecting the S3 Monitor service. These

also reflect the enhancements we had to make to our earlier

prototype [9] for GENI deployment:

• Support GENI RSpec: The GENI control framework

teams have been working on the definition of a resource

specification called RSpec [22] that can be used by exper-

imenters to allocate resources for their experiments. The

S3 Monitor service takes the manifest file generated by

the resource allocation process as input to collect meta-

data about the measurement setup for the experiment.

This meta-data will be used to control and configure

measurement requests.

Fig. 1 depicts the interaction between a GENI experi-

menter and the S3 Monitor service during experiment

setup.

Fig. 1. Experiment Setup with S3 Monitor.

• Sensor pod portability and extensibility: The porta-

bility requirement described above is most critical to the

implementation of the sensor pod. The sensor pod service

was re-implemented in interpreted Python with minimal

external run-time requirements to support a wide variety

of platforms. Further, in order to make the sensor pod as

extensible as possible, new sensors may be bound to the

pod by experimenters at run-time.

• RSpec-based sensor deployment: GENI RSpecs de-

fine mechanisms for installing software on GENI nodes



Fig. 2. S3 Monitor Architecture

during experiment initialization. We provide support for

installing the sensor pod using this interface.

• Web services-based data acquisition: The separation

requirement between the management and experimental

planes entailed a design where a web portal is provided

to the experimenter, and the portal interfaces with a

management server that interfaces with the GENI nodes

using a service-oriented architecture, as discussed in the

next section.

III. SYSTEM ARCHITECTURE

According to our design goals and strategies discussed

above, S3 Monitor is divided into two primary components

(depicted in Fig. 2):

1) Sensor pods: A sensor pod is a light-weight web service-

enabled framework which hosts pluggable measurement

sensors (e.g., ping, pathChirp [11], tulip [23]). The

sensor pod executes on each node that serves as an end

point (source or sink) of a measurement. The sensor

pods can be deployed on GENI nodes, where a GENI

node is a reserved node used by a GENI experimenter.

2) Sensing information manager: The sensing information

manager is the application with which the user interacts.

The manager triggers measurements on the sensor pods

and collects measurement data. It includes a web appli-

cation (portal), written in Java. The sensing information

manager can be installed on any host which can establish

communication with the GENI nodes hosting sensor

pods.

A. Sensor Pod

Fig. 3 depicts the components of the sensor pod. The sensor

pod processes requests from the sensing information manager

via a built-in web server. The services on the sensor pod are

written in Python, and contain a framework for plugging-in

sensors. Sensors extend the interface provided by S3 Monitor

to manage measurement tools. Each sensor is responsible for

execution of its measurement tool, data collection, and clean-

up.

The sensor pod includes the following modules:

• Sensors are invoked by S3 Monitor to measure properties

such as latency, loss, bottleneck capacity, and available

bandwidth between two nodes. Each sensor provides

three functions. It performs the measurement requested by

the user, processes and returns the measurement results,

and frees up any measurement-related resources when it

completes.

• The Sensor Interface provides the framework for support-

ing run-time binding of pluggable sensors. The measure-

ment results collected by the sensors are relayed back

to the sensing information manager via the Python CGI

module.

• The Python CGI module provides the back-end web

service to process measurement requests invoked by

the sensing information manager. It includes scheduling

and invocation services for taking instant (non-scheduled

measurements requested by the user in real-time) and

periodic (repeating measurements scheduled in advance)

measurements.

• The Data Repository has measurement data collected by

the Python CGI module during periodic measurements

for later retrieval.

B. Sensing Information Manager

The sensing information manager is a web portal that

provides management facilities to control the sensor pods and



Fig. 3. Sensor Pod Architecture

maintain measurement data. Fig. 4 depicts the components

of the manager. The manager is implemented as a collection

of Java servlets running under Apache Tomcat. These servlets

provide a user interface for binding sensor pods to S3 Monitor,

scheduling measurements, and retrieving measurement results.

The complete web application combines static HTML content,

the Java servlets, and client-side JavaScript to offer complete

control of S3 Monitor. The S3 Monitor Application component

processes the user queries and commands from the web

application, and interacts with various sensor pods to invoke

measurements and collect results.

As mentioned above, the sensing information manager sup-

ports two methods for sensor interaction. Users may request

either instant or periodic measurements. Instant measurements

invoke sensors immediately and return their results via the web

application in real-time. Periodic measurements are scheduled

for future (possibly repeating) invocation, and their results are

collected for later viewing. Fig. 5 depicts a sample screen

shot of the user interface for querying and displaying periodic

measurement results.

Fig. 4. Sensing Information Manager Architecture

IV. PORTABLE AND EXTENSIBLE SENSOR PODS

As described in Section III, the S3 Monitor sensor pod

provides a framework for hosting S3 Monitor sensors and

communicating with the sensing information manager. Recall

that a sensor is a piece of software which collects information

about some network property, and that the sensor pod software

runs on every host which supplies sensing information to the

S3 Monitor service.

Fig. 5. Sample screen shot showing the interface to display periodic
measurement results

In our previous prototype service [9], the sensor pod was

a monolithic piece of software, with the individual sensor

management routines embedded in the sensor pod itself. In

that architecture, the sensor pod must be modified in order

to add or remove sensors, meaning that modifying the sensor

capabilities of a running pod requires editing the sensor pod

source and re-deploying a new version of the sensor pod. In

the new S3 Monitor sensor pod, the sensor pod offers a plug-

gable sensor interface for which individual sensor management

plugins (hereafter simply sensors) may be supplied. A sensor

consists of a sensor description in XML and a Python module

implementing the S3 Monitor sensor interface which performs

the actual sensing (or invokes an external program to do so).

Our previous prototype service [9] also made use of native

compiled code, which restricted each sensor pod build to usage

on a single platform. Because the sensor pod software must

execute on every host which provides sensor information,

this means that either the sensing hosts must be largely

homogeneous in nature, or a variety of sensor pod images must

be managed and deployed to the appropriate hosts. The new

S3 Monitor sensor pod is implemented entirely in platform-

independent interpreted code, enabling a single sensor pod

build to run on a variety of platforms and greatly simplifying

deployment.

A. Describing Sensors

Sensor plugins consist of two logical components: a sensor

description in XML, and a Python module implementing the

sensor logic. Sensor plugins are dynamically loaded by the

sensor pod at run time, and may be provided either as part of

the pod deployment or by the experimenter. Several standard

sensors are provided with the pod, such as ping for delay

sensing and traceroute for end-to-end path sensing.

The sensor description is a chunk of XML data which

describes the sensor input parameters, output metrics, and

other relevant metadata such as the name of the sensor.

Fig. 6 shows an abridged sensor description schema. The

sensor description is used by both the sensor pod and the

sensing information manager to describe the capabilities and



<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8” ?>

<xs : schema xmlns : xs =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema”>

<xs : e l e m e n t name=”name ” t y p e =” xs : s t r i n g ” />

<xs : e l e m e n t name=” d e s c r i p t i o n ” t y p e =” xs : s t r i n g ” />

<xs : e l e m e n t name=” module name ” t y p e =” xs : s t r i n g ” />

<xs : e l e m e n t name=” p a r a m e t e r”>

<xs : complexType>

<xs : sequence>

<xs : e l e m e n t r e f =”name ” minOccurs =”1” maxOccurs =”1” />

<xs : e l e m e n t r e f =” d e s c r i p t i o n ” minOccurs =”0” />

<xs : e l e m e n t r e f =” t y p e ” minOccurs =”1” maxOccurs =”1” />

<xs : e l e m e n t r e f =” u n i t ” minOccurs =”0” />

<xs : e l e m e n t r e f =” d e f a u l t v a l u e ” minOccurs =”0” />

<xs : e l e m e n t r e f =” max value ” minOccurs =”0” />

<xs : e l e m e n t r e f =” min va lue ” minOccurs =”0” />

<xs : e l e m e n t r e f =” r e g e x ” minOccurs =”0” />

<xs : e l e m e n t r e f =” r e q u i r e d ” minOccurs =”0” />

</xs : sequence>

</xs : complexType>

</xs : e lement>

<xs : e l e m e n t name=” m e t r i c”>

<xs : complexType>

<xs : sequence>

<xs : e l e m e n t r e f =”name ” />

<xs : e l e m e n t r e f =” d e s c r i p t i o n ” />

<xs : e l e m e n t r e f =” t y p e ” />

<xs : e l e m e n t r e f =” u n i t ” />

</xs : sequence>

</xs : complexType>

</xs : e lement>

</xs : schema>

Fig. 6. Abridged Sensor XML Description Schema

<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8” ?>

<s e n s o r>

<name>ping</name>

<d e s c r i p t i o n>Pr ob e s t h e d e s t i n a t i o n wi th ICMP Echo Reques t s</d e s c r i p t i o n>

<module name>p ing . py</module name>

<p a r a m e t e r s>

<p a r a m e t e r>

<name>count</name>

<d e s c r i p t i o n>Number o f p a c k e t s t o send</d e s c r i p t i o n>

<type>i n t e g e r </type>

<d e f a u l t v a l u e >5</d e f a u l t v a l u e>

<r e q u i r e d>f a l s e </ r e q u i r e d>

</p a r a m e t e r>

<p a r a m e t e r>

<name>i n t e r v a l </name>

<d e s c r i p t i o n>Delay between p a c k e t s </d e s c r i p t i o n>

<type>i n t e g e r </type>

<u n i t>sec</u n i t>

<r e q u i r e d>f a l s e </ r e q u i r e d>

</p a r a m e t e r>

</p a r a m e t e r s>

<p r o v i d e s>

<m e t r i c>

<name>l a t e n c y </name>

<d e s c r i p t i o n>Measured round−t r i p l a t e n c y t o d e s t i n a t i o n </d e s c r i p t i o n>

<type>i n t e g e r </type>

<u n i t>msec</u n i t>

</m e t r i c>

<m e t r i c>

<name>l o s s </name>

<d e s c r i p t i o n>P r o p o r t i o n o f p r o b e s ( o r r e p l i e s ) l o s t </d e s c r i p t i o n>

<type>f l o a t </type>

<u n i t></u n i t>

</m e t r i c>

</p r o v i d e s>

</s e n s o r>

Fig. 7. Basic Ping Sensor Description

configuration of a sensor, so in addition to input parameter

names and output parameter value formats, it contains human-

readable descriptions which are presented to the experimenter

via the web interface.

Sensor inputs, or parameters, values which modify the

sensor behavior, are defined by a name used to identify the

parameter and type (integer, string, etc.), as well as optional

properties which further specify their usage. These optional

values include a human-readable description, the minimum

and maximum values and unit in which numeric parameters

are measured (for example, ms or kB), the default value to be

used if none is provided by the user, and a regular expression

which can be used to validate the user-provided value. There is

also an indicator which specifies whether the parameter must

be provided by the user, or is optional.

Sensor outputs, or metrics, are also defined by a name and

type as well as their unit and a human-readable description.

A sensor may provide zero or more metrics of varying type

and unit. Some “well-known” metrics are defined, such as

latency and loss, but sensors may provide metrics of any

kind. By providing for extensible output metrics, users are

afforded the opportunity to use S3 Monitor to manage new

and experimental sensors.

Sensor logic is provided by a Python module which is

likewise loaded at run time by the sensor pod. This module

executes the sensor as an external task according to parameters

defined by the sensor description, then processes its results and

returns those metrics defined in the sensor description.

Fig. 7 shows a sample sensor description for the common

ping tool. The first few lines describe meta-information about

the sensor, such as its identifying name (ping) and a human-

readable description, as well as the name of the Python source

file which implements its logic. Its parameters (count, interval)

and metrics (latency, loss) are listed following this, along with

their type and units.

B. Portability

Deploying the S3 Monitor sensor pod to GENI hosts

presents a more challenging problem than our prototype Plan-

etLab deployment [9] due to portability concerns. The GENI

resources allocated by an experimenter can take the form of

almost any piece of hardware imaginable, from smart switches

to routers to PCs to wireless access points, and in many cases

the operating system or software platform running on the

resource is configurable by the experimenter. The scope of

resources targeted for S3 Monitor sensor pod deployment is

somewhat narrower, consisting of PC-like machines running a

UNIX-like operating system. However, within this scope there

are dozens of operating system images available on several

different hardware platforms.

Our prototype deployment on PlanetLab ran on largely

homogeneous resources, in the form of Intel 32-bit x86 PCs

running a Red Hat 9 operating system image. Our initial

deployment on GENI made similar assumptions, and conse-

quently included a native-code web server as well as several

native-code sensors bundled as binary executables. However,

supporting the broad set of target platforms available on GENI

makes precompiled native code a problematic deployment

method. Therefore, the sensor pod was modified to provide

all of its basic functionality in Python [24], reducing its

platform requirements to a working Python 2.5 interpreter and

a Bourne-compatible shell (for installation and startup).

To accomplish this, two major changes were made. First, the

native code web server was replaced with a pure Python web

server implemented using the Twisted.web [25] networking

engine. Second, Twisted.web itself and other Python code

dependencies were reduced to pure Python code, with any

optional and/or unnecessary native code removed, and these



pure Python support libraries bundled with the sensor pod

software.

This platform-independent implementation, coupled with

a platform-independent installation and invocation process,

allows for simple sensor pod deployment to GENI slices. The

S3 Monitor sensor pod can be directly deployed to hosts

allocated on one GENI aggregate (ProtoGENI) in a fully

automated fashion, by simply including a few lines in the

RSpec resource specification which describes the GENI slice.

For other aggregates completely automated deployment is an

ongoing project, but in the typical case manual deployment

requires only transferring and extracting one archive, and

executing one command.

C. Structured Output

Sensor descriptions (described in Section IV-A) define out-

put metrics in terms of values of a defined type and units, while

the output of many network measurement tools is more or

less ill-defined text. This text may be provided directly to the

experimenter using a unitless string-type metric, but in many

cases it may be appropriate to provide more structured output.

For example, the ping sensor described in Fig. 7 provides the

measured latency to the destination host in milliseconds, as

well as the measured probe loss rate as a unitless proportion.

This structured output serves two purposes. First, the text

output of the “same” tool may vary across multiple platforms.

To continue with our ping example, there are numerous

implementations of the ping tool which provide essentially

the same information with (sometimes subtly) different output

formats. Extracting the salient information for the specific

platform on which the sensor pod is running removes this

burden from the experimenter. Second, extracting the values of

well-known metrics with specified units allows specific sensors

to be somewhat fungible, as long as they provide information

about the metric of interest.

There is ongoing work within the GENI Instrumentation

and Measurement working group [26] to define a network

measurement ontology and a schema for specific metrics, as

well as to provide measurement archival services. Reducing

the output of measurement tools to structured output facilitates

inter-operation with such a system, both simplifying and

encouraging the sharing of measurement data.

V. SYSTEM PERFORMANCE AND FOOTPRINT

S3 Monitor accepts measurement requests, schedules mea-

surements, invokes measurement tools, and stores measure-

ment results. Each of these operations consumes network

bandwidth, disk I/O bandwidth and storage, main memory, and

CPU time across the deployment nodes. To evaluate the impact

of S3 Monitor on these resources, we mimic user behavior

with a web browser emulator and monitor the effect on system

resources. We use the collectl [27] tool installed on GENI

nodes to collect CPU, memory, and disk utilization. Collectl

extracts periodic snapshots of a variety of system properties.

Even with a default monitoring frequency of 1 second, the

overhead of collectl itself is very low (less than 0.1% on most

 0

 5000

 10000

 15000

 20000

 25000

 30000

P
in

g

T
ra

ce
ro

u
te

P
a
th

C
h
irp

P
a
th

ra
te

S
p
ru

ce

T
u
lip

C
o
n
fig

u
re

 M
e
a
su

re
m

e
n
t

D
e
p
lo

y M
e
a
su

re
m

e
n
t

T
im

e
 (

m
s
)

Measurement Tool

Fig. 8. Response times of different measurement tools and operations on
S3 Monitor.

systems) [28]. We use the Selenium web driver [29] to emulate

user measurement queries.

A. Response Time

The response time of a measurement request is defined as

the time elapsed between a user’s measurement request and

the return of measurement results back to the user. Fig. 8

depicts the average response time of different measurement

tools invoked using the S3 Monitor service deployed over

ProtoGENI. We note that the pathChirp tool [11] has the

maximum response time of about 30 seconds. The pathrate

tool [14] can also take significant time but we had utilized its

“quick terminate” mode in this experiment. Most measurement

requests take less than 300 ms. The steps of configuring

and deploying periodic measurements take negligible time,

indicating scalability of S3 Monitor. The parameters used

when instantiating the measurement tools are listed in Table I.

B. System Footprint

Fig. 10 gives results from a 15-minute periodic ping experi-

ment on a small deployment with three nodes. A periodic ping

measurement is configured between every pair of GENI nodes.

The count (number of packets to send) value is 1, interval

(inter-packet delay) is 1 second, and the time period of the

periodic ping experiment is set to 1 minute. We can see that

although the memory consumption of the measurement tool is

quite low, it increases in a linear fashion. The CPU utilization

as shown in Fig. 9 is low, with occasional spikes possibly due

to sensor bindings on new rounds of ping invocation.

Fig. 11 and Fig. 12 show the disk and traffic usage. This

experiment involved a 5-node GENI deployment with periodic

ping measurement requests between all pairs of nodes. A count

value of 10 and interval value of 1 second were used in the

experiment. Three significant disk and traffic spikes can be

seen on the sensing information manager (SIM) corresponding

to the data collection phase via scp (secure copy tool) from the

sensor pods. However, overall, we find our system footprint

to be quite small.



TABLE I
PARAMETER SETTINGS FOR THE TOOLS USED. *(PERIOD: TIME PERIOD BETWEEN INVOCATIONS OF THE MEASUREMENT IN MINUTES)

Tool Parameters Values Description

Ping Period 10 *
Interval 1 The time interval in seconds between successive ICMP echo request packets (ping packets)
Count 10 The number of ping packets sent in each invocation

Traceroute Period 10 *

PathChirp Period 10 *

Pathrate Period 10 *

Spruce Period 10 *
Capacity 100 MB Rough estimate of the path capacity

Tulip Period 10 *
Lag 10 Number of measurement rounds used by the tool on each router along the path

Count 10 The amount of time (in milliseconds) the tool sleeps between successive measurement rounds
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Fig. 9. CPU utilization in a 3-node ping experiment with S3 Monitor
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Fig. 10. Memory usage in a 3-node ping experiment with S3 Monitor

C. Overhead of Sensor Pod Framework and Sensors

The S3 Monitor sensor pod includes the framework which

communicates with the sensing information manager, and the

sensor modules that are dynamically loaded at run-time. To

distinguish the performance overhead of these two compo-

nents, we implement a zero sensor. The zero sensor is a

mock sensor that has a wrapper to interact with the sensor

pod framework but does not consume system resources. We

compare the CPU and memory footprints of the zero sensor

with the ping and traceroute sensors in Fig. 13 and Fig. 14.

The experiment is conducted with the same periodic measure-

ment settings for all three sensors. We note that there is no
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Fig. 11. Disk usage in a 5-node experiment with S3 Monitor

significant difference in the overhead patterns. Based on these

preliminary results, we conclude that that ping and traceroute

sensors are lightweight and do not add significant overhead

over the overhead of the sensor pod framework. Other sensors

are expected to consume more resources.

VI. DEPLOYMENT EXPERIENCE

In this section, we discuss the lessons learned during the

design and deployment of the S3 Monitor service on GENI.

A. Importance of Agile Software Development Practices

The S3 Monitor service has been developed in parallel

with advances and changes in the APIs and support services

of the GENI control frameworks. For instance, the RSpec

schema has undergone two substantial revisions and multiple

minor iterations since the initial implementation of S3 Monitor
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Fig. 12. Control traffic in a 5-node experiment with S3 Monitor
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components. Similarly, during the course of development,

the control frameworks were enhanced to support additional

operating system images. Being able to track the moving

target of requirements and APIs is very important. Hence, we

had to adopt an agile software engineering approach [30],

[31] for the implementation. This alleviated the overhead and

development cost associated with the software development to

support the control framework changes. As mentioned earlier,

the GENI Instrumentation and Measurement (I&M) working

group [26] has been working on standardizing the protocols

and data formats for exchanging measurement data. The agile

development methodology will also aid in making the S3

Monitor service compliant with the I&M standards as they

are released.

B. Balancing Ease of Use and Flexibility

There is a wide variety of experimenters and users of GENI

with varying support requirements from GENI infrastructure

services. Depending on the goal of the experiments they

design, they impose differing requirements and constraints

on the GENI infrastructure services, including monitoring

services such as S3 Monitor. While some users require an

easy to use graphical interface to configure, control and query

S3 Monitor measurements, others require a more flexible

measurement system that allows programmatic (e.g., using

scripts) access to control and query measurements. On the

one hand, the monitoring system’s ease-of-use reduces the

deployment and use barriers for the experimenters. On the

other hand, flexibility allows the users to craft their moni-

toring requests to meet the needs of the experiment. The S3

Monitor service was designed to balance the ease-of-use and

flexibility requirements. The APIs to core components of the

S3 Monitor service were developed with maximum flexibility.

These flexible APIs were used to develop graphical interfaces

for most common usage patterns of the users. In the future,

we plan to support pre-formed templates/macros to further

simplify common operations. We also designed the APIs of

the core services visible to the users keeping in mind advanced

monitoring flexibility.

C. Semantic Error Reporting

The GENI experimenters use network measurement services

such as S3 Monitor for two primary purposes: (1) to study

the performance impact of various network architectures and

conditions in their experiment, and (2) to detect/diagnose the

network path metrics during the course of their experiments.

Many experiments entail injecting network faults and loss

events. Hence, the S3 Monitor service should be able to

correctly diagnose measurement issues that are due to injected

errors and problems with the infrastructure. The results from

this diagnosis need to be appropriately reported back the user.

Similarly, measurement failures encountered by the users

can be due to different reasons. Failures can be the result of

failure of the sensing information manager to access sensor

pods resident on end-nodes, or due to a problem with the

measurement sensor itself. Hence, the S3 Monitor service’s



error reporting feature should correctly report the source of the

problem. It is particularly important for the extensible sensor

pod, which may have user-provided sensors, to distinguish the

two cases.

The S3 Monitor service uses a web services-based interface

to manage measurement tasks on the sensor pods. Several

measurement tools (such as network path capacity estima-

tion tools) can take several seconds to finish under normal

circumstances. Therefore, http fetch timeouts should be set

appropriately, so as not to mistakenly confuse the long delay

waiting for tool completion with a failure to access the sensor

pod.

The sensor pod implementation deployed on GENI is ar-

chitected such that it can report error causes to the user.

For example, the sensor wrappers not only filter out metrics

reported by the tool, but also capture errors of execution and

report these errors to the user. We must also periodically test

the connectivity between the sensing information manager and

the sensor pods in the slice, and report errors about failed or

disconnected sensor pods.

VII. RELATED WORK

The GENI I&M working group [26] has had strong partic-

ipation from several GENI projects. Below, we describe the

three most relevant projects to ours: (1) OnTimeMeasure [32],

(2) LAMP [33], and (3) INSTOOLS [34].

Calyam et al. developed the OnTimeMeasure service for

GENI [32]. The service is based on their earlier work on

measurement orchestration [4], [35]. OnTimeMeasure is the

closest GENI measurement service to ours. Like our system,

OnTimeMeasure supports active measurements, and its basic

orchestration service is similar to our sensing information

manager. Unlike our service, their current system does not

support extensible sensors.

Leveraging and Abstracting Measurements with perf-

SONAR (LAMP) [33] is a project to create an instrumentation

and measurement system, based on perfSONAR, for use by

experimenters on GENI. LAMP is spearheading the I&M

effort to standardize a format for data storage and exchange.

The perfSONAR service on which LAMP is based allows for

the collection of a limited set of active measurements, but

does not provide a facility for handling specific user requests

or scheduling measurements based on user requirements.

Instrumentation Tools for a GENI Prototype

(INSTOOLS) [34] is a project to create a GENI-enabled

testbed based on the existing University of Kentucky Edulab.

INSTOOLS instrumentation capabilities enable GENI users to

better understand the run-time behavior of their experiments.

Currently, INSTOOLS provides data collection capability

for passive measurements (e.g., SNMP). Supported metrics

include traffic statistics, network utilization, and host statistics.

INSTOOLS does not invoke active measurements.

In addition to GENI instrumentation projects, several mea-

surement infrastructures have been developed and prototyped

on other networks or platforms, e.g., PlanetLab [10] or other

TABLE II
A COMPARISON OF SELECTED FEATURES OF RELATED

MEASUREMENT INFRASTRUCTURES.

Name Active / On-Demand Standard User
Passive Tools Tools

S3 Monitor Active yes yes yes

OnTimeMeasure Active yes yes no

INSTOOLS Passive N/A N/A N/A

LAMP Both no yes yes1

Scriptroute Active yes no yes2

iPlane Active no N/A N/A
1 LAMP “measurement points” communicate using a well-defined

protocol, and a measurement tool can be added by providing an
interface in this protocol.

2 Scriptroute can execute user-defined tools, provided they are
implemented in the Scriptroute language.

Internet hosts. We briefly discuss two systems below: Scrip-

tRoute [3] and iPlane [1].

Spring et al. propose a public measurement facility, Scrip-

troute [3], which allows individual users, network managers,

or researchers to conduct network measurements on a shared

measurement mesh, controlled by security and rate-limiting

filters. Scriptroute accepts arbitrary measurements at arbitrary

times and blindly enforces administrative bandwidth and secu-

rity filters, potentially invalidating measurements, before the

probes even leave the measurement host. The measurement

tools invoked by Scriptroute must be implemented in a script-

ing language using Scriptroute-provided primitives for sending

and receiving packets, and the system is not capable of invok-

ing third-party measurement tools. Scriptroute lets individual

users select, configure, invoke, and use the measurement tools.

Our framework eases some of this burden on users, while

retaining the flexibility of using custom measurement tools.

iPlane [1] performs scalable continuous measurements over

a set of Internet paths, and uses them to perform prediction

of path properties. Unlike our system, iPlane performs no

measurements on-demand. Hence, it is unsuitable for trou-

bleshooting transient faults in progress or other tasks which

require real-time results. It does not necessarily invoke stan-

dard measurement tools or present their results to users in a

direct fashion.

Table II compares the measurement infrastructures dis-

cussed in this section. The type of measurements the in-

frastructure manages (active or passive) is indicated, as well

as whether the infrastructure is capable of invoking mea-

surements on-demand, at user-specified times. The final two

columns, Standard Tools and User Tools, indicate whether the

measurement infrastructure is capable of invoking standard

third-party measurement tools (versus requiring specially im-

plemented tools) and whether the infrastructure is capable of

invoking user-supplied tools, respectively.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the requirements, design,

and performance of the S3 Monitor measurement service

deployed on the Global Environment for Network Innovations

(GENI). The service is targeted at GENI experimenters and op-

erators, and therefore must satisfy their requirements. Through



the emphasis on portability and extensibility, we believe that

our service is quite versatile and caters to a wide variety of user

needs. Our evaluation of the system shows that the response

time of the service is rapid (unless the measurement tool itself

is time-consuming), and the system footprint is small.
Our future work plans include a focus on safety. By

safety, we mean that users cannot trigger arbitrarily large

measurement probes that exceed a specified budget. The

careful admission control of measurement requests can allow

the administrators to prioritize the measurements they admit

according to their policies [36]. We also plan to incorporate our

work on measurement inference for increased scalability [37],

[38], [39] and our work on scheduling to reduce interference

among active measurements [40]. We are also currently inte-

grating our S3 Monitor system with the Instrumentation Tools

(INSTOOLS) [34] service on GENI.
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