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ABSTRACT
Microservices enable rapid service deployment and scal-

ing. Integrating poorly-understood microservice compo-

nents into Service Function Chains (SFCs) or graphs limits

a provider’s control over service delivery latency, however.

Orchestration frameworks currently instantiate and place

myriads of microservice components without knowing the

impact of placement decisions on latency.

In this paper, we explore challenges that service providers

encounter in managing complex SFCs, and propose Inve-
nio to empower providers to e�ectively place microservices

without prior knowledge of service functionality. Invenio
correlates user actions with procedure messages in network

traces, and computes procedural a�nity of communication

among microservices for each user action. �e procedural

a�nity values can then be used to make placement decisions

to meet latency constraints of individual user actions. Our

experiments with two microservice-based cellular network

implementations demonstrate that placement with Invenio-
computed a�nity values signi�cantly reduces failures by

bounding message processing latency, resulting in up to 21%

performance gain compared to message count-based place-

ment algorithms, and up to 51% gain over default placement.
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1 INTRODUCTION
Network Functions Virtualization (NFV) has enabled ser-

vice providers to deploy virtualized instances of Network

Functions (NFs) on demand [26]. New service o�erings are

created by adding one or more NFs to a Service Function

Chain (SFC), i.e., a graph of NFs. An existing service can be

extended by adding so�ware modules, whereas unpopular

features can be removed by deleting modules. So�ware ar-

chitectures have evolved to support this rapid pace of deploy-

ment, and disaggregated �ne-grained microservice designs

are now replacing monolithic designs [21, 53].

�e power to rapidly add and delete new services comes at

a cost, however. SFCs are becoming more complex, and the

e�ort associated with service deployment is growing [29, 51,

61, 62]. Service providers, in an a�empt to reduce costs, are

increasingly using private or public clouds to deploy services

that had traditionally been con�ned to a single data center

and had used carefully-designed proprietary hardware. �is

cloudi�cation poses unique challenges to orchestration frame-

works, particularly in instantiating and placing Virtualized

Network Functions (VNFs) in an SFCwith strict Service Level

Agreements (SLAs) [62].

Prior work [45, 48, 49, 55] has shown that network func-

tions (NFs) in systems such as the cellular Evolved Packet

Core (EPC) and IP Multimedia Subsystems (IMS) have strin-

gent end-to-end latency requirements and react poorly to un-

predictable latency variation. Fortunately, service providers
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can leverage their knowledge of NF functionality and metic-

ulously de�ne SFCs [1, 2] to bound the latency. Virtualiza-

tion platforms such as Openstack [41], Kubernetes [34], and

Docker [16] allow administrators to con�gure “a�nity poli-

cies” in NF placement. �e a�nity policies specify which NFs

should be co-located to meet SLA requirements. However,

the increasing use of non-standard interfaces and the ongo-

ing integration of 5G core (5GC) [3] into existing 4G network

deployments is necessitating extensive manual re-analysis

of communication pa�erns. �e diversity of NFs in modern

networks and the new 5GC interfaces make determining the

SFCs involved in service delivery and the communication

a�nities between their constituent NFs a time-consuming

and error-prone task.

NFs with microservice designs further complicate SFCs.

Microservices advocate the use of �ne-grained, independent

components that can be deployed as autonomous entities

communicating via REST-based proprietary interfaces [11,

43]. �is results in disaggregation and decomposition of a

VNF into multiple smaller VNF Components (VNFCs), and

longer, more complex SFCs [21, 62]. Further, lack of stan-

dardization in microservice architectures yields VNFCs that

play roles that do not accurately map to an NF de�ned by

standards. �at is, a VNFC may take the role of several

standard-de�ned NFs and support several network inter-

faces. Conversely, the functionality of a standard-de�ned

NF may be collectively performed by multiple VNFCs. �e

ambiguity in the role of VNFCs implies that placement using

domain knowledge is insu�cient, and we need automated

tools to infer communication pa�erns between microservice

components/VNFCs. Our work ful�lls this need.

We use information exposed by NFs or their components

(VNFCs ormicroservices) to aid providers [29, 51, 61]. Merely

co-locating NFs based on the number of messages they ex-

change [51], however, can yield unexpected results due to

the diversity of workloads. Instead, we propose grouping

events triggered by a user action into procedures, and com-

puting procedural a�nity between NFs. A provider can then

make placement decisions based on procedural a�nity val-

ues, together with procedure type distribution and policies.

For example, a VNFC used during voice calls, but not for

SMS (text-msg), in a cellular network can be placed based

on the currently dominant workload type and its require-

ments. Another example is a drone swarm service [21]. In

the drone swarm service, the orchestrator can choose to col-

locate microservices involved in drone navigation (image

capture, image processing, obstacle avoidance, and motion

controller) to optimize the placement for drone navigation

over routine services such as video upload or logging.

In this paper, we propose Invenio, a system for computing

communication a�nity to aid service providers in deploying

control-plane NFs. Invenio maps user activity at the network

edge to tra�c in the network core and computes procedural

a�nity. Invenio is executed a�er upgrades or policy and

service changes. It analyzes a snapshot of tra�c to com-

pute a�nity values. An orchestrator can then use computed

procedural a�nity values, in conjunction with current pro-

cedure type distribution and policy rules, to make placement

decisions. Invenio empowers providers to optimize place-

ment to meet SLA objectives, even with upgrades in services

and microservices and changing user demands.

In summary, (1) We identify the challenges for a service

provider to meet SLAs (§3) and introduce the notion of pro-

cedural a�nity (§4). (2) We propose Invenio for service

providers to automatically compute procedural a�nity (§5)

a�er isolating messages of a given procedure type for a spe-

ci�c user. Invenio can also check NF interoperability and

diagnose network problems (§7). (3) We experimentally

demonstrate the bene�ts of placement based on procedural

a�nity by applying Invenio to microservice-based cellular

network implementations and measuring the performance of

voice-call and text-msg workloads (§6). We �nd that place-

ment based on Invenio-computed a�nity results in up to

21% performance gain compared to message count-based

placement algorithms, and up to 51% gain over default place-

ment. While our evaluation uses the 4G control plane as

a case study, the principles underlying Invenio are applica-
ble to the service-based architecture of the 5GC and other

microservice-based deployments.

2 MOTIVATION
A control-plane NF can be instantiated on bare metal (as a

Physical Network Function (PNF)) or on virtualized hardware

(as a VNF), and a VNF can be deployed as a collection of

VNFCs. In the rest of this paper, we use the term NF to refer

to all three types of instantiations (PNF/VNF/VNFC), and we

use the terms VNFC and microservice interchangeably.

�e increasing use of clouds to reduce operational costs

has yielded scenarios where NFs in an SFC are deployed

across multiple physical machines in one or more data cen-

ters. Consider Fig. 1 which shows an example microservice-

based cellular network for Voice over LTE (VoLTE) that in-

cludes wireless access, session management, voice-call sig-

naling, policy control (QoS), and billing. Latency-sensitive

NFs (such as signaling and policy) may be connected by high

and unpredictable latency links. An orchestrator that cannot

instantiate the entire SFC in Fig. 1 on a single machine or

rack can identify the NFs exchanging a large number of mes-

sages and place them in close proximity. Modern networks

o�er many services, however, and NFs exchange di�erent

types and numbers of messages to support each service.

Not all services have equal impact on user-perceived la-

tency and QoE. For example, interactive services such as
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Figure 1: A microservice-based cellular network

voice calls impact user QoE more than non-interactive ser-

vices such as text-msg or presence services [54]. Orches-

trators must reduce the end-to-end latency of interactive

services by minimizing the inter-NF latency for NFs han-

dling these services. Simple techniques such as counting

total messages exchanged between NFs [51] are not always

e�ective in making placement decisions as they do not ex-

plicitly consider the impact of inter-NF latency on user QoE.
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Figure 2: Impact of procedure type distribution (Pres-
ence (P), Voice (V), and Text (T)) on number of mes-
sages exchanged between NF pairs in a microservice-
based VoLTE implementation

Fig. 2 shows the percentage of tra�c exchanged by NF

pairs (in our implementation in §6.2) for two di�erent proce-

dure type distributions of voice-call, text-msg, and presence

services. �e plot on the le� uses tra�c proportions from

typical busy-hour IMS tra�c [7] in which presence is trig-

gered ∼9x more frequently than voice. Clearly, exchanged

messages depend on the incoming procedure type distribu-

tion and therefore merely using the number of messages for

placement [51] may optimize non-interactive services such

as presence and degrade user QoE. To meet SLAs for latency-

sensitive services, service providers may (a) create dedicated

NFs to optimize speci�c functionality [48], or (b) decompose

existing monolithic applications into lightweight microser-

vice components, that are then aggregated by functionality

to create NF bundles, and placed together with a higher prob-

ability [55]. Manually identifying and con�guring bundles

can be di�cult and error-prone, however.

Our work empowers service providers to easily and auto-

matically react to upgrades and changing user QoE demands.

Based on prior research [45, 48, 49, 55], we observe that: (a)

NFs typically exchange several messages to complete a seem-

ingly simple user action such as turning on User Equipment

(UE) or making a voice call, and (b) Network endpoints only

perceive latency in the actions they trigger (i.e., end-to-end
latency in Fig. 1) and are oblivious to message exchanges

and inter-NF latency within an SFC. User QoE therefore only

depends on user action/network response pairs, such as ini-

tiating a voice call (action) and hearing a dial tone (network

response), or turning on an Internet connection (action) and

being connected to a packet access network such as LTE

(network response).

3 CHALLENGES
�e goal of Invenio is to facilitate NF placement by leveraging

readily available knowledge of endpoint actions. We group

events or messages triggered due to a single user action into

procedures. We then use this procedure information to com-

pute procedural a�nity (§4) between NFs for each procedure

type. �e procedural a�nity information is used for NF

placement. Since NFs in modern networks exchange numer-

ous messages, manually determining control messages that

are triggered due to a speci�c endpoint (or associated user or

subscriber) action can be tedious and error-prone. We pro-

pose to (a) automatically isolate SFC control messages related

to a user, and (b) map each message to an action invoked by

that user. We describe the challenges in accomplishing these

tasks in the remainder of this section.

Scale and complexity: We need to understand the pro-

tocols and messages exchanged by each NF. For example,

consider a cellular network EPC (including NFs to inter-

work with previous generation networks (2G, 3G) and WiFi).

Such a deployment can involve 60+ NFs communicating

via 15+ protocols over 150+ interfaces using 500+ message

types [2, 15]. While many of these NFs are logical, the sheer

number of NFs, supported protocols, and message types

makes understanding control-plane tra�c di�cult.

User and session identi�cation: Networks such as cel-

lular networks check user (subscriber) identi�ers located in

control messages to determine the user associated with a

device or a network endpoint, and NFs use these identi�ers

to enforce policies and bill users. A user is identi�ed by:

(a) Subscriber-ID: the key used by the network to authen-

ticate a device, identify packets associated with it, and bill

the user, and (b) Session-ID: the key allocated by an NF to

group together messages triggered by a device. Unlike the

subscriber-ID, the value of session-ID is not pre-allocated,

i.e., NFs allocate a value at run-time. Di�erent protocols

and interfaces use di�erent terms to refer to the subscriber-

ID and session-ID carrying headers. Table 1 lists example

protocol headers used by cellular network protocols.

Since the session-ID is dynamically allocated, the relation

between session-ID and subscriber-ID may vary based on

the NFs involved in message processing. When a single de-

vice creates multiple connections at the same time (such as
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Table 1: Example user and session headers

Interface Subscriber-ID Session-ID
Protocol Name Header Name Header Name
SIP Gm [1] To, From Call-ID

Cx [6] User-Name, Session-Id

Diameter Public-Identity

Gx [4] Subscription-Id Session-Id

S1AP [2] S1-MME IMSI, TMSI eNB-UE-S1AP-ID

HTTP/2 N7/N11 SUPI, SUCI pduSessionId

(5G) [3] Rx/N5 SUPI, SUCI appSessionId

in EPC), multiple session-IDs may be allocated to the same

subscriber-ID. Additionally, an EPC/IMS may create a map-

ping between the session-ID and the subscriber-ID, and then

use the two values interchangeably. Fig. 4 depicts an exam-

ple where the IMS network uses the User-Name in the From
header of the SIP protocol [50] to determine the subscriber-ID

while interacting with the user, but further messages gener-

ated due to this user interaction use other protocol headers,

such as the Public-Identity/Subscription-Id [19] used when

communicating with the Policy and Charging Rules Function

(PCRF). A�er receiving the initial message ((2) CCR in Fig. 4a)

from the Policy Charging and Enforcement Function (PCEF),

the PCRF creates a mapping between Subscription-Id and

session-ID. �is mapping identi�es the user in all future mes-

sage exchanges between the PCRF and PCEF (9, 10, 15 and 16

in Fig. 4b omit the subscriber-ID headers and only carry the

session-ID header). �erefore, identifying all messages that

are triggered due to a user action requires understanding the

mapping between session-ID and subscriber-ID.

As in the 4G core, 5GC NFs [3] use headers such as Sub-

scription Permanent Identi�er (SUPI) and Subscription Con-

cealed Identi�er (SUCI) to identify, authorize, and bill tra�c.

A user can create multiple sessions with 5GC data networks

and therefore the 5GC NFs use session headers such as the

pudSessionId in conjunction with the user ID to uniquely

identify user sessions. Example headers used in 5CG are

shown in Table 1. �is shows that Invenio principles are

applicable to the 5GC. When 4G EPC and the 5GC coexist,

the complexity of manual NF placement further increases.

Proprietary microservices: Microservice architectures

use �ne-grained autonomous components, fragmenting tra-

ditional control-plane NFs into multiple VNFCs [29, 61, 62].

�e VNFCs are independently instantiated, and communi-

cate with each other using proprietary message formats. �is

lack of standardization implies that the roles and function-

alities of VNFCs are not well-understood and can change

with new versions, altering their a�nity. Consequently, ser-

vice providers must (re)analyze a�nity whenever NFs are

upgraded or a service is added/removed. Microservices also

result in longer, more complex SFCs, reducing the latency

allowed for each VNFC [21, 62].

While the lack of standardization can complicate map-

ping a given message to a user action, microservices o�en

reuse the subscriber-ID/session-ID in traditional signaling

protocols [36, 44] to facilitate logging and reduce perfor-

mance overhead. For example, the timer service (Chronos)

in Clearwater [44], a popular microservice-based IMS imple-

mentation, uses the “Call-ID” header in Session Initiation

Protocol (SIP) messages to manage timers. �is behavior

can be exploited to trace VNFC-generated messages to user

actions.

Lessons learned: �e above discussion highlights three

consequences for Invenio. First, Invenio should automatemes-

sage and event processing, which should be transformed into

a protocol-agnostic format before further processing. Second,

Invenio should understand the relation between di�erent

identi�ers used by NFs to correlate messages related to the

same user. �is involves understanding the user-identifying

headers used by standard protocols, and correlation of identi-

�ers in proprietary message payloads. �ird, Invenio should
understand user actions and their corresponding responses,

and map each message to a speci�c user action. Since inter-

nal implementations of microservice-based systems change

frequently, Invenio should only use endpoint messages which

follow well-known protocols (such as messages (1) and (2)

in Fig. 1) to map messages to user actions.

4 PROBLEM DEFINITION
Consider sets N ,U ,M , and R, where N represents NFs (PNFs,

VNFs, or VNFCs) in a network,U represents user devices or

end points that utilize the services provided by the network,

M represents messages that can be sent or received by all NFs

in N , and R ⊆ M represents user request messages generated

by a user u ∈ U and responses sent back to users ∈ U .

To utilize network services, a user u ∈ U sends a request

r to an NF in N . A request sent by an endpoint u triggers

the generation of several messagesm ∈ M between a subset

of NFs. We denote this subset by Nr . NFs use a number of

protocols to complete processing user requests. Typically,

an NF will handle a part of the functionality, and forward

messages to the next NF in an SFC. Additionally, an NF may

utilize interfaces exposed by other NFs to acquire informa-

tion needed for processing the message itself. Since we aim

to model messages that are sent/received by each NF, the

manner in which the messages are exchanged is irrelevant

and we model messages of all protocols using the setM .

SetMr ⊂ M represents the messages triggered to handle

a given user request r ∈ R. Mr does not include user-sent or

received messages ∈ R. In addition to the messagesMr that

are generated by an NF to handle a user-triggered request r ,
NFs in an SFC may generate messages that are not handling
a request from u. Such messages include (but are not limited

to) messages generated to synchronize state between NFs,
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and keep-alive or setup/teardown messages. �ese messages

∈ M but < Mr for any r ∈ R. For example, an online charging

message that is generated by an NF to ensure the successful

processing of a user-triggered message r is inMr . An o�ine

charging message that is generated by an NF to later bill the

user for an already processed request is ∈ M but < Mr .

We use the function Ω to de�ne a mapping between the

user-triggered messages and the NFs involved in processing

these messages as well as the messages triggered by NFs to

handle these messages; that is, Ω(r ) = (Nr ,Mr ).
A service request from an endpoint may simply include

a request message rstar t from the endpoint and a response

rend from the network where rstar t , rend ∈ R. However,

there are cases such as challenge-response procedures where

the endpoint may have to respond to multiple requests from

network to complete the initial request. �at is, the sequence

of messages processed by the endpoint to complete a service

request is < rstar t · · · rend >. We use the term “procedure”

to refer to this set of messages, Rp , that are exchanged for

delivering a speci�c service to the endpoints, where Rp =
{rstar t , · · · , rend }.
For a given procedure p, we de�ne Np andMp as follows.

Np =
⋃

r ∈Rp
Nr represents all NFs involved in processing

messages of procedure Rp .
Mp =

⋃
r ∈Rp

Mr represents all messages processed by all

NFs in Np to handle messages of procedure Rp .
�e NFs and messages involved in processing a proce-

dure are typically the same for every instance of a certain

procedure type pt .
Let the c(pt ,nx ,ny ) be the number of messages in Mpt

exchanged between a pair of NFs nx ,ny ∈ Npt for procedure

typept . �e procedural a�nity (referred to simply as “a�nity”

in the remainder of the paper) between NFs nx ,ny is de�ned

as:

Affinity(pt ,nx ,ny ) = c(pt ,nx ,ny ). (1)

Invenio a�nity can easily incorporate additional metrics

by updating Equation (1). For example, the function c(pt ,nx ,ny )
can incorporate the number of the hops traversed or latency

incurred in communicating with a speci�c NF or it can avoid

over-subscribed links. �e function may also be updated to

incorporate licensing or hardware constraints that limit the

placement of network servers such as the Home Subscriber

Server (HSS) and the Online Charging System (OCS).

In summary, Invenio computes Np andMp , determines the

mapping Ω(p) = (Np ,Mp ) for each request r , and identi�es

each procedure type pt and its associated Npt andMpt sets.

�is information is then used in Equation (1) to compute the

a�nity between NFs for every procedure type pt , in order to

place NFs with relatively high a�nity in close proximity. Un-

like the work by Sampaio et al. [51], Invenio a�nity considers

the complete procedure instead of one or a few messages that

are not accurate measures of the entire user experience.

5 INVENIO DESIGN
Fig. 3 shows the Invenio architecture. �e a�nity engine is

executed a�er upgrades. A placement engine can use Invenio
a�nity and execute when a new NF is to be instantiated or

a�er major changes in policies or procedure type distribu-

tion.
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Figure 3: Invenio architecture

5.1 Inputs
NF message stream. Invenio uses messages exchanged be-

tween NFs in an SFC to identify procedures and their as-

sociated messages. Message sequences can be extracted

from network traces or NF-provided information such as

debug logs or a VNF Event Stream (VES) as speci�ed in

ONAP [40] and OPNFV [42]. In the absence of such struc-

tured data streams, Invenio uses tra�c traces from running

PNFs/VNFs/VNFCs. �ese traces can be collected at individ-

ual PNFs where physical infrastructure is used, or at Open

vSwitch (OVS) or Docker bridge in case VNFs are deployed

using virtualization platforms such as OpenStack [41] or

Docker [16].

Invenio uses tra�c snapshots collected a�er microservice

upgrades. Tra�c traces can also be collected during inte-

gration tests [28]. �e a�nity engine merges tra�c traces

in order to compute a�nity values for each procedure type

(Equation (1)). In the rest of this paper, we use the term trace
stream to refer to these input tra�c snaphots.

Trace streams o�en contain extraneous messages that are

not generated due to endpoint actions and are not part of any

Mr . Such messages include setup messages, heartbeat mes-

sages, and synchronization messages. �ese messages are ex-

changed between NFs even in the absence of user-generated

tra�c. To eliminate such messages, Invenio uses a trace
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stream collected during an idle period, henceforth referred

to as noise stream. An idle period is when NFs are running

but no tra�c is initiated by user devices. For instance, for

the Diameter protocol, application-initiated messages such

as Session-Termination-Request/Answer (STR/STA) are part

of the trace stream, and Device-Watchdog-Request/Answer

(DWR/DWA) messages, which used by Diameter protocol to

maintain application-level heartbeat between communicat-

ing peers, are part of the noise stream.

Invenio utilizes output generated by open-source packet

analyzer so�ware such as Wireshark [59] to decode raw

messages. We use Wireshark to export Packet Description

Markup Language (PDML) and Portal Structure Markup Lan-

guage (PSML) �les, and use these �les as inputs. If tra�c is

encrypted, Wireshark can decrypt it using the keys which

will be available to the service provider.

Protocol parameters. Invenio uses developer knowledge

speci�ed in a con�guration �le containing the following

information in xml format: (a) Procedure start/end mes-
sages: are the message pairs rstar t , rend ∈ R that are used

by endpoints to start and terminate a service request. �ese

values are only required for protocols that are used by end-

points. �at is, for the example shown in Fig. 1, these values

are only required for the SIP protocol used in the endpoint

messages (1) and (2).

(b) Subscriber-ID and session-ID header names: are
the names of the headers used by protocols to transmit

subscriber-IDs and session-IDs. �e headers may be used in

conjunction with the output of the header inference module

(§5.2) to extract the subscriber-ID and session-ID values from

a message. �ese inputs are only necessary in cases such as

the GPRS Tunneling Protocol (GTP), which uses integer iden-

ti�ers instead of (the more common) text identi�ers in the

Uniform Resource Identi�er format speci�ed in the RFC [9].

Procedure type distribution and policy. Procedure type dis-
tribution and provider policy information can decide NF

placement. �e procedure type distribution can be obtained

from an NF that processes endpoint messages. For example,

the Proxy Call Session Control Function (P-CSCF) handles all

inbound SIP tra�c and therefore the P-CSCF NF instance(s)

has the procedure type distribution information. Policy in-

formation allows providers to optimize NF placement based

on their speci�c requirements (§5.7).

5.2 Header Inference
�e �rst step in generating the set Mpt for computing a�n-

ity is to �nd user-identifying headers. A header inference

module analyzes messages in the trace stream to identify

possible headers that carry the subscriber/session-ID values.

Algorithm 1 computes candidate header names. �e al-

gorithm has two stages. Stage 1 (lines 1-12 of Algorithm 1)

Algorithm 1: Candidate header analysis
Input : (traceFile, endpointProtocol)
Output :candSubHdrN , candSnHdrN
/* Find candidate user header names for protocol */

1 for each packet p in endpointProtocol do
2 for each header h in p do
3 if h.value conforms to subscriber id format then
4 candSubHdrN [p.protocol] ←−

candSubHdrN [p.protocol] ∪ h.name

5 p.candSubV ←− p.candSubV ∪ h.value
6 subHdrV = subHdrV ∪ (h.value,p.candSubV )
/* Find candidate user header names for all

protocols */

7 for each value subV in subHdrV do
8 for each packet p in traceFile do
9 if p.protocol , endpointProtocol then

10 for each header h in p do
11 if h.value ≈ subV then
12 candSubHdrN [p.protocol] ←−

candSubHdrN [p.protocol] ∪ h.name

/* Find candidate session header names */

/* Step 1. Find header values that repeat between

a pair of NFs */

13 for each protocol protocol in all protocols do
14 for each packet p in protocol do
15 for each header h in p do
16 uniqueSnV [h.value] ←−

uniqueSnV [h.value] ∪ (h,p)
/* Step 2. Eliminate headers whose value repeats

in messages of multiple users */

17 for each entry e in uniqueSnV do
18 if |e .p | > 1 then
19 if |e .p.candSubV | == 1 then
20 candSnHdrN [p.protocol] ←−

candSnHdrN [p.protocol] ∪ e .h.name

computes all header names that can carry the subscriber-

ID values using the subscriber-ID formats described in [9].

�is stage generates a list of candidate subscriber-ID header

names (candSubHdrN ) per protocol. Stage 2 (lines 13-20 of

Algorithm 1) identi�es all headers whose values repeat in

messages exchanged between a pair of NFs using a speci�c

protocol (Step 1, lines 13-16). Since the session-ID headers are

used instead of subscriber-ID headers, message exchanges

must carry the same value of session-ID in all messages.

However, messages exchanged between NFs also carry rout-

ing or NF-identifying headers which repeat frequently. �ese

header names are eliminated from the candSubHdrN (Step

2, lines 17-20). Table 2 lists sample results that con�rm that

correct header names were inferred by the algorithm from

traces for SIP and Diameter.
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Table 2: Invenio-generated candidate header names
Subscriber-ID Session-ID

Proto- Predicted Actual Predicted Actual

col Step-1 Step-2

FROM.user, FROM.user R.URI, VIA,

TO.user, TO.user Call-ID, Call-ID Call-ID

SIP contact.user CSEQ, ALLOW

Service-Ctx-Id Origin-Host,

Diam- User-Name User-Name, Origin-Realm

eter Sub-Id-Data, Sub-Id-Data Ssn-ID Ssn-ID Ssn-ID

e1164.msisdn Auth-App-Id

5.3 Noise Filtering
�e noise �ltering module eliminates messages not gener-

ated due to user actions that should not be part of Mpt for

any procedure type. �is includes (a) messages exchanged by

protocols that are not speci�ed in any procedure start mes-

sage in the con�guration �le, (b) messages with type/name

matching a message in the noise �le, and (c) messages that

do not carry any subscriber-ID or session-ID header.

5.4 Attribute Extraction
Since protocols and interfaces use di�erent encoding for-

mats (binary or text) to exchange information, we convert

the input message stream to a protocol-agnostic intermedi-

ate format: event objects. Each event object is associated

with (a) Transport-layer information (source and destination

IP address and ports) to identify the NFs in the SFC, and

(b) Subscriber-ID and session-ID headers from each packet

extracted using the output of header inference module or

con�guration input.

5.5 Session Slicing
�e session slicing module operates on the event objects

generated by the a�ribute extraction module, and uses event

information to identify all messages associated with a sin-

gle user. �at is, it computes Ω(r ) = (Nr ,Mr ) for each user

request. �is involves correlation of session and subscriber-

ID headers from event objects, and identifying all session-

IDs that correspond to a single subscriber-ID. Since the in-

put stream may contain messages and events from multiple

users, this module analyzes message sequences to �nd the

longest sequence of successful message exchanges, simul-

taneously merging the shorter sequences due to multiple

session/subscriber-IDs.

For example, using the message exchange shown in Fig. 4,

the session slicing module will yield an association between

the session-IDs of REGISTER and INVITE, as both mes-

sages carry the same subscriber-ID. Similarly, while the Re-

Authorization-Request does not include a subscriber-ID, it

can be associated with the REGISTER/INVITE message in

Fig. 4 using the session-ID value from the AA-Request mes-

sages, since the INVITE message and the AA-Request carry

the same subscriber-ID value, albeit in di�erent headers.

5.6 Procedure Slicing
�e procedure slicing module determines the NF set Npt
and message setMpt associated with each procedure type tt .
�e session slicing module gives possible message sequences

in Ω(r ). �is set can include messages from multiple users,

as a single user may not generate all possible procedure

types. Since messages in the trace stream are chronologically

ordered, the packets in the setMt corresponding to a certain

procedure t have monotonically increasing identi�ers. For

example, in Fig. 4b, all messages from (7) INVITE to (12) 200

OK are part of the same procedure. Using the rstar t , rend
messages input by service providers in the con�guration �le,

Invenio slices messages of each procedure.

Each procedure type pt independently provides a service

to a user u. In practice, multiple procedure types may have

a strict dependence, and a service may involve invoking

multiple procedure types. For example, a voice-call service

requires INVITE and BYE as shown in Fig. 4b (messages

7-18). Such procedures are merged in Invenio. Sets Npt and

Mpt are then used to compute the a�nity between NFs for

every procedure type pt using Equation (1).

5.7 Placement
�e placement engine can use a�nity information generated

by the Invenio a�nity engine, together with input proce-

dure type distribution and provider policies, to make place-

ment decisions. NFs with the highest a�nity values (Equa-

tion (1)) are co-located or placed in close proximity. In our

experiments, we identify NFs that must be co-located to

minimize the impact of inter-NF latency on interactive ser-

vices. We will be implementing multi-criteria placement

algorithms [29, 51, 61] in future work.

6 EVALUATION
We evaluate Invenio with two systems: (a) Clearwater: an

open-source microservice-based implementation of IMS, (b)

VoLTE: a prototype Voice over LTE (VoLTE) implementation

in which NFs are functionally decomposed into microservice-

based VNFCs (Fig. 6). We collect network traces from all NFs

and use Invenio to compute a�nity between NFs. We use

these a�nity values to decide the NF placement and evalu-

ate the performance of two workload types. Our goal is to

answer the following questions: (1) How e�ective is Invenio
in computing a�nity with multiple protocols? (§6.1, §6.2.1)

(2) What in�uence do Invenio-generated a�nity values have

on NF placement? (§6.1, §6.2.2) and (3) What is the impact of

inter-NF latency on performance under di�erent workloads?

(§6.1, §6.2.3)

Implementation: Invenio includes ∼2600 lines of Python
code. We developed a prototype microservice-based VoLTE

system using Kamailio [31] version 5.0.4 as the SIP server for

evaluation. We added a REST message interface to Kamailio
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Table 3: Testbed con�guration

Server CPU Cores RAM NFs Deployed
R430 2x Intel 16 64 GB Clearwater

Xeon E5-2620 v4

DL120 1x Intel 4 8 GB Swarm Workers,

Xeon X3430 Load-Generator

to communicate with the PCRF. We also developed proto-

type implementations of the PCRF and PCEF for the VoLTE

system. All REST-based components are developed as appli-

cation extensions to the KORE library [57] (version 2.0.0).

�e PCRF and PCEF are developed as application extensions

in the FreeDiameter library [20] version 1.2.1 (∼3700 lines
of new C code).

Experimental testbed: Our testbed includes one Dell

PowerEdge R430 and 5 HP ProLiant DL120 G6 (Table 3) con-

nected by a Gigabit Dell N2024 Switch. We use Docker [16]

version 17.03.0-ce and Docker-compose (v1.11.2) to deploy

NFs for Clearwater (Fig. 5) and VoLTE (Fig. 6).

Workloads: We use two primary network services: (a)

Voice-call: �is service involves two procedure types (IN-

VITE and BYE). (b) Short Message Service (text-msg):
�is service utilizes a single procedure of typeMESSAGE.We

also use SUBSCRIBE (which supports the Presence service)

to illustrate the impact of message-count based placement

on system performance. However, SUBSCRIBE messages

are not generated during performance evaluation and sys-

tem performance is only evaluated for interactive workloads

(voice-call and text-msg).

Following SIP standards, every SIP endpoint registers itself

with the IMS network using a REGISTERmessage (Fig. 4a) be-

fore utilizing the voice-call or text-msg service, as depicted

in Fig. 4b and 4c. In VoLTE, where the SIP messages are

tunneled over the EPC network, a SIP endpoint must addi-

tionally a�ach itself to the EPC network before generating

the REGISTER message (steps 1−4 in Fig. 4a). For brevity, we

only depict the communication between the IMS and EPC,

and omit messages exchanged during the EPC a�ach [2].

Methodology: SIPp [56] is used to generate two types

of workloads: voice-call and text-msg, sending four types

of messages: REGISTER, INVITE, BYE and MESSAGE. Each

SIPp instance runs on a dedicated physical machine and

saturates available system resources. We measure failures by

the observing the result code in the SIP response messages.

We record the total number of successful calls or messages

for each workload type. For the voice-call workload, where

multiple procedure types are required to complete a call,

we only count the number of calls that were successfully

completed; i.e., partially completed calls are ignored. Each

experiment runs for 30 seconds. Each experiment is repeated

at least 5 times and results are shown with 95% con�dence

intervals.

UEUE IMSIMS PCRFPCRF PCEFPCEF

(7) INVITE (8) AAR 

(5) REGISTER
(User-Name)

(6) 200 OK

(1) EPC Attach Request (IMSI)
(2) CCR

(Sub-Id + Session-Id)

(3) CCA (Session-Id)

(4) EPC Attach Response
CCR/CCA : Credit-Control-Request/Answer
RAR/RAA: Re-Authorization-Request/Answer
AAR/AAA: AA-Request/Answer 
STR/STA: Session-Termination-Request/Answer

User-Name carries the 
Subscriber-Id in SIP

(a) EPC and IMS registration in VoLTE
(7) INVITE

(User-Name)
(8) AAR 

(Sub-Id + Session-Id)

(11) AAA (Session-Id)
(12) 200 OK

(9) RAR (Session-Id)
(10) RAA (Session-Id)

(13) BYE
(User-Name)

(14) STR 
(Sub-Id + Session-Id)

(17) STA
(Session-Id)(18) 200 OK

(15) RAR (Session-Id)
(16) RAA (Session-Id)

Voice

(19) MESSAGE (20) AAR 
(b) Successful voice-call in VoLTE(Session-Id)

(19) MESSAGE
(User-Name)

(20) AAR 
(Sub-Id + Session-Id)

(23) AAA (Session-Id)

(21) RAR (Session-Id)

(24) 200 OK

(22) RAA (Session-Id)

(c) Successful text-msg in VoLTE

Figure 4: VoLTE workloads

A�nity computation: �e computation is performed

o�ine a�er system/policy upgrades and therefore does not

impact orchestration performance. Since Invenio parses each
header in each packet for every protocol, the time complexity

for a�nity computation is O(protocol x packet x header). In

practice, however, network traces can be �ltered using the IP

addresses of NFs, which signi�cantly reduces computation

time. A�nity computation takes less than 300 seconds in

our experiments with both Clearwater and VoLTE.

6.1 Clearwater Case Study
6.1.1 Architecture. Clearwater [44] is an open-source plat-

form for a microservice-based containerized implementation

of an IMS. Clearwater uses REST-based communication to

retrieve authentication vectors, manage timers and handle

state synchronization, which makes it ideal for a case study.

�e architecture is illustrated in Fig. 5 (adapted from [44]).

Only the components used in our experiments are depicted.

We use Clearwater version 1.0 (clearwater-docker release-

120). Bono an edge proxy that implements the P-CSCF

(Proxy Call Session Control Function (CSCF)) in the 3GPP

IMS architecture [1]. SIP clients communicate with Bono

over UDP/TCP connections. Sprout implements the Regis-

trar, I/S-CSCF (Interrogating/Serving CSCF) and Application

Server components. Homestead provides a REST interface

to Sprout for retrieving authentication vectors and user pro-

�les. Chronos is a distributed, redundant, reliable timer
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Table 4: NF a�nity for Clearwater
Procedure NF Pair A�nity

Type (pt ) (nx , ny ) c(pt, nx , ny )
NFs: Bono, Sprout, Ralf

Voice-call
Bono, Sprout 10

Bono, Ralf 8

Sprout, Ralf 4

Text-msg
Bono, Sprout 4

Bono, Ralf 2

Sprout, Ralf 0

service. Bono and Sprout report chargeable events to the

Charging Trigger Function Ralf.

UEUEUE Sprout
(I/S-CSCF, 

BGCF, TAS)

Sprout
(I/S-CSCF, 

BGCF, TAS) Cassandra

Homestead
(HSS Mirror)
Cassandra

Homestead
(HSS Mirror)

SIPSIP HTTP

HTTP HTTP

Bono
(P-CSCF, 
WebRTC)

Bono
(P-CSCF, 
WebRTC)

Chronos
(Timer Service)

Ralf
(Rf CTF)

HTTP

Figure 5: Clearwater architecture

6.1.2 A�inity Analysis. We use Invenio to compute a�n-

ity between NFs in Clearwater for both voice-call and text-

msg workloads. �e results are presented in Table 4. We

observe that the a�nity between Clearwater NFs is di�erent

for voice-call and text-msg tra�c. For instance, for voice-

call tra�c, there is high a�nity between Bono, Sprout and

Ralf, whereas for text-msg tra�c, Bono and Ralf only ex-

change two messages, and no messages are exchanged be-

tween Sprout and Ralf. Ralf therefore has a higher a�nity

with Bono and Sprout for voice-call workload compared to

text-msg workload. �e placement of Ralf w.r.t. to Bono and

Sprout thus has a higher impact on the performance of voice

calls compared to the text-msg workload.

6.1.3 Performance. We �rst benchmark the performance

of the voice-call and text-msg workloads with negligible de-

lay. �ese results serve as baselines and are labeled “ideal”

in our plots. We then use “tc” to introduce latency on links

connecting two NF pairs (a) Ralf to Sprout and (b) Ralf to

Bono, to validate the impact of placement of Ralf on perfor-

mance. While tail latency values in public clouds typically

do no exceed a few ms [14], user mobility in cellular net-

works can result in deployments where user tra�c traverses

data centers (or edge and core clouds). Inter-site latency

can go up to tens of ms [60], so we experiment with de-

lays up to 20 ms, and compare to the “ideal” case. We make

the following observations from our results: (a) Even a sin-

gle high-latency link can result in signi�cant performance

degradation for both voice-call and text-msg workloads, and

(b) Performance degradation for the voice-call workload (in

which Ralf has higher a�nity) is more than for the text-msg

workload (in which Ralf has lower a�nity). �ese obser-

vations underscore the need for careful VNFC placement.

While manual analysis shows that Sprout and Bono (which

collectively implement the functionality of the CSCF) must

always be co-located, analysis of IMS standards does not suf-

�ce for proprietary IMS implementations such as Clearwater

in which internal implementation determines the a�nity

values between VNFCs (Bono/Sprout and Ralf).

6.2 Microservice-based VoLTE
Fig. 6 shows the architecture of a VoLTE system which in-

cludes (a) a SIP server that handles SIP/IMS signaling from

the endpoints, referred to as the Application Function (AF),

(b) a PCRF that allocates QoS rules to a user, (c) a PCEF that

enforces QoS rules per user, and (d) a SUB module that pro-

vides Presence functionality. �e messages exchanged for

voice calls and text messages are presented in Fig. 4b and

Fig. 4c, respectively.

PCRFPCRF PCEFPCEF
IMS AF

Policy 
Module
Policy 

Module
KamailioKamailio

IMS AF

Policy 
Module

Kamailio
Diameter

Rx
REST Diameter

Gx

SUBSUBREST

Figure 6: VoLTE system architecture

Our VoLTE implementation can be deployed in multiple

con�gurations and is used to study the impact of microser-

vice decomposition and placement on system performance.

In the experiments in the rest of the paper, we treat the

VoLTE implementation as a whitebox. �at is, we analyze

the call �ows manually to validate the Invenio output. In

contrast, the Clearwater IMS implementation was treated as

a blackbox where we simply used Invenio a�nity to study

the impact of latency on network services.

Microservice decomposition: We decompose the PCRF

into independent microservice components and deploy each

microservice as an independent VNFC. Fig. 7 shows the ar-

chitectures we use to deploy the EPC PCRF. In the legacy

PCRF model (monolithic design) depicted in Fig. 7(a) (top

le�), all components are deployed in a single process and

communicate via API calls. �is communication is not ex-

ternally observable, and the entire PCRF is deployed as a

single NF. In contrast, in the microservice designs depicted in

Fig. 7(b,c,d), the PCRF functionality is collectively provided

by the VNFCs described in Table 5. All VNFCs expose a

synchronous REST interface for external communication, so

communication between the VNFCs is externally observable.

Table 6 compares PCRF µService Design-1, 2 and 3. We

observe that in µService Design-1 (Fig. 7(b)), PCRF-Base

communicates with all other VNFCs and, consequently, has

a�nity with all other VNFCs. In µService Design-2 (Fig. 7(c)),
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Figure 7: PCRF architectures

Table 5: Functionality of NFs in PCRF
VNF VNFC Interface Functionality

PCRF

PCRF-Base REST,

Rx [5], Gx

Diameter [19] protocol functionality

and interface with other VNFCs

Gx-App REST Process Gx Interface messages

Rx-App REST Process Rx Interface messages

SDP REST Process Session Description Protocol

(SDP) [27] payload

PCRF-Gx-

Base

Gx, REST Diameter functionality and interface

with other Gx VNFCs

PCRF-Rx-

Base

Rx, REST Diameter functionality and interface

with other Rx VNFCs

memcached REST Gx-App and Rx-App synchronization

the PCRF-Base only has a�nity with Rx-App and Gx-App.

�e SDP VNFC only has a�nity with the Rx-App, and the

Gx-App has a�nity with memcached. In µService Design-3

(Fig. 7(d)), the PCRF-Base VNFC is decomposed into PCRF-

Rx-Base and PCRF-Gx-Base, which only have a�nity with

Rx-App and Gx-App VNFCs, respectively.

Table 6: Manual analysis of communication between
VNFCs in PCRF µservice designs

PCRF PCRF Microservices (VNFCs)
Decomposition Gx-App Rx-App SDP memcached

µS Design-1 PCRF-Base 3 3 3 3

µS Design-2

PCRF-Base 3 3 7 7
Gx-App NA 7 3 3
Rx-App 7 NA 3 7

µS Design-3

PCRF-Gx-Base 3 3 7 7
PCRF-Rx-Base 7 3 7 7

Gx-App NA 7 3 3
Rx-App 7 NA 3 7

6.2.1 A�inity Analysis. We collect tra�c traces (tcpdump)

of voice-call and text-msg tra�cwith PCRF deployed in three

con�gurations (µService Design-1, µService Design-2, and

µService Design-3). Table 7 gives the results.

We make two observations from the results: (1) A�nity

di�ers for the voice-call and text-msg tra�c. For instance, in

µService Design-1, PCRF-Base exchanges two messages with

the SDP VNFC in case of voice-call tra�c, but the SDP VNFC

is not involved in the processing of text-msg tra�c, and (2)

Table 7: NF a�nity for VoLTE
Procedure NF Pair A�nity

Type (pt ) (nx , ny ) c(pt, nx , ny )
Monolithic Design, NFs: AF,PCRF,PCEF

Voice-call
AF, PCRF 4

PCRF, PCEF 4

Text-msg
AF, PCRF 2

PCRF, PCEF 2

µService Design-1,
AF, PCRF-Base, Gx-App, Rx-App, SDP, memcached, PCEF

Voice-call

AF, PCRF-Base 4

PCRF-Base, Gx-App 4

PCRF-Base, Rx-App 4

PCRF-Base, SDP 2

PCRF-Base, memcached 4

PCRF-Base, PCEF 4

µService Design-2,
AF, PCRF-Base, Gx-App, Rx-App, SDP, memcached, PCEF

Voice-call

AF, PCRF-Base 4

PCRF-Base, Gx-App 4

PCRF-Base, Rx-App 4

Gx-App, memcached 4

Rx-App, SDP 2

PCRF-Base, PCEF 4

µService Design-3,
AF, PCRF-Rx-BASE, PCRF-Gx-Base,

Gx-App, Rx-App, SDP, memcached, PCEF

Voice-call

AF, PCRF-Rx-Base 4

PCRF-Rx-Base, Rx-App 2

PCRF-Rx-Base, PCRF-Gx-Base 2

Rx-App, PCRF-Gx-Base 2

Rx-App, SDP 2

PCRF-Gx-Base, Gx-App 4

Gx-App, memcached 4

PCRF-Gx-Base, PCEF 4

Text-msg

AF, PCRF-Rx-Base 2

Rx-App, PCRF-Gx-Base 2

PCRF-Rx-Base, Rx-App 2

PCRF-Gx-Base, Gx-App 2

Gx-App, memcached 2

Rx-App, SDP 0

PCRF-Gx-Base, PCEF 2

A�nity di�ers in the three designs. For instance, for voice-

call tra�c, in µService Design-2 there is a�nity between the

PCRF-Base and SDP VNFC. In contrast, in µService Design-2,

PCRF-Base only communicates with Rx-App and there is no

a�nity between the PCRF-Base and SDP VNFC. A�nity is

only listed for the monolithic and µService Design-3 for the

text-msg workload since others are similar. �e SUB VNFC

does not involve PCRF, and is omi�ed from Table 7. We com-

pare Invenio results with the results of our manual analysis

in Table 5 and verify that Invenio accurately identi�es the

procedures and a�nity values for all procedure types.

6.2.2 Placement. To study the impact of Invenio-generated
a�nity values on placement, we deploy VoLTE with PCRF

µService Design-3 on a Docker Swarm [18] cluster with three

nodes. Each node is allocated a maximum of 4 VNFCs by

the orchestrator. Fig. 8(a) (top) shows an ideal placement

on this cluster. AF is deployed as two VNFCs (Kamailio and

Policy-Module), which are always co-located, so we show it
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Figure 8: VoLTE placements on three machines

as AF. Fig. 8(b) shows placement with Invenio-generated a�n-

ity values. �e a�nity values and resulting constraints are

given to the Swarm orchestrator by the “a�nity group” [17]

parameter in the Docker-compose con�guration �le.

Fig. 8(c) shows the result of an instantiation in which the

number of messages exchanged between VNFCs is used to

decide placement, as discussed by Sampaio et al. [51]. �is

results in a placement where VNFCs that exchange the high-

est number of messages (AF, SUB, and memcached, seen on

the le� side of Fig. 2) are co-located. Any procedure type

distribution which has at least 75% presence tra�c (lower

than the 90% in busy-hour IMS tra�c in [7]) will yield the

same placement. Fig. 8(d) depicts the results of an instanti-

ation with no constraints given to the Swarm orchestrator,

yielding a random NF placement (labeled “Default” in Fig. 8).

We note here that our placement decisions are only based

on a�nity values and procedure type distribution, and we do

not consider extrinsic factors such as network policy, hard-

ware constraints, or link usage in these placement decisions.

Such additional metrics can be incorporated into placement

decisions by updating Equation (1) as described in §4.

6.2.3 Performance. We evaluate the performance of the

four placement strategies shown in Fig. 8 using the twowork-

loads (voice-call and text-msg) and three di�erent inter-NF

latencies, where the Docker worker nodes are connected by

200 µs (ideal), as well as 1000 µs and 2000 µs links, which are

chosen to emulate inter-rack tail latencies in public clouds [24].

Fig. 9 shows the results of two di�erent outcomes of the

default placement strategy – labeled Default 1 (which corre-

sponds to Fig. 8(d)) and Default 2 with (PCEF, PCRF-RX) on

Node-1, (AF, SUB, SDP, memcached) on Node-2, and (PCRF-

GX, GX-App, Rx-App) on Node-3. We choose PCRF µService

Design-3 here as it completely decomposes the NFs into

constituent microservices and therefore it is ideal for demon-

strating the impact of placement.

Fig. 9a and 9b show that (1) Invenio closely matches the re-

sults of manual (handcra�ed) placement for both voice-calls

and text-msg workloads. �e results of text-msg workload

with 1000 µs, and 2000 µs follow similar trends as the voice-

call workloads, and are omi�ed for brevity, (2) Both message

count-based and default (random) placement strategies ex-

perience signi�cant performance degradation as the inter-

worker (inter-rack) latency increases. �e impact of latency

is insigni�cant at lower call rates, but there is signi�cant drop

in the overall system throughput as the call rate approaches

system capacity, (3) �e performance degradation for the

voice-call workload is higher than the performance degra-

dation for the text-msg workload. For example, comparing

default placement under ideal conditions (inter-rack latency

of 200 µs) to Invenio placement, for voice-call workload of

500 calls/second, nearly 52% calls are dropped but for text-

msg workload of 900 calls/second, less than 36% of calls are

dropped. �is is a consequence of higher a�nity between the

NFs shown in Table 7. (4) Default placement – as seen from

the results of Default 1 and Default 2 – can lead to signi�-

cant variation in system performance, complicating capacity

planning for microservice-based applications. Placement

with Invenio clearly outperforms count-based and default

placement while avoiding the non-deterministic outcomes

inherent to count-based and default placement.

7 OTHER APPLICATIONS
In addition to its use for a�nity computation, Invenio can be

extended for interoperability checking and fault diagnosis.

NF interoperability: �e Invenio “Session Slicing” mod-

ule (§5.5) outputs the sequence of messages processed by

individual NFs, which can be used to construct a partial state

machine. �is state machine can be used to check interop-

erability between NFs from di�erent vendors or of di�erent

versions. As an example, we used Invenio to check inter-

operability between the Home Subscriber Server (HSS) in

Openair-cn [39] and the Mobility Management Entity (MME)

in OpenEPC [12]. We con�gured Invenio to extract Diame-

ter [19] messages exchanged between the MME and HSS in

the network traces collected from OpenEPC and Openair-cn.

By comparing these messages, we found that the OpenAir

HSS expects a Session-Id A�ribute Value Pair (AVP) in all

messages, which is not provided by the OpenEPC MME.

Proprietary message formats can also be supported. We de-

veloped wireshark dissectors for the EPC implementation
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Figure 9: Impact of latency and a�nity on VoLTE performance

in [30], which uses proprietary message formats, and suc-

cessfully used Invenio to compare the state machine of this

implementation with NFs in Openair-cn.

Fault diagnosis: Invenio can be used to diagnose scenar-

ios when con�guration or implementation problems at a

speci�c NF result in service interruptions (failures or delays)

for one or more users. In production environments where

NFs process thousands of messages per second, identifying

which NF in an SFC triggered a problem can be tedious and

time-consuming, and requires a service provider to under-

stand all protocols and message formats. An important step

in identifying failures for a speci�c user is isolating messages

(across an entire SFC) associated with a given user. �is can

be achieved by the “Session Slicing” module. Invenio can

then report failed procedures and associated messagesMT .

8 RELATEDWORK
Service placement and monitoring: Functionality-based
decomposition has been proposed to reduce latency and in-

crease throughput for cellular network control planes [32,

45, 48, 55]. �at work uses manual analysis of network ar-

chitecture and tra�c to �nd the functional elements that can

be aggregated. Stratos [22] avoids traversing oversubscribed

inter-rack links during function placement, and Selimi et

al. [52] explore placement to maximize bandwidth utiliza-

tion. None of these studies consider workload types and pro-

cedures. Other work [29, 51, 61] formulates the placement

problem as a graph partitioning problem or an optimization

problem. �is is orthogonal to our work, as our notion of

procedural a�nity is a new input to the placement problem.

Recent studies [11, 37, 38, 43, 62] have highlighted chal-

lenges in deploying and managing microservice-based ap-

plications. For instance, ucheck [43] uses runtime veri�ca-

tion and enforcement of invariants to aid service providers.

Probius [38] �nds performance bo�lenecks by correlating

VNF, hypervisor, and system metrics. NFVPerf [37] uses net-

work traces to compute per-hop message processing latency

which is then used to infer performance bo�lenecks. Our

work proposes procedure-driven microservice deployment,

and is thus complementary to this line of work.

Tra�c enrichment: Several e�orts [25, 46] enrich net-

work messages with “Metadata” [25] using the Network Ser-

vice Header (NSH [46]).Invenio can use metadata carried in

these headers to identify the user associated with a message.

Protocol inference: Extracting protocol state informa-

tion from network traces, or reverse engineering a protocol,

has been studied in the literature. Prior work extracts speci�-

cations of unknown protocols [8, 10, 13, 33, 58], and uses in-

ferred message formats to detect malware signatures [35, 58].

Invenio also exploits protocol header information, but ex-

tracts user-identifying headers. Other categories of work in

this area use xml or json formats to derive protocol state ma-

chines [23, 47]. Application-speci�c information is used to

group messages into sessions [23]. Network traces identify

dialogs in HTTP and SIP tra�c [47]. While Invenio shares
�nite-state machine extraction techniques with these papers,

it di�ers in one important aspect: we use the extracted state

information to compute a�nity between NFs for an entire

SFC. In contrast, prior work extracts the state machine for a

single NF and does not merge state machines from multiple

NFs to derive procedure information for an SFC.

9 CONCLUSIONS
In this paper, we have presented Invenio, a system that helps

service providers to be�er manage the ever-growing com-

plexity of microservice-based network functions (NFs). We

showed that Invenio can automatically compute the correct

communication a�nity between NFs for each user-triggered

procedure. �is allows service providers to make and up-

date NF placement decisions without the time-consuming

and error-prone manual analysis currently used. Our experi-

ments with IMS and VoLTE implementations con�rm that,

by using procedural a�nity-based NF placement, service

providers can e�ectively support services with stringent la-

tency requirements. We expect automatic communication

a�nity computation for each user action to signi�cantly

grow in importance in the coming years as more complex

disaggregated services are deployed [3, 21].
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