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1 INTRODUCTION

During the early 1960s some were visualizing that computers could provide a powerful problem
solving environment (PSE) which would interact with scientists on their own terms. By the mid
1960s there were many attempts underway to create these PSEs, but the early 1970s almost
all of these attempts had been abandoned, because the technological infrastructure could not yet
support PSEs in computational science. The dream of the 1960s can be the reality of the 1990s;
high performance computers combined with better understanding of computing and computational
science have put PSEs well within our reach.

1.1 Purpose of this Report

A workshop was held in Washington, D.C., on April 11–12, 1991 to explore future research
directions for PSEs. Application areas were represented as well as four of the most relevant
areas of computer science: numerical analysis, symbolic computing, computational geometry, and
artificial intelligence. The goals of the workshop were:

� to describe the current state of research and development in problems solving environments,
� to indicate future directions for research,
� to assess the role and impact of problem solving environments for computational science, and
� to determine actions needed to advance the field.

This report presents the findings and recommendations of the workshop.

1.2 Background of Recent Reports and Studies

In the past decade there have been a number of reports and studies relevant to computational science
that consider various aspects of high performance computing, supercomputers, computational math-
ematics, and scientific software. The reports listed below provide the background for the present
workshop and report.

1. Report of the Panel on Large Scale Computing in Science and Engineering . Peter Lax,
Chairman. Sponsored by the U.S. Department of Defense and the National Science Foun-
dation, in cooperation with the Department of Energy and National Aeronautics and Space
Administration, Washington, D.C., December, 1982.

2. A National Computing Environment for Academic Research . Marcel Bardon and Kent Curtis,
Editors, National Science Foundation Working Group on Computers for Research. National
Science Foundation, Washington, D.C., July, 1983.

3. A Report of the Panel on Future Directions in Computational Mathematics, Algorithms,
and Scientific Software. Werner C. Rheinboldt, Chairman. SIAM Publications, Philadelphia,
1985.
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4. A National Computing Initiative – The Agenda for Leadership . Report of the Panel on
Research Issues in Large-Scale Computational Science and Engineering. H.J. Raveché, D.H.
Lawrie, and A.M. Despain, Editors. SIAM Publications, Philadelphia, 1987.

5. Research and Development Strategy for High Performance Computing . Office of Science
and Technology Policy, Executive Office of the President, Nov. 20, 1987.

6. Future Directions for Research in Symbolic Computing . Report of a Workshop on Sym-
bolic and Algebraic Computation. Anthony Hearn, Chairman. Ann Boyle and B.F. Caviness,
Editors. SIAM Publications, Philadelphia, 1990.

7. Grand Challenges: High Performance Computing and Communications . Federal Coordinat-
ing Council for Science, Enginering, and Technology. National Science Foundation, Wash-
ington, D.C., 1991.

2



2 PROBLEM SOLVING ENVIRONMENTS

The term “problem solving environment” (PSE) means different things to different people because
it is relatively immature and development has started only very recently. PSEs of a very simple
nature appeared early in computing without being recognized as such, whereas some of the PSE

capabilities we project in Section 4 almost resemble science fiction. It is clear that whatever PSEs
eventually turn out to be, they will play a big role in the future of scientific computing and their
scientific and economic impact will be enormous.

2.1 Definition of Problem Solving Environments

A problem solving environment is a computer system that provides all necessary computational
facilities to solve a target class of problems. These facilities use the terms of the target class of
problems and therefore can be used without specialized knowledge of the underlying computer
hardware or software system. One might say that a PSE solves problems by communicating in the
user’s own terms. Solving power and problem orientation are two essential characteristics of PSEs;
other important characteristics include the following:

� ThePSE provides: (a) State-of-the-art solution methods; (b) Automatic and/or semi-automatic
selection of solution methods; (c) Facilities for easy incorporation of novel solution methods.

� PSEs use modern computing facilities and methods, for example, interactive color graphics,
powerful processors, or networks of specialized services.

� PSEs manage the computing resources for the user, including distributed and/or parallel
computing.

� Solving a problem might require long interactions with the user; the PSE keeps track of the
problem solving task and allows the user to review it easily.

� A PSE is designed to create a framework that is all things to all people, solve simple
or complex problems, support rapid prototyping or detailed analysis, and can be used in
introductory education or at the frontiers of science.

In summary, a PSE can almost become a wish list for the capabilities of computers in science
fiction. Nevertheless, PSEs having some of the above characteristics have already been built while
more powerful ones are being designed. We review the nature and current status of PSEs for
computational sciences in Section 3.

Three general measures of PSEs are scope, power, and reliability. By scope we mean the
extent of the problem set the PSE addresses. If the scope is small enough, then one can build PSEs
easily. For example, one can view Fortran as an early attempt at a PSE for elementary college
algebra (the “modern” computing facilities of the late 1950’s were almost fully exploited). It was a
great advance compared to machine language to write

ANSWER = 3.71*X**(3.2*A)*(1-COS(3*PI*X)*EXP(-Y+X))

The power of a PSE refers to its ability to actually solve the problems that can be posed within
the PSE . Once the problem class becomes complex, it is almost certain that a knowledgeable user
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can pose problems that the PSE cannot solve. On the other hand, there are examples of PSEs
that failed to solve even simple, straightforward problems. An extreme example is a PSE that
purports to converse in natural language but responds “What?” to all input it does not recognize.
Then its implementation might recognize only statements of the form A, B, C when A is one of
“what”, “who”, “where”; B is one of “is”, “are”, and C is one of 500 nouns. Instances of such
misrepresentation have occurred.

The reliability of a PSE is a measure of how often it produces correct answers. A PSE that
responds with “unable to solve problem” is much better than one that responds with an incorrect
answer. A high level of reliability may be difficult and costly to achieve, for which reasons it is
sometimes neglected by PSE builders.

2.2 Maturation of the Field

Soon after the introduction of high-level programming languages it was realized that computers
would make it possible to create powerful problem solving environments. Less than a decade after
Fortran was introduced, there were many projects aimed at developing various aspects of PSEs.
The proceedings of the 1967 ACM conference, Interactive Systems for Experimental Applied
Mathematics [121], provides an overview of early work. The title of Culler and Fried’s paper, “An
On-Line Computing Center for Scientific Problems” [45] indicates the high ambition for PSEs at
a time when Fortran and Algol were still novelties.

These early efforts at PSEs failed primarily because of the lack of computing power. It was
not until the late 1970’s that interactive PSEs reappeared in another context, software for personal
computers. In the meantime, there was progress in creating batch processing PSEs. Simple PSEs
for statistics (e.g., SPSS and SAS) were created because the bulk of the consumers of statistics
could not or would not learn Fortran programming; they demanded a simple way to use statistical
methods, and it was provided. Although the statistical systems of the 1970’s seem primitive to us
now, they were such an improvement over traditional programming that these PSEs “captured” the
statistical computing market [163].

The personal computers and workstations of the 1980’s finally provided the computing power
to realize the hopes of the early 1960’s. In 20 years the mass market of computing moved from
the research laboratory to the office (spreadsheets, word processors), to the home (tax preparation,
education), and to services (airline reservations, banking). That PSEs would thrive in these markets
is natural; the solvers are usually simpler and less compute intensive, and the users are less able
to do traditional programming. As a result, the scientists, who were the first market for PSEs,
might be among the last to enjoy their benefits. Indeed, as of this writing, PSEs are not common in
science and engineering except in limited areas, such as computer-aided design (CAD) systems for
structural engineering and electronics; see for example [19]. Still, the success of Mathematica [197]
and Matlab [138] shows that some other science PSE markets, such as computational science and
engineering education, are large enough to justify the requisite investments. For a view of current
developments, see recent conference proceedings [106], [107], [81] as well as Section 3. It is a
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thesis of this report that the High Performance Computing and Communications program requires
a commitment as well to the construction of scientific PSEs.

2.3 Scientific and Economic Impact

Two goals for PSEs are, first, that they enable more people to solve more problems more rapidly,
and second, that they enable many people to do things that they could not otherwise do. Time is
money, and since more people would be able to solve problems faster1, successful PSEs will have
an important economic impact. Since people will be able to accomplish tasks more rapidly, it is
natural to expect that solving several, otherwise intractable, scientifically important problems, could
become feasible. In order for this impact to be realized, engineers and scientists should have PSEs
for routine as well as for non-standard parts of their computations.

It is easy to document the enormous impact of computing on science, engineering, and the
economy; those who do not exploit this technology fall behind and, eventually, by the wayside.
Yet it is harder to define the technology necessary to achieve this impact. Is it high performance
computers? Is it the better algorithms and methods for problem solving? Is it the infrastructure of
networks, languages, and programming systems? Is it environments that deliver the answers? All
of these components are essential, but the importance of the PSE is less well recognized. For the
impact of computational science PSEs on science and engineering, see [81], [107]. For the impact
of PSEs on economic industrial activity, see [140], [163], [186].

2.4 Grand Challenges and Petty Challenges

The High Performance Computing and Communications Initiative has popularized the concept of
grand challenges for computer science [109], and it is natural to relate PSEs for computational
science to these challenges. Because PSEs facilitate science in general, they will be expected to
contribute to meeting these challenges in many ways. Although it might eventually be desirable
to create PSEs specifically in response to the grand challenges, it should not be assumed that this
should be done immediately. The nature of most grand challenges is experimental whereas the
nature of the science and engineering problems for which PSEs can be developed must be well
understood and standardized. One cannot expect a powerful and reliable PSE in an area where no
one yet knows how to solve the principal underlying problems!

Hence PSEs are directed toward petty challenges as well as toward grand challenges; toward
solving problems that are understood well enough so solutions are possible and are common enough
so that it is important to the scientific consumer that this knowledge be codified and made available.
It is practical now to create a PSE that an engineer can use to speed up the design of the crank
mechanism for a window, the insulation for a safe, or the electrical controls of a dishwasher.
These are bread-and-butter tasks of computational science which require sophisticated, but well-
understood, methods. PSEs can deliver problem solving power for most routine problems so that

1. That is, completing everything, from concept to presentation.
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time and energy can be devoted primarily to non-routine and innovative aspects of a project. The
scientific and economic impact of meeting the many petty challenges is diffuse but of enormous
importance.

In summary, it is a grand challenge for computer science to create PSEs for the petty chal-
lenges of computational science; to increase scientific and engineering productivity to be competitive
in technology-driven markets.
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3 CURRENT STATUS

3.1 Introduction

It is generally accepted that computational simulation has become an essential component of the
scientific process, complementing theory and experiment. To place in perspective any efforts to
build PSEs, it is instructive to examine the typical problem solving procedure of a computational
scientist, which includes some or all of the following steps:

1. Construction of a mathematical model of the phenomenon under study.
2. Selection of relevant physics and geometry.
3. Manipulation of equations and associated conditions, making simplifications to allow for

suitable solution methods to be applied.
4. Specification of a solution method based on analytical and approximate techniques.
5. Construction of [test] problems and data sets.
6. Using appropriate specification and programming languages, specifying and creating (build-

ing or evolving from existing material) a program for the solution method. Documentation is
an integral part of this step.

7. Application of the program to [test] data.
8. Validation of results.
9. Comparison of the quality of results and performance with alternative solution procedures.

10. Collection and manipulation of output data.
11. Recording of the steps of the experiment.
12. Communication of the results to the scientific community.

Observations

� Not all of these steps need to be applied, and several may be used repetitively. In general, the
ordering of the steps is not strict.

� There is constant consultation with knowledge bases such as references, databases, and
colleagues to exploit existing material.

� Most steps require monitoring of the quality of results and system performance. The former
is critical for establishing confidence in the results, while the latter is desirable where speed
is critical.

� Several decisions depend directly on the system platform of the PSE . For example, the
architecture(s) of the computer system(s) used for the experiment will influence such factors
as the solution strategy and the specifications.

� An essential task is the the development and design of communication protocols, intercon-
nection languages, etc., between the PSE modules.

� Several steps are currently applied in synergy with human problem solving skills such as
pattern recognition and intuition. It is thus desirable to provide tools to facilitate this process.
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� The problem solving process described above has an underlying hierarchical structure in that
most of the steps could form entry nodes of another problem solving sequence.

� Realistic problems feature solutions that evolve on diverse temporal and spatial scales. An
efficient solution method should be able to adapt itself in order to be efficient, reliable, and
robust.
The problem solving steps outlined above drive the specifications of PSE modules.
The simplest PSEs to date are toolkits, which rely on front-end user interfaces issuing calls

to a back-end library. As components are added, the system moves closer to being applicable to
the problem solving steps outlined earlier. PSEs will be based largely on symbolic, algebraic,
and numerical computing tools, artificial intelligence, expert systems, and computational geometry
systems. In turn, these components will rely on “backbone” developments in hardware and software
technologies. High-speed workstations, parallel architectures and software, windowing environ-
ments, graphics, high-level languages, and object-oriented programming are all examples of such
critical developments.

By their nature, PSEs are complicated and massive software systems allowing the easy
manipulation of high-level objects. Their design, maintenance, and evolution will require the appli-
cation of software engineering techniques such as modularization, decomposability, and information
hiding, captured, for example in the context of object-oriented programming, hierarchical represen-
tation, and software reuse [31], [180].

In the next sections we discuss a few examples of PSEs and their infrastructure components.

3.2 Three Scientific Problem Solving Environments

One thesis of this report is that problem solving environments can and will revolutionize many
scientific computing activities. In fact, this has already happened in a variety of activities, as
indicated in Table 3.1.

These PSEs are not all fully developed in the way we visualize future PSEs, but they have
enough of the characteristics of PSEs and have had a major impact on their fields. In particular,
the common characteristic of these systems is that they communicate on the users terms, and they
enable users to make computations easily that are otherwise either very tedious or beyond their
technical capability. We present in some detail three scientific activities where PSEs are being
developed.

3.2.1 Matrix Laboratories

Matrix laboratories are good examples of the potential benefits of problem solving environments
for numerical scientific computation. Systems such as MATLAB (MATrix LABoratory) [138] and
CLAM [92] allow rapid prototyping and testing of new ideas. The success of matrix laboratories is
due to a combination of the following characteristics:

1. High-performance computing workstations, sophisticated user interfaces and effective graph-
ics made possible by advances in hardware and software technology.

8



Table 3.1: PSEs which have revolutionized certain activities.

Activity PSE Replaced
Accounting spreadsheets desk calculators, paper
Typing word processors a) retyping and correcting

manuscripts
b) TEXand troff

Statistics SPSS, SAS, a) desk calculators
b) Fortran programs

Architecture and CAD systems Handbooks, hand calculations
civil engineering and Fortran programs

Publishing word processing, typesetting, manual page
publishing programs layout

Reservations reservation systems telephone/mail, large ledgers

2. A clear and simple programming language, free of several syntactic and format restrictions
imposed by prevalent scientific programming languages such as Fortran 77.

3. The maturation of critical areas of numerical mathematics (e.g. linear algebra) and the devel-
opment of a library of robust mathematical software.

4. Advances in software engineering, integration, packaging and other software engineering
aspects of these systems. For example, the systems are open, and provide facilities for
importing or exporting data and for interfacing with other systems. The systems are extensible
and evolve as users add functionality specialized to their needs.

It can be argued that these characteristics are necessary for a successful PSE environment,
a view that is reinforced by their adoption by symbolic and algebraic computing systems such as
Maple and Mathematica.

The creation of matrix laboratories was greatly facilitated by the existence of mature nu-
merical libraries such as LINPACK and EISPACK. It is also common for entire libraries specific to
a particular area to be constructed and provided separately, as can be seen from the emergence of
MATLAB toolboxes for signal processing, automatic control, simulation, optimization, and splines.
For example, automatic control, where the matrix algebra content is well defined and small-scale
problems are interesting and realistic [126], is one of the first areas where the tools are used
successfully.

Matrix laboratories are expected to gain enormously as their design incorporates tools for one-
or two-way interconnection with other systems. For example, MATLAB tools makes it possible (after
some work) to call “foreign” Fortran or C modules from inside a laboratory session. The benefits are
substantial: first, one has access to an enormous resource of existing Fortran scientific libraries. A
recent example is the interfacing of PC-MATLAB with the SLICOT Fortran library (produced by NAG)
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for automatic control [161], [190]. Second, it is possible to use mature compiler technology for code
optimization of these modules in order to obtain high performance on the underlying computing
platform [78]. Two-way interconnection is a recent enhancement which allows MATLAB to be used
as a computational engine from a C program. Other tools can be envisaged, for example, that will
automatically create Fortran or C output from the PSE language level. All these tools are of interest
because they enable users to program at the levels they find most appropriate.

In order for matrix laboratories to be effective for production size problems, they must be
able to handle sparse computations. This is certainly true for areas such as computational fluid
dynamics, where resolution requirements demand sparse direct or iterative solvers, and is gradually
becoming necessary in areas such as automatic control [127], [170]. Matrix laboratories for sparse
data structures have been slow in coming, reflecting the less-developed state of the numerical library
technology for sparse computations. Fortunately, as discussed in Section 3.3.2, progress has been
made in that area recently to the benefit of matrix laboratories [87]. Matrix laboratories can be used
now for rapid prototyping of algorithms and experiments with industrial-strength data, thus better
fulfilling their PSE role. In conjunction with these developments, close attention must be paid to
performance issues of matrix laboratories [86]. Indeed, the engineering workstation which is the
common platform for the matrix laboratory may be inadequate for large industrial problems and may
necessitate running at least portions of the code on very high performance platforms. Performance
monitoring, modeling, and evaluation will also be necessary to explain and improve the code
behavior. Parallel processing will thus become essential, also leading to scalability concerns; see
Section 3.4.1.

3.2.2 PSEs for PDE-Based Systems

Partial differential equations (PDEs) are the fundamental mathematical tools for describing the
physical behavior of many application processes in science and engineering. There exists mathe-
matical software to deal with the solution of specific classes of PDEs [26]. A number of software
packages exist that are used exclusively to simulate specific applications in structural mechan-
ics, weather prediction, and climate simulation. A partial list of major engineering packages for
structural analysis and their capabilities can be found in [79]. These packages implement the finite
element method, not on the PDE describing the physical problem but on the physical principles
governing it. The software for the other applications mentioned above is very often based on special
efficient techniques that cannot be used easily to simulate other applications. Most of these systems
are well-defined, documented, and tested libraries of procedures controlled by a well-defined driver.
However, a few of them already support some PSE functionality. In this section we review systems
with some PSE characteristics that have a wide distribution basis or can be found in the public
domain but are not tied to some specific application. Table 3.2 juxtaposes, a number of desirable
features that PSEs for PDE computations should support, and some of the existing PDE systems
with a PSE type environment.
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Table 3.2: PSE functionality of eight PDE systems and tools. An x means the functionality is
present, a * means it is under development.

PSE functionality RPI ELLPACK XELLPACK //ELLPACK DEQSOL VECFEM ALPAL PDE2D

Interactive I/O x x x x x x
Graphical I/O x x x x x x
Multimedia I/O
Interactive

Geometry Modeling x x x
Automatic Geometry

Discretization x x x x x x x
PDE Language x x x x x x x x
PDE Model Generator
PDE Solver

Generator x x x x x x
Advising * * *
Explaining
Tutoring
Navigation
Decision Making x * * *
Parameter

Estimation x * * x
Error Estimation x
Interactive

Debugging x
Interactive

Run Time Control
Symbolic/Numeric

Computing x x x
Sequential

Processing x x x x x x x x
Programming in the

Large x x x x x x x
Vector Processing x x x x
Parallel Processing x
Distributed Processing x
Performance

Estimation x x x
Document Generation
Portability x x x x x x x x
Openness x x x x x
Solution

Infrastructure x x x x x x x
Extendability

(Generic Architecture)
Interface to

Scientific Instruments
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We now describe each of the systems in Table 3.2. The RPI system [139] is a mathematical
software package for the adaptive solution of parabolic PDEs in one- and two-space dimensions
by finite element procedures that automatically refine and coarsen computational meshes, vary the
degree of the piecewise polynomials basis, and, in one dimension, move the computational mesh.
Temporal integration, within a method-of-lines framework, uses either backward difference methods
or a variant of the singly implicit Runge-Kutta methods. A high-level user interface facilitates the
use of this system.

Another well-known PDE system is ELLPACK [167]. The system was designed to solve
second-order elliptic PDEs in two and three dimensions and to evaluate software for such com-
putations. It follows a modular programming paradigm which is supported by a domain-specific
PDE language and a variety of elliptic PDE solvers. The PDE language interface allows the user
to develop high-level programs that can be used to solve nonlinear and time dependent PDEs.
XELLPACK [27] and Parallel (//) ELLPACK [104] are recent extensions of ELLPACK based on
the X windowing environment. XELLPACK provides graphical input for constructing grids, pop-up
menus for selecting solution techniques, and color graphics output for analyzing solutions. A user
can interface with XELLPACK from any X workstation while an XELLPACK client solves an
elliptic problem on any machine or machines on the network. //ELLPACK is a parallel version of
ELLPACK [108], originally designed for hypercube architectures [105], [108]. It acts as an interface
to various libraries of parallel elliptic PDE solvers. It allows the user to specify the PDE problem
interactively (e.g. defining the region using a mouse); to use symbolic processing to transform it
from nonlinear to linear form; to discretize using finite differences or finite elements. //ELLPACK
automatically generates pseudo code for time-dependent PDE solvers, and it determines the map-
ping of the underlying computation onto parallel machines. This mapping can be displayed and
modified interactively. Currently //ELLPACK provides PDE solvers based on the domain decom-
position methodology, that generate code for MIMD architectures. All three systems have a facility
for collecting, visualizing, and analyzing performance data.

The VECFEM system [93] solves multidimensional elliptic, parabolic, and eigenvalue func-
tional equations on vector machines. The equations are approximated using finite elements in space
(thus allowing irregular domains), and finite differences with self-adapted step size and order con-
trol in time. Parts of VECFEM are the linear equation solver FEMLIN and the matrix eigenvalue
problem solver FEMEPS. Both use iterative methods of the conjugate-gradient type. The current
version 1.1 does not offer a user-friendly interface but there is a plan to drive the system through
a macro extension of Fortran (PATRAN) and also use the system IDEAS for geometric modeling.
The architecture of the system is based on a finite element kernel defined through well-known finite
element data structures and interfaces.

The PDE2D system [176] is for the numerical solution of nonlinear elliptic, parabolic, and
eigenvalue PDE problems in two dimensions using the Galerkin method with adaptive meshes. The
system uses PROTRAN ([9],[113]) to drive the computations and to input/output the PDE data.

DEQSOL supports finite difference and finite element discretizations of time-dependent PDEs
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[122]. It includes a very high level specification language, an interactive/visual user interface for
PDE problem specification, automatic generation of sequential or vector code, debugging, diagnosis,
and visualization of numerical simulation of PDE problems; see also [123], [173], [189].

ALPAL is a PSE for several PDE-based computations [40]. Given the very high level
specification of the equations to be solved and the numerical methods to be used, ALPAL generates
sequential or vector code to solve nonlinear integro-differential equations, ALPAL is designed
to handle the sort of complicated mathematical models used in very large scientific simulation
codes. Other features of ALPAL include an interactive graphical front-end, the ability to compute
symbolically exact Jacobians for implicit methods, and a high degree of code optimization.

Table 3.2 indicates that all these systems are either domain or method specific. None of them is
easily expandable, and in general they lack manyPSE features. Moreover, none of these systems has
been designed to control real or experimental processes used in production or laboratories. Thus,
there is need to design and implement software systems for PSEs and their related algorithmic
infrastructure for any class of PDE problems and PDE-based applications on hardware platforms.
To achieve the above design objectives, one must address the issue of integration of numeric,
symbolic, multimedia, and AI processing.

3.2.3 Statistical Systems

Statistics is basic to most experimental sciences, and statistical computations are the principal
computations in many disciplines. The field of statistics has two characteristics which strongly
motivate the development of high level PSEs:

1. Many statistical quantities are computed by complicated algorithms which must be imple-
mented carefully if accurate results are to be obtained.

2. Even “simple” statistical applications involve assumptions and analyses that are mathemati-
cally deep and difficult to understand, even for sophisticated Ph.D.-level statisticians.
Thus statistics was the first area of science to see the widespread use of high-level, user-

oriented systems. By the mid 1970s, statistical software suppliers were introducing special languages
in an attempt to allow non-statisticians to carry out statistical calculations correctly. Examples of
such software came from SPSS, SAS, Minitab, BMD, and Pstat; the languages were initially user-
friendly interfaces to a library of Fortran statistical subprograms. This software created considerable
controversy in statistical education [163], where it was viewed as allowing students to use statistics
without understanding it. By 1991 these systems were evolving into complete PSEs, the use of
elaborate graphics was commonplace, and expert systems help (which this community of users
needs particularly badly) was being developed and introduced.

3.3 Component Areas

3.3.1 Symbolic and Algebraic Computing

Examples of symbolic and algebraic computing systems (SACs) are MACSYMA [70], [132], REDUCE

[97], [98], Maple [37], Scratchpad II [115], DERIVE [181], and Mathematica [1], [197]. Reference
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[99] provides several interesting observations on the development of SAC systems in relation to
other areas of computer science. A recent important report summarizes a wealth of information
about current and future applications of SAC technology [100].

SACs can help in the early problem solving steps of specification and model creation.
They can perform analytical manipulations before the application of numerical techniques; these
manipulations are useful but also tedious and error prone if done manually. This preprocessing leads
to better understanding of the mathematical problem and important simplifications ([84], [174]) and
selection of proper solution procedures [61]. SAC systems provide the framework for describing
equations and translating them into a suitable format for manipulation in subsequent phases. Systems
have been built for automatically writing code to solve elliptic differential equations in general
coordinates based on finite-difference/finite-volume approximation; for time dependent problems
[64], and for generating finite element code [76], [184], [193]. Another use of symbolic algebra tools
for PSEs is in stability investigations of finite-difference approximations to differential equations
[65], [83], [185].

An important use of SACs is in the generation and manipulation of Jacobian matrices during
the solution of nonlinear systems of equations. Hence SACs as well as recent automatic differen-
tiation techniques can replace error-prone hand manipulation or finite difference oriented schemes
contaminated by roundoff2; see [41], [139], [191] plus articles and references in [91].

By providing the framework for specifying the mathematical problem in a manner close to the
standard scientific notation, SACs approach satisfying an important PSE function, that is, providing
communication in the user’s own terms. As SACs accumulate mathematical knowledge, they can
also replace mathematical handbooks, and even more ambitiously, to become the mathematician’s
assistant. Significant research questions remain in the development of good SAC systems; see [69].
Several issues must be addressed before SACs can fulfill their role as components of PSEs, namely
increased speed of operation by exploiting multiprocessing technology; reliability; and design of
the user interface.

Regarding reliability, we note the potential dangers, convincingly demonstrated in [71], with
an example in which variables in SAC-generated formulas were substituted with floating-point
numbers, producing numerical values less accurate than if one were to use approximate methods
from the start.3 Furthermore there is a need for SAC software libraries. One step in that direction is
the NETLIB-type organization and distribution of software for REDUCE.

Another important topic is that of the interface of SACs with users and other systems. Exam-
ples include sophisticated graphics, output of Fortran code or LATEX expressions, and connections
with foreign environments [76], [117], [182], [184], [193].

The data structures and computations used by SAC systems are very demanding of the
computer system, so that the potential of parallel computation should be exploited. In the same

2. In the words of Painter and Cook in [41], “Before ALPAL, 100% accurate Jacobians were unheard of at LLNL.”
3. This is a very worrying result, given the current use of SACs to produce extremely long mathematical expressions,
translate them into Fortran, and use them with floating-point arguments.
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time, current research tries to address the issues of computational efficiency, expressiveness, and
friendliness of SACs [47], [69].

Currently, several companies are relying on SAC systems for complicated industrial tasks
ranging from the design of three-dimensional elements to simulate singular behavior in stress fields
[110], to studying seismic wave propagation [119], conducting reliability analysis for off-shore oil
rigs and nuclear reactors, and complementing finite element methods in the design of wind turbines
and next-generation engines.

Overall, we note that by their very nature, SACs come very close to the PSE idea; see for
example [70], [182, Section 8.2.5]. It is thus important to study the design issues raised by SACs as
they encapsulate most of the problems that need to be solved for the realization of PSEs.

3.3.2 Numerical Analysis

The primary contributions of numerical analysis consist in the development of efficient and robust
algorithms and their realization into numerical libraries whose fundamental role has been advocated
since the early days of scientific computing; see articles in [43] and [56], [152], [162], [165], [166].

As problems increase in complexity, the presence of reliable, efficient and easily assembled
software parts becomes essential [168]. High-quality numerical libraries allow the user to concen-
trate on the higher level issues instead of rewriting software [103], [112], [142]. Public depositories
(e.g., NETLIB [57]) provide ready access to good quality numerical and other scientific software.
Currently, there is intense research and development activity in algorithms and libraries for direct
and iterative sparse computations [11], [14], [15], [52], [53], [54], [60], [82], [144], [172], [171],
[175]. Some libraries are developed even further into complete environments, (for example, using
graphics and interface languages), bringing them closer to PSEs. That these efforts are of impor-
tance to the scientific community is evidenced by the success of matrix laboratory tools such as
those described in Section 3.2.1; see also [11], [171].

As argued by B. Parlett in [147], numerical analysis research, is not only directed toward
solving state-of-the-art problems but also toward re-evaluation of existing solution methods in light
of new developments. For example, novel computer systems have triggered research in algorithmic
techniques to exploit vector and parallel computational resources, hierarchical and distributed
memories, etc. See [82]. Libraries based on such techniques are already under construction and
standardization; see for example [13].

It is hoped that PSEs will significantly reduce the present delay in applying and testing
novel numerical algorithms in the context of real applications as well as simplifying the design
of appropriate test problems. Indeed, the lack of adequate “real” data sets and good reporting
procedures has been recognized as a serious impediment to research in many subfields of numerical
analysis [22], [114]. Although efforts are being made to construct collections of test data, PSEs
offer a natural solution to this problem.

Reliability of results is another important concern. Just as one seldom questions the reliability
of results obtained with trigonometric functions, the PSE user should be able to rely on intermediate
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results when using components of the environment; this assumes a high degree of confidence for
these routines, demonstrates the necessity for numerical algorithms in a PSE to be reliable, and
indicates the importance of current research in error estimation and control, adaptive algorithms
and software for the complex problems to which PSEs will be applied [68], [77], [143].

3.3.3 Artificial Intelligence

Techniques for efficient problem solving constitute an important topic of artificial intelligence (AI)
research [12]. Expert systems constitute a major aspect of AI with respect to problem solving tasks.

From early on, polyalgorithms and automatic algorithm selection procedures were recog-
nized as important to the development of efficient and reliable numerical software [164]. With the
proliferation of solution methods, it becomes clear that the selection process should be largely auto-
mated. See [25] for a review of one such project (GAMS) and references to others (NAXPERT, NEXUS,
SLADOC). In areas such as civil engineering, knowledge based systems are combined with CAD
tools to improve the overall design process; see [16] and [24]. Expert systems have been developed
for differential equations. We note references [18], [118], [131], [149]; Elliptic Expert [62] for the
XELLPACK environment [27]; ATHENA for //ELLPACK [105]. Successful use of AI techniques for
automatic preparation, execution, and control of numerical experiments has been reported in [2];
other useful references include [32], [38], [44], [95], [187], [81], [106], [107]. It must be noted,
however, that the feasibility of constructing systems able to handle general PDEs has still to be
demonstrated.

3.3.4 Computational Geometry

Geometry is a critical component for most applications. The almost exclusive use of single rectan-
gular or circular slopes in textbooks clouds the fact that most applications really involve somewhat
more complicated shapes. For example, computer-aided design in structural engineering is based
on interaction of solid modeling, finite element mesh generation, solution and postprocessing [73].
The structural engineering community has developed a methodology for a wide range of shapes,
the “building block” approach (i.e., finite elements or constructive solid geometry), which is quite
effective for many applications. On the other hand, it is not as effective when smooth shapes are
essential to the applications. More distressing to those trying to build versatile systems, is that most
of the geometry manipulation capability is deeply buried within massive software systems. There
have been efforts recently to create geometry systems that can interface naturally with various
levels of application, for example, the Protosolid system [192]. There are also important efforts to
provide “design shells” for large structural analysis systems (e.g., the commercial products IDEAS
and Adams), which provide more natural and simple-to-use geometry as well as other benefits.

It is essential that computational geometry be integrated into software environments of
computational engineering and science for the 1990’s. This task requires efforts on several layers.
Beginning at the infrastructure level, geometric modeling systems pose many research problems in
the integration of numerical and symbolic computation and in the practical application of theories
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from geometry and algebra [102]. On the systems integration level, geometric modeling systems
need to be restructured into open systems that give freely access to infrastructure functionalities
and provide tools for interfacing with complex interval data structures. On the user-interface level,
finally, the traditional geometric design gestures and paradigms need to be rethought from an
applications point of view that incorporates into the need for specifying shape, the additional need
to specify visually, and conveniently the parameters of the physical problems to be analyzed. Success
on this level will require melding different research communities.

Architects and civil engineers have been investigating CAD environments, combining knowledge-
based engineering, computer graphics [89], geometry and solid modeling, and design optimization,
for some time [72], [159]. It is argued that future architectural PSEs could free CAD from its
current restrictions [141] and enable users to explore completely innovative designs [136], [137].

3.3.5 Visualization and Graphics

Visualization is an integral part of PSEs. The case for a visualization initiative was made in [39]
so that advances in numerical simulation software/hardware environments can be matched by an
improved ability to assimilate the results. For a review of recent activities in the area see [30] and
[111]. E. J. Farrell’s preface to the latter collection summarizes the importance of visualization in
scientific computing. It is noted that graphics, images and presentation of information in image
form are essential in the development of science and engineering. For example, they allow viewers
to perceive patterns and relationships which may be missed in tables of numbers. It is also noted
in the same reference that in addition to forming a three dimensional view of data, a goal is to
provide tools and systems which allow the user to extract information from the data. Traditionally,
visualization techniques are primarily applied in the pre- or post-processing of the solution process.
An important recent advance includes the use of visualization tools to depict sparse matrices in the
context of matrix laboratories or other numerical libraries [87], [146], [188]. Often, there is a need
to observe and steer the computation during run-time; see for example [28] and [94] and articles
in [183]. Furthermore, the introduction of parallel computing and its realization on varied parallel
architectures has necessitated the collection of run-time data that show the performance and flow
of parallel computations; see for example [183]. Graphical representation of these data is the only
way to perceive changes and take appropriate actions. We predict that future PSEs will allow users
to visualize their computation.

The symbolic representation of three dimensional post-processing input data is impractical.
Already, CAD systems have revolutionized the way we specify such data. The integration of graphics
to specify the physical world and support the simulation process is one of the main PSE design
objectives. In summary, the area of visualization should be an important research component for
PSEs.
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3.4 Supporting Areas

3.4.1 Parallel and Distributed Computation

The capabilities of supercomputers have made possible numerical simulations at a fine level of
detail (e.g., using the additional memory and computational power to increase resolution) with
corresponding increases to the sophistication of the models. Parallel and distributed computation
will affect research in most areas, and with true multiprocessing and large memories, it also becomes
possible to attempt the parallelization of symbolic computations [48].

Still, the effective use of parallel computers for several computations is an active research
topic. For example, many numerical computations deal with sparse data structures, incorporate
adaptive algorithms, etc. The efficient implementation of such algorithms on parallel architectures
is a hard problem [23], [139], [196]. Some of the difficulties are similar to those encountered
when dealing with the parallelization of symbolic computations. As massively parallel architec-
tures mature, studies of scalability for mathematical and scientific libraries, software tools, and
communication and I/O libraries should also intensify [130].

As the user searches for the best algorithm for his particular application, he will be faced
with algorithms that tackle the same problem but perform differently, depending on the input data.
Adding computer architecture as a parameter opens the field to many new approaches, augmenting
the algorithmic choices and constraints. The explosive growth in the set of possible solutions makes
expert systems necessary.

3.4.2 Networks

Some PSE components, (e.g., the knowledge base) could be geographically distributed. High-
speed networks and electronic mail would enable users to obtain resources from remote facilities
and post inquiries to electronic bulletin boards. The proposed National Research and Education
Network (NREN) component of the Federal High Performance Computing and Communications
Initiative (HPCC) addresses these areas as it is designed to support the bandwidth required for
interactive visualization, file and image transfers, multi-media database access, teleconferencing,
and collaboration technology [109], [6]. Some examples relevant to the previous discussion on SAC
and numerical systems are the electronic dissemination of information (source code, bibliographies,
news) for REDUCE (organized by A. Hearn at RAND), the use of X window technology and Unix
tools for ready access to NETLIB [58], and the proliferation of resources accessible via anonymous
file transfer over Internet.

3.4.3 User Interface

An area of great importance for the creation of successful and usable PSEs is the field of user
interfaces. This is expanding rapidly, an expansion which is largely due to the increasing expectations
and demands from the users, the availability of generic software platforms for the development of
user interfaces, and the emergence of new input/output technologies [20].
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A great many engineers, scientists, and students are familiar with the sophisticated iconic
interfaces such as that of the Macintosh and various window systems. These users expect such
interfaces to be readily available to engineering and scientific software systems. Unfortunately the
cost of providing these interfaces is still high; after the user interface code can be as much as 70%
of the total code of a software system.

The range of technologies available for user interfaces is growing rapidly. Apart from today’s
bit-mapped graphics, other, more exotic interface technologies such as virtual reality and multime-
dia have been developed. They are already available commercially and shortly they will become
inexpensive enough to be readily available. Some interface system requirements for problem ex-
pression, automatic programming, visualization, computational steering, and concurrent computing
are discussed in [18], [150].

It is expected that the future PSEs will not only assist the modeling and simulation of a
particular application but will be used as job simulators or components of process control systems.
In any case single-media interfaces have already begun to show serious shortcomings in effective
information display. It is likely that these shortcomings can be overcome by spreading information
processing across different modal channels. There is, therefore, a hope that multimedia technologies
can address the issue of information overload in the user interface of PSEs.

To use these new technologies we must support research and development in the design
construction and evaluation of a multi-media tool set which provides facilities for constructing,
executing, and emulating multimedia interfaces. There are already some examples of such tool sets
[10] especially for process control applications.

3.4.4 Software Infrastructure

PSEs must enable the computational scientist to program in the large. As managers of complexity,
PSEs, their component subsystems, and their design targets are also expected to be large and
complex. The software infrastructure needs to be developed and complemented in case current
techniques are inadequate.
Object-Oriented Design. Object-oriented techniques will be useful for rendering PSEs compre-
hensible and manageable [31], [7]. PSE components are expected to cooperate in problem solving
and would benefit from research in concurrent object-oriented programming [8]. In particular,
object-oriented programming techniques are gradually becoming more common in computational
science [35], [129], [138], [145], [149], [160].
Software Interconnection Technologies. The integration of complex numerical and symbolic sys-
tems needs appropriate software interconnection technology and module interconnection languages
for the efficient description and control of problem solving. When code modules are written to
solve PDEs, interfaces must be written to link with general purpose numerical software and appli-
cation codes [42]. A software bus could provide the appropriate connecting infrastructure [157],
[156],[158]. Some design goals for the bus are to allow programs to be described and manipulated
in terms of minimum specifications and to provide a language for describing module interfaces in
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a manner that is independent of the application’s implementation language; see [55], [155], [157],
[158].

Recent systems have begun to address the interconnection problem. As noted in Section 3.2.1
matrix laboratories are built on top of sophisticated mathematical software libraries. Tremendous
power is added as it becomes possible to link the systems with numerical libraries written in Fortran
or C. There exist several projects for interconnecting SACs with numerical software libraries (e.g.,
IRENA and INTERCALL to link REDUCE and Mathematica with the NAG library [33], [50], [51]).
Language and Compiler Technology. The important role of language in the problem solving
process is widely recognized [29], [179]. Some of the systems described earlier already provide
their own language. New languages are also being proposed, some specifically directed toward
scientific computation while object-oriented languages such as C++ gain currency in the scientific
computation area [59], [101], [128], [133], [134], [63], [169], [198]. The development of compilers
and other tools for these languages and their implementation on target architectures is another
important activity; see [120] and articles in [85]. One criticism of symbolic systems is that they are
slow. The reasons for this are manifold. Whereas most numerical computations are based on the
iterative manipulation of regular data structures, thus allowing loop distribution across processors
and regular sequences of memory access patterns, symbolic systems manipulate irregular and
dynamic data structures. In addition, SACs are frequently written on Lisp-type languages for which
restructuring compiler technology is much less developed. While research for the discovery of
better SAC algorithms is continuing, improvements in speed and usability are expected as good
compilers for the underlying languages become available [153], [154]; examples are the parallelizing
compiler for sequential Scheme [96]; multiprocessing extensions for Lisp [88], [199]; the effort of
[75] for constructing a compilation-driven parallel REDUCE system for loosely coupled, distributed
architectures. There have also been efforts to provide implementations of Lisp-based systems such
as REDUCE in C by building a translator from REDUCE source to C [74]. See also [36] and [195] for
additional work on the multiprocessing of SACs.

As most scientific/numeric processing is done with Fortran, much time in symbolic systems
is spent in special functions (e.g. GENTRAN) to generate Fortran code. It thus becomes crucial for
performance for such functions to produce code which is, in some sense, optimized. This topic has
received attention, with some systems performing optimizations over entire code sequences in order
to obtain improved scheduling on vector processors.

Future research should examine how to exploit the PSE’s high-level knowledge of the
problem to enhance the compilation process and produce better solutions. In addition, recent de-
velopments in computer architecture have underlined the difficulties of restructuring dusty-deck
codes for full exploitation of parallel machines. There is still a lot to be done in developing parallel
software engineering principles for writing codes that demonstrate performance portability. This is
an important task, since it can be argued that codes designed on such principles will receive the
maximum help from automatic restructurers.
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3.5 Domain-Specific Problem Solving Environments

Discussion between users and PSE developers should be an active component of the PSE design
process. The development of PSEs is envisaged as a collaboration between PSE developers and
applications scientists; otherwise one risks building interesting but “toy” tools. In particular, we note
the comment of M. Dertouzos that too much computing has been of a “throw the goods over the
fence” type4. Thus, it is an important goal of PSE research funds to support a constructive dialogue
between designers and users, with the latter group having easy access to the system and motivation
to criticize and use it while it is being designed and developed. Progress can be achieved by building
PSEs around selected areas, for example, continuum mechanics or computational electronics,
including functionality for as many steps as possible from those described in the introduction to
Section 3.

Several environments which incorporate some of the characteristics outlined above were
already reviewed in Section 3.2; see also [25] for some comparisons. Some environments are
specialized to particular problem domains: for example, in the areas of industrial engineering
design [186] and structural mechanics, combining solid modeling, finite element mesh generation,
solution, and postprocessing in [73], [148]. PSEs have also been created for pure mathematics
(group theory [34]); partial differential equations [17], [139]; general relativity (SHEEP [80]); and
numerical analysis and control of precision of arithmetic calculations (ACRITH [125], AQUARELS

[67]). EVE [18] is an object-centered knowledge-based PDE solver, constructed around the MODULEF

environment. A system, built on top of Mathematica and automating several problem solving steps
from specification to code generation, is SINAPSE [119]. The primary application domain of SINAPSE

is seismic wave propagation using finite differences and explicit or implicit time stepping. Another
important effort, spanning many years of development, is in building P-FINGER, as system for
automating finite element analysis using symbolic and numerical techniques and mapping onto
shared and distributed memory multiprocessors [177], [178], [194]. Much progress has been made
in the area ofPSEs for electronic CAD. See for example [19] for a discussion of CAD Frameworks,
a term which means “... all of the underlying facilities provided to the CAD tool developer, the
CAD system integrator, and the end user (IC or system designer) which are necessary to facilitate
their tasks”.

Specialized PSEs will also have an important impact on education, allowing students to
experiment with hard problems and sophisticated solution methods.

We believe that the backbone developments, the equally impressive developments in individ-
ual component areas, and most important, the needs of the working scientist, constitute the objective
and subjective conditions necessary for the creation of viable PSEs. The conditions are now ripe
for the integration of these tools into PSEs and specialized workbenches, in order to create a more
productive environment for the scientist.

4. It is counterproductive to build a house by having the builder bring truckloads of materials, letting the future occupants
decide if they are appropriate; see[49], [90].
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3.6 Professional Infrastructure

The educational infrastructure for scientific problem solving environments is not strong. We use
the term Computational Engineering and Science (CES) to denote this discipline and area of work.
Too often we see highly trained engineers and scientists in CES whose knowledge about computing
is that of a college sophomore and highly trained computer scientists whose knowledge about
engineering and sciences is at that same level; traditional educational programs in each of these
areas stop at the sophomore level (or earlier) in the other area. Thus education in the “other” area
tends to be ad hoc, on the job, and self-taught. For computer science, this means that it is hard
to find traditionally trained computer scientists who know enough about engineering and science
to understand CES applications. Faculty working in CES areas find that their Ph.D. students have
often spent a year either learning about application areas or a year passing courses and exams in
topics weakly related to CES (e.g., abstract algebra for mathematicians, power systems for electrical
engineers, theoretical CS for computer scientists).

A few CES programs have risen out of a desire to remedy this situation. The common thread
of these programs is that there is both substantial computer science and engineering/science content.
There is a wide variation in the specific nature of the programs because they must be adapted to local
faculty interests and university political structures. All involve more than one department, and most
involve a computer science department. It is indicative of the situation that at some places one can
create a CES program and find no one in the computer science department interested in it. Ideally,
one wants the students to learn most of the material from two disciplines. This is an unreasonable
load for the students, so there are hard choices about what material to include. Most of the CES
programs are at the graduate level, where flexibility in tailoring education programs is common.

Six academic CES programs are described briefly below. These descriptions are adapted
from material provided by Robert Funderlic (North Carolina State), Gene Golub (Stanford), Bill
Martin (University of Michigan), Gary Rodrigue (University of California, Davis), Ahmed Sameh
(University of Illinois), and Danny Sorensen (Rice University). The descriptions illustrate both the
diversity of the programs and the common purpose of combining computer science, engineering,
science, and applied mathematics in some way.

3.6.1 University of Michigan

The doctoral program in Scientific Computing at the University of Michigan is a joint degree
program — students pursue doctoral studies in a home department, typically one of the traditional
engineering, science, or mathematics disciplines, and take additional courses in areas such as
numerical analysis, scientific computation, applications, or the study of algorithms for advanced
computer architectures. This program is based on the recognition that a firm knowledge of the
science is an essential ingredient for research in scientific computation — students are expected
to complete the normal doctoral requirements for their home departments as well as additional
course requirements in scientific computation, numerical analysis, and algorithms for advanced
computer architectures. The title of the degree has “and scientific computing” appended to traditional
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description, for example, Ph.D. in aerospace engineering and scientific computing.
The Laboratory for Scientific Computation administers the doctoral program in scientific

computing, is cooperation with the student’s home department. The following list of research topics
is representative of this program:

Computational fluid dynamics Simulation of VLSI circuits
Algorithms for new architectures Scientific visualization
Computational particle transport High performance materials
Computational solid mechanics Molecular dynamics
Simulation of semiconductors Computational chemistry
Simulation of AIDS transmission Computer-aided molecular design

3.6.2 North Carolina State University

Strong local institutional support and excellent faculty from several departments have propelled
CES programs at North Carolina State University. A plethora of shared memory and message
passing parallel computers is available for researchers and graduate students on campus and at
the North Carolina Supercomputer Center at Research Triangle Park. The Center for Research in
Scientific Computation (joint between computer science and mathematics) acts as the focal point
for academic CES programs. The Computer Systems Lab (joint between computer science and
computer engineering) provides strong computational infrastructure support.

Various names and emphases describe the academic programs at North Caroline State: Com-
putational Mathematics (CMA) within the Mathematics Department, Scientific Computing (SC)
within Computer Science, and Computational Engineering and Science (CES). The latter resem-
bles a well-structured, expanded, split minor in math and computer science and is available in all
engineering and physical science graduate programs. Computer science is a vital component of
the research and teaching of scientific computing at NC State; for example, of the 23 courses that
support the CES program, 18 are computer science, with 8 of these cross listed with mathematics.
The SC and CMA programs are very similar and lead to M.S. and Ph.D. degrees in computer science
and applied mathematics. With the proper advising, a de facto track in scientific computation is
available within the computer science undergraduate program.

North Caroline State’s success in establishing CES programs has been strongly influenced
by the cooperative efforts of their computer science and applied mathematics faculties even though
they are in different colleges.

3.6.3 Rice University

The Mathematical Sciences Department, in conjunction with the Computer Science, Chemical
Engineering, and Electrical Engineering Departments, has initiated a new degree program leading
to advanced degrees in Computational Science and Engineering (CSE). The program focuses on
modern computational techniques and is designed to provide this training throughout Rice University
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at the M.S. and Ph.D. levels. The program is governed by a committee of faculty chosen by the Dean
of Engineering, with ultimate oversight by the Provost. This Computational Science Committee
(CSC) is responsible for assisting the student in designing an appropriate course of study, setting
examination requirements, and insuring the integrity of the degree program.

The professional master’s degree produces an expert in scientific computing who can work as
part of an interdisciplinary research team. A recipient of this degree will be well trained in state-of-
the-art numerical methods, high performance computer architectures, software development tools,
and in the application of these techniques to at least one scientific or engineering area. The curriculum
for this degree consists of a variety of topics from mathematical sciences, computer science, and
a selected application area. Requirements include successful completion of 30 semester hours or
more of advanced courses. There is no thesis requirement.

The Ph.D. program starts with advancement to doctoral candidacy by the successful comple-
tion of a program of approved course work along with satisfactory performance on preliminary and
qualifying examinations. The foreign language requirements of the student’s department are adhered
to, and the student completes an original thesis under the direction of a member of the participating
faculty of the CSE program which is acceptable to the Computational Science Committee.

3.6.4 Stanford University

In 1987 Stanford established a degree program in scientific computing and computational mathe-
matics. Its purpose is to train students in the use of modern advanced computer architectures and
software tools in various fields of science and engineering. The main thrust is the fusion of ideas
from computer science and applied mathematics with a number of application areas. This program
resides in the School of Engineering, and students are admitted directly into the program indepen-
dent of other departments. The program’s faculty is made up of faculty from other departments and
has three levels of participation. The Core Faculty is responsible for administration; the Associate
Faculty consists of people who are heavily involved in computing within their discipline and who
offer courses within the program; the Affiliated Faculty are those whose disciplines are peripherally
dependent on computing.

The curriculum emphasizes applied mathematics, numerical analysis, and computer science
and requires demonstrated expertise in some application area such as fluid mechanics. In addition,
there are working relationships with local research organizations such as RIACS, LLNL, and IBM.

3.6.5 University of California at Davis

A program of computational science has been initiated within the departments of applied science and
chemistry. Questions of science, computational techniques, computer science, and mathematics are
inseparable in addressing the large issues in computational science. A practitioner of computational
science must have some skills in each of these areas and be able to interact from each of them.
The computational science program at U.C.–Davis was established with this philosophy in mind
for the graduate student who is interested in the application of computers to the physical, chemical,
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mathematical, and engineering sciences. The program involves course work from the traditional
areas of physics, chemistry, computational mathematics, and computer science as well as in the area
of the student’s specialization. Ph.D. candidates in participating departments declare a designated
emphasis in Computational Science, then proceed to take a special set of core courses in the
department in which the student is enrolled and also a set of core courses in computational science.
For example, in the Department of Applied Science, the core courses are Mathematical Physics,
Computational Mathematics, and a course called Computational Science that is designed especially
for physical scientists and which covers such topics as computer architecture with emphasis on
parallel computers, algorithms, and numerical methods. After passing an examination, the student
proceeds to their graduate research by taking electives from a variety of available courses within
the department. The degree awarded to the student is: “Doctor of Philosophy in ’(department)’ with
emphasis in Computational Science”.

3.6.6 The University of Illinois at Urbana-Champaign

A new graduate program in computational science and engineering (CSE) is under consideration by
the College of Engineering at the University of Illinois. Unlike what is now regarded as traditional
computer science, a CSE program focuses on the whole computational process. It covers the
following topics:

(I) Computers
(i) architecture for parallel and pipeline processing,
(ii) simulation from the chip to the system level,
(iii) hardware to the level of device simulation and packaging,
(iv) reliability and fault tolerance;

(II) System Software
(i) compilers, especially restructuring source code and code generation,
(ii) programming and problem solving environments,
(iii) operating systems, including interface with compilers, scheduling and dynamic control

of systems;
(III) Applications

(i) design of robust parallel numerical and nonnumerical algorithms,
(ii) specialization in one application area such as digital circuit simulation, computational

fluid dynamics, computational chemistry, etc., and the development of application soft-
ware that achieves “performance portability” across a wide class of architectures;

(IV) Performance Evaluation
(i) measuring performance of existing and proposed architectures, compilers, algorithms

and whole application codes,
(ii) analysis and performance improvement suggestions, and validation via measurements.
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4 FUTURE RESEARCH DIRECTIONS

It has been predicted that by the beginning of the next century the computer technologies of the
1990s will allow anyone with access to computers to get an answer to any question that has an
answer. On the other hand, it has been rightly observed that if someone has only a hammer, then
everything looks like a nail to him. The research directions for PSEs should be governed by the
desire to make the above prediction a reality and to provide students, scientists, and engineers with
problem solving environments and computational power that will make them feel that their only
limitation is their imagination.

4.1 Future Problem Solving Environments

The enabling technology for future PSEs is the wide availability of high-performance computers.
It is expected that in the 1990s we will see on-chip processing performance in excess of 2000 MIPS
and scalable parallel processors containing thousands of such chips. The palmtop (e.g., HP 95LX!)
and notebook computers will become as powerful as current workstations. The new generations of
workstations will be able to process heterogeneous information at supercomputer speeds, utilizing
hundreds of megabytes of main memory, large (greater than 45 inches) flat, high resolution displays,
and very large optical and/or magnetic disks. We will see high bandwidth local area networks,
wireless communication systems, and laptop computers as routine parts of cellular communication
systems. It is widely recognized that the workstations of the 1990s will be able to process multimedia
information (i.e., voice, programmed sound, video, photographs, 3D images), which will provide
support for the development of new tools that will take advantage of the added value provided
by the combination of the “traditional” computer media, existing information systems, and digital
video and sound technology. It is clear that we have not yet thought of everything we can do with
this technology.

These technological advances are bound to have a significant impact as the way we learn,
solve problems, communicate, and interact professionally and personally. “Programming” in such
an environment will almost certainly be a different task from what it is today. We anticipate that for
most users, programming will be an activity involving high level, interactive, visual-object-oriented
languages, supported by multimedia libraries of information and application objects. Traditional
algorithmic programming will be more restricted to specialists and system builders. This ability to
“program-in-the-large” will be an important feature of the PSEs we envisage.
User interfaces for computational science.

The new technologies will definitely change the way we communicate with electronic media
and determine the nature of PSE interfaces. Most of the interfaces today are tool based and user
directed. We need interfaces that support integrated environments capable of organizing the user’s
computational objectives instead of having the user organize computations piece by piece. Future
PSE interfaces will be connected to more than a trillion objects of useful knowledge. It is unclear
whether the current direct human interfaces can handle this workload. Furthermore, future PSE
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interfaces will have animation and multimedia processing as a basic capability. The development
of PSEs depends very much on interface technologies, and thus research and development of user
interfaces for computational science applications is essential.

Software infrastructures for “soft” laboratories.
Computational models have augmented, or even replaced, real experimentation in many

areas and now play a significant role in everyday science and engineering. We foresee as a future
important research direction the development of a “soft” computational science laboratory where
hybrid computational and experimental models interact in a natural way. The goal may be to
create a prototype model of some artifact or process that is still in its infancy, or to “surround”
an experimental physical device with a simulated physical environment, or simply to exploit the
economic advantages of various component types in a process. Although the need for PSEs for such
soft laboratories has been identified, no specific architecture has been suggested yet. In this situation
one has to face the additional challenge of interfacing software and physical PSEs. Multimedia
workstations constitute an initial reasonable step toward the realization of such laboratories which
are certain to have a significant positive impact on education and research in science and engineering.

Performance, portability, and extensibility are issues of which the PSEs must be cognizant.
It is critical for the PSE to be be designed so that it matches the users’ various levels of ability. The
desirability of this feature for future PSEs has been mentioned in the literature; see [124] and [19].
In addition, environments must be able to support “adaptation” to the user’s changing needs and
resources. Some important problems and a vision for future environments are described in [124].

The design and development of the appropriate software infrastructure to create such “soft”
laboratories is an important future research direction.

Expert systems for problem solving.
Applications will no longer be supported by single-minded, deterministic algorithms that

require several parameters to be specified by the user. Instead, we will see the development of
polyalgorithms, and “smart” algorithms capable of adapting themselves to specific situations. In ad-
dition to their computation procedures, these algorithms include knowledge about their applicability
and perception of their algorithmic and computational behavior on various hardware platforms. The
creation of this new breed of smart or expert systems for problem solving is one of the key research
directions.

We believe that the algorithmic/hardware/software advances of the 1990s will be able to
support the vision of the 1960s. The challenge is to create the software to exploit and integrate
these technologies. The goal is to support well-established educational and problem solving pro-
cesses. This challenge requires that advances be made in infrastructure technologies such as domain
specific languages and compilers, interfaces to support integrated environments of multimedia ob-
jects, libraries of “smart” objects, transparent use of complex computer architectures, and generic,
transportable kernels of capabilities.
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4.2 Generic Problem Solving Environments

For many years the brainstorming of scientists and engineers has been supported by a simple generic
tool: some combination of a paper notebook, a blackboard, a calculator, a pencil, and chalk. It is
now possible to dream of replacing this tool with a single electronic medium capable of supporting
small-scale symbolic, numeric, and graphical processing of certain objects, typically mathematical,
while large-scale, detailed computations are deferred to a more powerful computing engine. The
notebook computer is already a reality and soon will be commercially available. The research
challenge is to scale down the existing tools to fit this hardware platform and interface them to this
new environment.

Another problem solving process is the synthesis of a suite of well-understood operations
from well-defined libraries. A recurring dream of the practitioner is a well-organized “workbench”
of “smart” software tools capable of assisting in the selection and synthesis process and of hiding
most of the non-application specific operations. More is needed than the limited ongoing research
in knowledge base front ends for existing well-defined libraries. Experimentation with various
software architectures is a task that requires the collaboration of specialists in computer systems,
software engineering, human interfaces and computational science. A research goal is to identify
the framework and generic tools appropriate for a broadly applicable scientist’s workbench.

It is clear that there are widely applicable kernels for scientific PSEs. Some of these are
easy to identify, for example, facilities for the visualization of data, symbolic processing of problem
solving specifications, manipulation of geometric shapes, and tools to create and use libraries. Other
less-well-developed kernels include object-oriented knowledge base facilities, language translators
geared to scientific and engineering jargon, controllers for complex distributed computational envi-
ronments, and support facilities for the interface between the computer and the outside world. What
is not easy is to identify the right combination of these kernels and the dividing line between generic
and application-specific capabilities. Advances are required in understanding the architecture and
properties of these kernel facilities.

A system that seems particularly attractive would provide access to classical mathematical
information. This is a narrow enough area to be feasible to attack now, there are numerous previous
“handbooks” to build on, and, most inviting, once completed, the system would become a generic
PSE for many areas of science and engineering.

4.3 Application-Specific Problem Solving Environments

Ken Wilson’s dream is that some day engineers will write down a problem on an electronic medium,
using a textbook-type language, and a “system” will intelligently respond with a reasonable solution.
This dream has been regarded by many as science fiction. We believe that such a goal should be
basic for researchers in scientific PSEs, even if its “full” realization does not appear to be possible
any time soon. The development of such technology will change completely the way we do science
and engineering. It will be a breakthrough with enormous consequences. One can argue that the
hardware technology to become available in the 1990s can support this dream. The principal barrier
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is the lack of application-specific knowledge bases and an appropriate integrated infrastructure of
symbolic, numeric, geometrical, artificial intelligence, and natural languages facilities; it is the lack
of these ingredients that puts realization of this dream into the distant future.

The first step towards the realization of this goal should be the demonstration of this idea
within small, specific problem domains. This will require the development of

� Expert systems for a few, well-defined application domains. These must be capable of an-
alyzing user specifications, selecting an appropriate problem solving process, generating an
appropriate computational model, and producing answers in a rapid, natural form.

� Multimedia user interfaces providing natural forms of communication with languages, graph-
ics, images, and voice specific to these PSEs,

� Access to auxiliary facilities and information such as meta-libraries (libraries of “smart”
algorithms), electronic application-books(CD-books), and video instructors (on line, touch
screen, audio driven help system).

These future PSEs will be supported by a new breed of information database, a knowledge-base,
and science and engineering electronic encyclopedia systems capable of handling or providing
heterogeneous multimedia information. New data structures, storage schemes, and manipulation
algorithms will be needed for each application domain (i.e., chemists operate on molecular structures,
and electrical engineers on circuit diagrams).

An application-specific PSE that seems particularly attractive would provide access to clas-
sical mathematical information. This PSE covers retrieval and use of the enormous body of
information about mathematical formulas, expansions, and associated techniques. It is a narrow
enough area to be feasible to attack now, there are numerous previous “handbooks” to build on,
and, most inviting, once completed it would become a generic PSE for many areas of science and
engineering. The goal is to produce an encyclopedia PSE for applied mathematics.

4.4 Problem Solving Environments for Education

The use of multimedia technologies can revolutionize the educational process in every field, in-
cluding computational science and engineering. A “video” instructor can be integrated into a
conventional computational platform and can monitor each step of the problem solving process, it
can react to pupils’ choices and decisions through natural (sight, sound, touch) media. This has the
potential to revolutionize every aspect of the instruction and learning process. Most of the PSE

application developments today using this technology are focused on office, publishing, and factory
environments, primarily because of their high immediate economic impact, and in some sense, their
lower level technical difficulty (or, perhaps, narrower scope). On the other hand, the educational
institutions today are faced with the rising cost of teaching, reduced financial resources, and the
shortage of qualified instructors in science and mathematics. These institutions are also, in the view
of some analysts, less and less effective in meeting their goals. Further, they face a new breed
of students who have been exposed almost since infancy to various multimedia technologies and
sophisticated computer games, and who have used them as learning devices. Thus, the development
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of multimedia based problem solving educational technology is critical, yet natural, to the evolution
and improvement of the education process.

The PSE approach is especially attractive in science and engineering for reasons beyond
the economic and human resources factors. The long-term goal is to develop PSEs that reflect
and mold specific subject areas, just as textbooks and curriculum standards do now in a different
way. Thus, ideally, the PSE learned in elementary school would be completely compatible with
that used in high school, university, and later life. More specifically, the notation and displays for
simple algebraic equations would remain constant as one moves through the educational system
and out into the work world. Each subject area would create its own “tree” of compatible PSEs,
starting with the root one for the introductory course at whatever level it might first be offered. The
feasibility of this approach to organizing problem solving capabilities should be demonstrated for
some subject area.

Unfortunately there is a severe shortage of people with backgrounds in both computer science
and its applications. There is a need to encourage young people to acquire interdisciplinary training
through fellowships and postdoctoral positions, coupled with the fostering of computational science
programs. The widespread use of PSEs in education should help to attract students to work in this
area.

4.5 Implementation of Problem Solving Environments

Although the architecture, design, and implementation methodology for PSEs are open research
issues, it must be recognized that future PSEs will be characterized by immense complexity.
They will be capable of interacting naturally with users having different levels of expertise and
computational objectives. They will interact with multiple devices, each processing or storing
its own gender of information, and together creating a non-homogeneous collection. They will be
supported by heterogeneous algorithmic infrastructures, each with its own intelligent front-end. They
will execute on a wide variety of machines, over networks, and in complex computing environments.
All this must be integrated to achieve a specific computational goal. The implementation of PSEs
presents formidable software engineering challenges.

The view of a PSE as a set of collaborating components through some form of a software
bus or software kernel fits very well to the object-oriented paradigm which can be used as one of the
methodologies for creating PSEs. To support the realization of PSEs, we need to create generic,
object-oriented, knowledge-based, PSE kernels which support programming in the large. These
kernels will have some visual script capabilities for developing PSEs for different applications,
information storage systems for multimedia and science objects, and domain-specific languages
plus their associated compilers. Discovering and developing appropriate software engineering
methodologies for implementing PSEs is one of the critical research challenges for this field.
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5 FINDINGS AND RECOMMENDATIONS

To achieve the potential contributions of computers to science and society we must have a col-
laborative effort to design and build the problem solving environments that will give the working
scientist and engineer routine access to high-performance computers, to the advanced algorithms, to
the accumulated know-how of computational science. We must answer the challenge of discovering
how to build PSEs wholesale that are powerful yet flexible and not limited to a particular computer,
problem solving method, or programming infrastructure.

5.1 Findings

Problem solving environments for computational science is still in its infancy. It is a field of promise,
one where the technological infrastructure has advanced enough to allow the dreams of 30 years ago
to be realized. It has great diversity, and potentially enormous scientific and economic impact, and
immaturity. To discover how to create all the PSEs needed to exploit high-performance computing
is one of the grand challenges of computer science. This report offers the following seven findings.

Finding 1. The time is ripe for major efforts to create problem solving environments for
computational science.

Just a vision in the 1960s, harnessing computers to interact with people on their own terms is
now a possibility. The required high performance computing power is here and much more power
is on the way. A massive amount of computational problem solving expertise has accumulated, and
many of the best methods are so new or so complex that few can implement them well. It is time
that our scientists and engineers receive the adequate software support for their tasks.

Finding 2. Problem solving environments for computational science will have an enor-
mous positive impact on the productivity of scientists and engineers.

The time required for many design, analysis, development, and, eventually, production tasks
will be shortened by one or two orders of magnitude. Further, the results produced will, in many
cases, be better and more reliable. There are many areas of computational science that are well
understood (by some at least) and, in some sense, routine. Yet in these areas the implementation
of a new design analysis or on a new computing environment seems to take as long the tenth time
as the first time. The challenge for PSEs is to encapsulate this problem solving know-how into an
easily used, flexible system. Thus the promise of PSEs is to capture what is well known or routine
and not to provide magic bullets for problems at or beyond the frontiers of computational science.
Even so, by raising the level of analysis PSEs will increase the range of individual expertise and
speed up projects to such an extent that, in fact, the frontiers will be expanded greatly.

Finding 3. Problem solving environments require the expertise of many subdisciplines
of computer science as well as that of the application areas involved.
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The workshop title lists numerical analysis, symbolic computing, computational geometry,
and artificial intelligence as relevant subdisciplines, but it is clear that others are heavily involved
in creating PSEs. Language processing systems are involved from the level of optimizing code
execution locally through automatic parallelization of computations up to natural language issues.
Larger PSEs in computational science will be self-contained systems with all the responsibilities of
operating systems. And, of course, modern high performance architectures and networks will greatly
influence PSE design and operation. Thus it is obvious that PSE creation requires a collaborative
effort of several computer scientists as well as experts from application areas.

Finding 4. The lack of appropriately trained people is an impediment to progress in
computational science PSEs, and yet these same PSEs will, in turn, greatly alleviate the
shortage of computational scientists.

The designers and architects of PSEs need to have a deep understanding of several subdis-
ciplines of computer science and to be sophisticated about science and engineering practice. Such
people are rare. Current educational programs tend to produce computer scientists whose under-
standing of other sciences is at the sophomore level and to produce scientists whose understanding
of computer science is at the same level. To require students to learn both a science or engineering
discipline and computer science is a heavy burden that only a few will accept. These few are badly
needed but we work toward the time when PSEs will give scientists and engineers access to sophis-
ticated computing and modern problem solving methodology without becoming either computer
scientists or hackers. The small numbers of trained computational scientists have the responsibility
of bridging the gap between computing and applications and of building the PSEs for the massive
volumes of scientific computing.

Finding 5. There is a lack of models of computational science problem solving environ-
ments with all the ingredients desired; also lacking are certain generic building blocks for
PSEs.

The PSEs that exist today mostly have their roots in one area and are much less developed
in other areas. This is not unexpected as a large, production-quality PSE that would serve as a
good model would require many dozens of man-years of effort if built with today’s methodology.
Thus we must visualize the next generation of PSEs much as the blind men visualize the elephant,
we see certain features well, but we do not yet appreciate the nature of the whole beast. There
are certain PSE components that are clearly generic, which have been implemented well several
times, and yet which are not available for another PSE without a very large reimplementation
effort. Examples here include (a) symbolic manipulation for basic mathematical expressions, (b)
visualization packages for two, three or four dimensional phenomena, (c) geometric modelers for a
broad class of shapes.

Finding 6. There is an ample number of basic research issues associated with building
problem solving environments.
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As with any complex grand challenge, there are many sub-challenges where more research
is needed. Examples of important research issues for PSEs are:

� Architecture: What is an appropriate structure for a PSE? How are its components best
organized? How does one allow for growth and evolution?

� Kernel: We believe that there is a basic kernel of facilities that can be used for many PSEs.
Which components belong to this kernel? How can very large generic facilities be included
in a kernel? Must the kernel allow for easy pruning or expansions?

� Interface Technology: PSEs will involve very large subsystems that are independently con-
structed as stand-alone systems. What are the data structures and protocols that such compo-
nents should use to interact with the PSE? What are the limits on such interfaces?

� Scientific Interface: What are the best ways for a user to communicate with a PSE? Should
computers provide additional capabilities beyond traditional equations, text, and pictures?

Finding 7. New engineering design and science are hard; it is implausible that successful
PSEs for these purposes can avoid extensive user interaction.

There are many instances in PSEs where expert systems and other artificial intelligence
techniques will be useful in guiding the user or selecting among certain alternatives. However,
the PSEconcept includes the “well understood” attribute, so that novel tasks will require human
direction for the foreseeable future. Care must be taken in PSE design to support the user during a
long term interaction.

5.2 Recommendations

Broadly speaking, our recommendations for action concern support for research in PSE design for
the long term, current “targets of opportunity” in PSE construction, and education in computational
science. As with the workshop findings, these recommendations are presented as seven statements
along with some explanations.

Recommendation 1. Provide support for research into the architecture, design, and
methodology of problem solving environments.

The critical aspects of the architecture appear to be: (a) How does one represent methods in
a way that they can be compiled into a programming language as machines and systems change?
How does one transform such representations as methods are interfaced? How does one modify
algorithmic constituents of methods as better algorithms are discovered? (b) What is an appropriate
kernel for PSE construction? (c) How are large complex components of radically different designs
incorporated into a single PSE? (d) Can the PSE kernel and major components remain computa-
tionally efficient if high modularity is enforced? (e) Can a good “PSE generator” be constructed?

Recommendation 2. Prototypes of complete problem solving environments for compu-
tational science should be constructed.
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A selection of prototype PSEs should be built using “targets of opportunity” involving good
groups of collaborators. Each PSE built should be complex enough to exhibit the principal features
and difficulties of the process but not be so complex that an enormous investment of time and
money is required. Budgets of $250,000 – $500,000/year for three or four years are suggested.
More ambitious projects could be undertaken if the scientific or economic pay off is high enough
and the probability of success is adequate.

Recommendation 3. Key major components of problem solving environments for com-
putational science should be constructed.

In addition to complete PSEs, a few particularly important and difficult generic components
should be constructed. There are software subsystems that have been implemented several (or
many) times but are not yet easily incorporated into a larger, unrelated system. Examples include:
(1) visualization of functions of two, three, and four variables, (2) symbolic manipulation of common
mathematical expressions, (3) geometric modeler in two and three dimensions. Ideally, projects here
would take an existing component and rework it or perhaps put a shell (external interface) around
it.

Recommendation 4. The development of interdisciplinary teams should be encouraged
throughout computational science research.

It is obvious that several disciplines are almost surely needed to build a complex PSE . Since
there is a severe shortage of people well versed in both computer science and its applications to
science and engineering, this recommendation generally applied can increase this important pool of
talent. It can be carried out for younger people by requiring that research assistants and postdoctoral
fellows receive interdisciplinary training.

Recommendation 5. Create “Encyclopedias of Computational Science” which provide
quick access to the accumulated formulas, algorithms, and knowhow.

Computational science has a long tradition of handbooks that collect important formulas and
results for convenient use. Computers have made tables of function values nearly obsolete, but there
still remains an enormous body of knowledge that is hard to access. For example, the Handbook
of Mathematical Functions [3] and the three volumes Higher Transcendental Functions [66] are
monumental works of this type whose content should be reorganized and made easily available to the
computational science community. Computational science, like all other sciences, should have on-
line search facilities for the published literature. These encyclopedia should have algorithms more
general than mathematical formulas. How to represent these algorithms is an important research
issue.

Recommendation 6. Foster educational programs in interdisciplinary computational
science at the advanced level and usePSEs to teach computational science at all levels.
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There is a shortage of people who have the broad range of computer science knowledge and
application discipline knowledge needed to do computational science. This holds both for specific
applications and for building PSEs. The few computational science educational programs recently
established show that it is practical to design viable programs in this area. More of these are needed.

The ideal PSE will accommodate a wide range of sophistication in its users, from young
students to advanced researchers. Until we can realize the ideal, however, some PSEs for science
should be targeted specifically to science education at the junior high, senior high, and undergraduate
college levels. ThesePSEs will introduce students to the future paradigm of science and engineering
work and expose them to scientific activities and phenomena that are not commonly found in simple
laboratories.

Recommendation 7. Provide support for research on effective techniques for interaction
between computers and computational scientists.

Many important PSE applications will involve sustained interaction with the user as a prob-
lem solution or a design is developed. Computer graphics opens up new mechanisms for representing
and visualizing the scientific phenomena involved. These mechanisms must be perfected, and novel
approaches explored. Keyboard entry of information will soon be replaced by voice input and hand-
written formulas, which will surely change the nature of the user interfaces for PSEs. Further, the
PSE should maintain a “laboratory notebook” of the problem solving process, both as a means to
verify how a solution was obtained and to back up the solution process when a dead-end path has
been followed.
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