VIOLIN: Virtual Internetworking on Overlay Infrastructure*

Xuxian Jiang, Dongyan Xu
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907, USA
{jiangx, dxu} @cs.purdue.edu

Abstract

We propose a novel alternative to application-level
overlays called VIOLIN, or Virtual Internetworking on
OverLay INfrastructure. Inspired by recent advances in
virtual machines, VIOLINs are virtual and isolated net-
works created on top of an overlay infrastructure such as
PlanetLab. Entities in a VIOLIN include virtual routers,
switches, and end-hosts, all implemented in software and
hosted by physical overlay hosts. The salient features of
VIOLIN include: (1) Each VIOLIN is a ‘virtual world’
with its own IP address space. And its activities and
communications are strictly confined within the VIOLIN.
(2) All VIOLIN entities can be created, deleted, or migrated
on-demand. (3) It provides a new playground to deploy,
leverage, and evaluate value-added network services which
are not widely deployed in the real Internet. An application
can simply connect to a VIOLIN and leverage the network
services provided. (4) It releases application developers
from network service implementation details, resulting in
easier application implementation and maintenance. We
have designed and implemented a prototype of VIOLIN in
PlanetLab.

1 Introduction

To maintain efficiency and scalability, the Internet only
provides the most basic network services such as IP uni-
cast. In recent years, overlay networks have emerged as
an application-level solution to the realization of value-
added network services, such as anycast, multicast, reliable
multicast, and active networking. While highly practical
and effective, application-level overlays pose a number of
issues: (1) The implementation of application functions
and network services are often closely coupled, making
the development and management of overlays complicated
with blurred boundary between application and network
functions. (2) The development of network services in

*CS Technical Report CSD TR 03-027, Purdue University, July 2003.

application-level overlays is mainly individual efforts, lead-
ing to few standard and reusable protocols. Meanwhile,
many network services for transport, routing, and manage-
ment [4, 11, 12, 14, 22], which have been well designed in
the past decade, are left under-leveraged. (3) At application
level, it is hard to achieve strong isolation between an
overlay and the rest of the Internet. For example, a
compromised overlay node can potentially attack any host
in the Internet.

In this paper, we propose a novel alternative to
application-level overlays called VIOLIN, or Virtual In-
ternetworking on OverlLay INfrastructure. VIOLIN is
inspired by recent advances in virtual machines [7, 23]
and has been deployed in the PlanetLab [16] overlay in-
frastructure. The idea is to create virtual and isolated
internetworking environments, each called a VIOLIN?, on
top of an overlay infrastructure. A VIOLIN is a small-scale
virtual network with virtual routers, LANS, and end-hosts,
all implemented in software and hosted by overlay hosts.
Network protocols for routing, transport, and management
can run unmodified in a VIOLIN as in the real Internet.
The key difference between VIOLINSs and application-level
overlay is that VIOLIN re-introduces system(OS)-enforced
boundary between applications and network services. As a
result, distributed applications running in a VIOLIN will be
simple to develop and manage, while value-added network
protocols will have a chance to be deployed and used - at
their intended (network) level.

The salient features of VIOLIN include: (1) Each VIO-
LIN is a “virtual world” with its own IP address space. And
most activities and communications are strictly confined
within the VIOLINZ. (2) Every entity in a VIOLIN is
implemented in software. In this sense, VIOLIN has
more deployment flexibility than a real network by allow-
ing on-demand addition/deletion/migration/configuration
of routers, switches and end-hosts. (3) From the perspective
of networking, VIOLIN provides a new playground to

1with aslight abuse of terms, VIOLIN stands for both the virtual inter-
networking technique and a virtual internetwork based on the technique.

2We use the word ‘most’ because we also implement a regulated and
optional jetway to connect the virtual world and real Internet.

deploy, leverage, and evaluate both existing and emerging
network services which may not be available in the real
Internet. An application can simply connect to a VIOLIN
and leverage the network services provided. (4) From
the perspective of distributed applications, it releases ap-
plication developers from network service implementation
details, resulting in easier application implementation and
maintenance.

We expect VIOLIN to be a useful complement to
application-level overlays. First, VIOLIN can be used
to create testbeds for experiments with network-level al-
gorithms and protocols. Such a testbed comprises more
realistic network entities and topology, and provides re-
searchers with more convenience in experiment setup and
dynamic re-configuration. Second, VIOLIN can be used to
create a service-oriented (virtual) IP network with advanced
network services such as IP multicast and anycast. Virtual
end-hosts running distributed applications will then join the
VIOLIN and enjoy these network services which are not
widely available in the real Internet. It can be imagined
that the operator of an overlay infrastructure may set up a
regional or nation-wide service-oriented VIOLIN to serve
‘customers’, i.e. distributed applications such as video
conferencing, on-line community, and peer selection.

We have designed and implemented a prototype of VI-
OLIN in PlanetLab. We have also developed a number of
sample applications to demonstrate the benefit of VIOLIN.
The rest of the paper is organized as follows. Section 2
provides an overview of VIOLIN. Section 3 justifies the
design of VIOLIN and its benefit to distributed applica-
tions. Section 4 describes the implementation and ongoing
research problems of VIOLIN. Section 5 compares VIOLIN
with related works. Finally, section 6 concludes this paper.

2 VIOLIN Overview

The concept of VIOLIN is illustrated in Figure 1. The
low-level plane is a real network; the mid-level plane is an
overlay infrastructure such as PlanetLab; and the top-level
plane is one VIOLIN created on the overlay infrastructure.
All entities in the VIOLIN are hosted by overlay hosts; and
there are three types of entities like in the real network: end-
host, LAN, and router.

e A virtual end-host (vHost) is a virtual machine in a
physical overlay host. Meanwhile, it is possible that
one physical overlay host supports multiple vHosts
belonging to different VIOLINS.

e A virtual LAN (VLAN) is constructed by creating one
virtual switch (vSwitch, not shown in Figure 1) that
connects multiple vHosts. Different from a real LAN,
vHosts on a vVLAN may be geographically dispersed. It
is even possible to create a VLAN where vHosts have

One VIOLIN

Qverlay infrastructure

] o]

I Internet ? / ;7:"

: N

?%/ 5 e

l__\i Virtual end-host
[Overlay host

L
5 Virtual router
S Internet router

Figure 1. An overview of VIOLIN and its
relation to Internet and overlay infrastructure

organizational or social proximity rather than network
proximity.

e A virtual router (vRouter) is also a virtual machine
with multiple virtual NICs (vNICs). A vRouter inter-
connects several VLANSs and performs packet forward-
ing among them.

Based on existing and our own virtual machine and
networking techniques, these entities form a small-scale
virtual network with its own IP address space®. Network
protocols run in the (virtual) OS of the VIOLIN entities.
Figure 2 shows a simple VIOLIN we create in PlanetLab.
Two VLANS are interconnected by one vRouter (VRouterl
hosted by planetlabl.cs.purdue.edu): One vVLAN comprises
vHost1, vHost2, and vSwitchl; while the other one com-
prises vHost3, vHost4, and vSwitch2. The links between
these entities emulate cables in the real world. Furthermore,
with the all-software implementation of VIOLIN, the mi-
gration and re-wiring of vSwitches, vRouters, and vHosts
can be performed easily.

3 VIOLIN Design Justification

In this section, we make the case for VIOLIN and
describe how applications (including network experiments)
can benefit from VIOLIN.

3Such address space can even overlap that of the red Internet, if no
VIOLIN-Internet communications are needed.

One simple VIOLIN in PlanetLab

planetlab-1.cs.princeton.edu planetlabl.cs.duke.edu

VHostl VHost2
planetlab2.cs.duke.edu

192.168.1.2 192.168.1.3

192.168.1.1
planetlabl.cs.purdue.edu
192.168.2.1

192.168.2.2 192.168.2.3

planetlab2.cs.purdue.edu
VHost3 VHost4

planetlab01.cs.washington.edu planetlabl.millennium.berkeley.edu

Figure 2. A VIOLIN in PlanetLab (with names
of physical PlanetLab hosts and virtual IP
addresses)

3.1 Virtualization and Isolation

Analogous with the relation between virtual machine and
its host machine, VIOLIN achieves strong virtualization
of the real network, as well as strong isolation between a
VIOLIN and the rest of the Internet.

Virtualization makes it possible to run unmodified Inter-
net protocols in VIOLINS: if the implementation of a proto-
col works in the real network, it will also work in a VIOLIN.
Furthermore, entities in a VIOLIN are totally unaware of
the underlying Internet. For example, if we perform tracer-
oute from vHostl (hosted by planetlab-1.cs.princeton.edu)
to vHost3 (hosted by planetlabOl.cs.washington.edu) in
Figure 2, we will only see vRouterl as the intermediate
router and the hop count is two, although the PlanetLab
hosts at Princeton and at UW are many more hops apart in
the real Internet. More interestingly, it is potentially feasible
to repeat such virtualization recursively: a level-n VIOLIN
can be created on a level-(n—1) VIOLIN, with level-0 being
the real Internet®.

Isolation is with respect to (1) administration: the creator
of a VIOLIN has full administrator privilege - but only
within this VIOLIN; (2) address space and protocol: the
IP address spaces of two VIOLINs can safely overlap and
the versions and implementations of their network protocols
can be different - for example, one running IPv4 while the
other running IPv6; (3) attack and fault impact: due to (1)
and (2), any attack or fault in one VIOLIN will not affect the
rest of the Internet; (4) resources: if the underlying overlay
infrastructure provides QoS support [19, 20], VIOLIN will
be able to achieve resource isolation for local resources
(such as CPU and memory [10]) of VIOLIN entities and
for network bandwidth between them.

Benefit to applications System-level virtualization and

4However, to implement recursive VIOLINSs, we need a non-trivial
and well-crafted memory address space layout among applications and
different layers of virtual machines.

isolation provide a confined and dedicated environment
for untrusted distributed applications and risky network
experiments (such as router-aware intrusion detection and
wide-area live virus monitoring). From another perspec-
tive, applications requiring strong confidentiality can use
VIOLIN to prevent both internal information leakage and
external attacks.

3.2 System-Enforced Layering

Contrary to the all-layers-in-one design of application-
level overlays, VIOLIN features strong layering enforced
by the (virtual) OS of VIOLIN entities. Layering is a
common technique to disentangle the design and imple-
mentation of application and network functions, making
VIOLIN more maintainable and extensible at both levels. In
addition, OS-enforced layering provides better protections
to network services after the application level is compro-
mised.

We note that layering itself does not incur additional per-
formance overhead, compared with application-level over-
lays. It is virtualization, the technique to enforce layering
that introduces the main overhead of VIOLIN, similar to the
case of virtual machines versus real machines. We also note
that layering is between application and network functions,
not between network protocols. In fact, VIOLIN can be
used as a testbed for the protocol heap architecture [3].

Benefit to applications Application developers will be
able to focus on application functions rather than implemen-
tation details of network services, leading to clean design
and easy implementation. In addition, applications that
work in the Internet will also work in a VIOLIN.

3.3 Network Service Provisioning

VIOLIN provides a new opportunity to deploy and
evaluate network services other than the basic ones in
the current Internet. There exist a large number of well-
designed network protocols which for some reason have
not been widely adopted. Examples include IP multicast,
scalable reliable multicast [11, 14], IP anycast [12], and
active networking [4, 22]. There also exist protocols that
are still in the initial stage of incremental deployment such
as IPv6. VIOLIN is a convenient platform to make these
protocols a (virtual) reality.

Benefit to applications VIOLIN allows applications to
take full advantage of value-added network services. For
example, in a VIOLIN capable of IP multicast, applications
such as publish-subscribe, layered media broadcast can
be more easily developed and installed than in the real
Internet. We further envision the emergence of service-
oriented VIOLINSs, each with high-performance vRouters
and vSwitches deployed at strategic locations (for example,
VvRouters close to Internet routing centers, vSwitches close

to domain gateways), so that customers can connect their
applications to such a VIOLIN (instead of to the Internet)
for advanced network services. Operators of such VIOLINSs
will compete with each other by introducing newer and
better network services.

3.4 Easy Reconfigurability

Based on all-software virtualization techniques, VIOLIN
achieves easy reconfigurability. Different from a real
network, vRouters, vSwitches and vHosts can be added,
removed, or migrated dynamically. Also, vNICs can be
dynamically added to or removed from vHosts or vRouters;
and the number of ports supported by a vSwitch is no longer
a hardware constraint. Instead, it is constrained by the
capacity of the underlying overlay host.

Benefit to applications The easy reconfigurability and
hot vNIC plug-and-play capability of VIOLIN is especially
useful to handle the dynamic load and/or membership of
distributed applications. Not only can a VIOLIN be cre-
ated/torn down on-demand for an application, its scale and
topology can also be adjusted in a demand-driven fashion.
For example, during a multicast session, a new VLAN can
be dynamically grafted on a vRouter to accommodate more
participants.

4 VIOLIN Implementation

This section presents the key building blocks of VIOLIN
implementation: virtual machine, virtual switch, and virtual
router. Current status and ongoing work of VIOLIN will
also be discussed.

4.1 Virtual Machine

All VIOLIN entities are implemented as virtual ma-
chines in overlay hosts. To achieve universal deployment,
the virtual machine (VM) technology should impose min-
imum requirement on the underlying host OS of overlay
hosts®. Especially, since we implement VIOLIN in Plan-
etLab, no host OS kernel modification is allowed.

We adopt User-Mode Linux (UML) [6] as the VM
technology. UML allows most Linux-based applications to
run on top of it without any modification®. Based on ptrace
mechanism, UML - the guest OS for a virtual machine,
performs system call redirection and signal handling to
emulate a real OS. More specifically, the guest OS will be
notified when an application running in the virtual machine
issues a system call, the guest OS will then redirect the
system call into its own implementation and nullify the

5For this reason, we do not adopt VMWare[1] because it requires
VMWare installation in every overlay host.

SExceptions are applications that involve privileged instructions, such
as hwelock using iopl and inb/outb.

original call. One important feature of UML is that it is
completely implemented at user level without requiring host
0S kernel modifications’. Finally, with careful memory
layout of UML kernels and applications, UML is able
to support recursive virtual machines, and thus recursive
VIOLINS.

Unfortunately, the original UML has a serious limitation:
both virtual NICs and virtual links of virtual machines
are restricted within the same physical host. Inter-host
virtual links, which are essential to VIOLIN, have not
been reported in current VM projects [1, 7, 23]. To break
the physical host boundary, we have performed non-trivial
extension to UML and introduced transport-based inter-
host tunneling. More specifically, we use UDP tunneling
in the Internet domain to emulate the physical layer in the
VIOLIN domain. For example, to emulate the physical link
between a vHost and a vSwitch, the guest OS for the vHost
opens a UDP transport connection for the vNIC and obtains
a file descriptor - both in the host OS domain. To receive
data from the vSwitch, SIGIO signal will be generated
by the host OS for the file descriptor whenever data are
available. The vSwitch maintains the IP address and UDP
port number (in the Internet domain) for the vNIC of the
vHost, so that the vSwitch can correctly emulate data link
layer frame forwarding. Such virtualization is transparent
to the network protocol stack in the guest OS. Finally, inter-
host tunneling enables hot plug-and-play of vNICs (Section
3.4); and it does not exhibit MTU effect as in the EtherlP
[8] and IP-in-IP [21] approaches.

In addition to inter-host tunneling, intra-host tunneling,
also dubbed the jetway connecting VIOLIN and Internet, is
also provided as a VIOLIN option that can be dynamically
turned on/off (it should be off when strong VIOLIN isola-
tion is required). Intra-host tunneling creates a TUN/TAP
pseudo interface in an overlay host, which serves as the
access point of a VIOLIN to the real Internet and vice versa.
In addition to a TUN/TAP pseudo interface, a virtual bridge
may also be created so that the pseudo interface becomes
visible from the Internet, which eliminates the need for the
overlay host to act as a router or proxy.

4.2 Virtual Switch

A vSwitch is created for each VLAN and is responsible
for packet forwarding at the data link layer (in the VIOLIN
domain). Figure 3 shows a vSwitch which connects mul-
tiple vHosts. vSwitch is emulated by a UDP daemon in
the host OS domain. The poll system call is used to poll
the arrival of data and perform data queuing, forwarding,
or dropping. More delicate link characteristics may also be
implemented in the UDP daemon. The poll system call also
notifies the UDP daemon of the arrival of a connect request

"However, certain modifi cations, such as skas mode [6], can further
improve the performance of UML.

from a new vHost joining the VLAN, so that a new port
can be created for the vHost, as shown in Figure 3. Due
to the all-software implementation, there is no hardware
constraint on the number of ports created; and it is possible
to migrate a vSwitch.

vSwitch

Setp 1: Request from anew vHost
Setp 2: New port created for vHost
Step 3: Physical connection established

Figure 3. vSwitch and steps of port creation

4.3 Virtual Router

Interestingly, there is no intrinsic difference in imple-
mentation between vHost and vRouter, except that the latter
has additional packet forwarding capability and user level
routines for the configuration of packet processing policies.
Linux source tree makes it possible to accommodate versa-
tile and extensible packet processing capabilities.

When a UML is bootstrapped, a recognizable file system
will be located and mounted as root file system. Based
on UML, the vRouter requires kernel-level support for the
capability of packet forwarding, as well as user-level rou-
tines, namely route, iproute2, ifconfig for the configuration
of interface addresses and routing table entries. Beyond the
packet forwarding capability, it is also easy to add firewall,
NAT, and other value-added services to the UML kernel.

In the VIOLIN implementation, we adopt the zebra [9]
open-source routing package, which provides a relatively
complete suite of routing protocol implementations. We
observe in our experiments that vRouters, with jetway and
virtual bridge enabled, can even exchange routing table
information with real Internet routers using OSPF protocol.
Recently, to enable active network services, we have also in-
corporated Click [13] as an optional package for vRouters.

4.4 Current Status and Ongoing Work

We have implemented a basic prototype of VIOLIN, as
well as a couple of sample applications that run in VIOLIN.
The prototype has been deployed in PlanetLab. More
specifically, our VIOLIN prototype provides IP multicast
service. We have developed (1) a streaming video multicast
application® and (2) a publish-subscribe application, both

8Currently, default PlanetLab hosts do not support remote X Windows
access. We re-direct video display to non-PlanetLab machines.

with multiple vHosts distributed in the wide-area Planet-

Lab, to demonstrate the convenience and effectiveness of

leveraging the network service (IP multicast) in VIOLIN.

We are continuing to refine and improve VIOLIN, as well

as to perform extensive evaluations and measurements.
Our ongoing work includes:

e Performance evaluation and comparison VIOLIN in-
volves virtualization techniques and is based on the
overlay infrastructure. How to evaluate the perfor-
mance, resilience, and adaptability of VIOLIN, com-
pared with the real Internet and with application-
level overlays? Especially, to match the performance
of application-level overlays, how much additional
computation and communication capacity need to be
allocated? Our video multicast application in VIOLIN
demonstrates performance comparable to its counter-
part in an application-level overlay. However, more in-
depth evaluation and measurement are needed before
these questions can be answered.

e Refinement of network virtualization technique Our
inter-host tunneling implementation is initial and there
is plenty of room for refinement and improvement.
For example, how to improve the reliability of virtual
links? Should we adopt another transport protocol
(such as TCP), or integrate error correction (such as
FEC) into UDP, or simply let the transport protocols in
the VIOLIN domain to achieve reliability? To monitor
the status of virtual links, is it possible to leverage the
routing underlay [15] for better Internet friendliness?

e Topology planning and optimization Our implementa-
tion provides mechanisms for dynamic VIOLIN topol-
ogy setup and adjustment. However, we have not
studied the the problem of VIOLIN topology plan-
ning and optimization. More specifically, given the
overlay infrastructure, where to place the vRouters and
vSwitches, in order to achieve Internet bandwidth effi-
ciency and satisfactory application performance? How
should a VIOLIN react to the dynamics of Internet
condition and application workload using its dynamic
reconfigurability (Section 3.4)?

5 Related Work

VIOLIN is made possible by PlanetLab [16], an open
and global overlay infrastructure for the deployment and
assessment of planetary-scale network services. PlanetLab
itself provides resource virtualization capability called slic-
ing. Compared with slicing, VIOLIN virtualization has a
more specific goal: to create an isolated internetworking
environment where entities are unaware of the underlying
Internet. Netbed [24] is another testbed for experiments

with networks and distributed systems, and VIOLIN can
potentially be deployed in Netbed too.

Application-level overlays have been proved highly fea-
sible and effective in realizing value-added network ser-
vices. For example, RON [2] achieves robust routing and
packet forwarding for application end-hosts; and the Narada
protocol [5] brings high network efficiency to end system
multicast. As discussed earlier, VIOLIN is proposed as an
alternative and complement to application-level overlays,
especially to those requiring strong network virtualization
and isolation. In fact, there are cases where application-
level solutions are more effective, such as the lookup
service [17, 18] in structured P2P networks.

Machine virtualization has recently received tremendous
attention. VMWare [1] fully virtualizes the PC hardware,
while Denali [23] and Xen [7] take the paravirtualization
approach by creating a virtual machine similar (instead of
identical) to the physical machine. Inspired by machine
virtualization, VIOLIN is our initial effort toward network
virtualization.

The X-Bone [21] provides automated deployment and
remote monitoring of overlays, and allows network entities
(hosts, routers) to participate in multiple overlays simul-
taneously. Their approach of two-layer IP-in-1P tunneled
overlay exhibits smaller MTU effect. It also makes physical
IP (in the real Internet domain) visible to entities in the
overlay domain, resulting in lower degree of isolation and
virtualization than VIOLIN.

6 Conclusion

We present VIOLIN as a novel alternative and useful
complement to application-level overlays. Based on all-
software virtualization techniques, VIOLIN creates a vir-
tual internetworking environment for the deployment of
advanced network services, with no modification to the
real Internet infrastructure. The properties of isolation,
enforced-layering, and easy reconfigurability make VI10-
LIN an excellent platform for the development and execu-
tion of network experiments and distributed applications,
which is demonstrated by our implementation of VIOLIN
prototype and sample applications in PlanetLab.

References

[1] VMWare. http://maww.vmware.com.

[2] D. G. Andersen, H. Baakrishnan, M. F. Kaashoek, and
R. Morris. Resilient Overlay Networks. Proc. of ACM SOSP
2001, Oct. 2001.

[3] R.Braden, T. Faber, and M. Handley. From Protocol Stack
to Protocol Heap Role-Based Architecture. Proc. of ACM
HotNets-I, Oct. 2002.

[4] K. Cavert, S. Bhattacharjee, E. Zegura, and J. Sterbenz.
Directions in Active Networks. |EEE Communications
Magazine, Oct. 1998.

(9]
(6]
(7]

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Y. H. Chu, S. G. Rao, and H. Zhang. A Case For End System
Multicast. Proc. of ACM SSGMETRICS 2000, June 2000.

J. Dike. User Mode Linux. http: //user-mode-
linux.sourceforge.net.

B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, . Pratt,
A. Warfi eld, P. Barham, and R. Neugebauer. Xen and the
Art of Virtualization. Proc. of ACM SOSP 2003, Oct. 2003.

R. Housey and S. Hollenbeck. Etherl P:
Tunneling Ethernet Frames in IP Datagrams.
http: //imww.fags.org/rfcs/rfc3378.html, Sept. 2002.

K. Ishiguro. Zebra. http://www.zebra.org/.

X. Jiang and D. Xu. vBET: aVM-Based Emulation Testbed.
Proc. of ACM SGCOMM 2003 Workshops (MoMeTools),
Aug. 2003.

S. Kasera, G. Hjalmtysson, D. Towsley, and J. Kurose. Scal-
able Reliable Multicast Using Multiple Multicast Channels.
IEEE/ACM Trans. on Networking, June 2000.

D. Katabi and J. Wroclawski. A Framework for Scalable
Global IP-Anycast (GIA). Proc. of ACM SGCOMM 2000,
Aug. 2000.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. ACM Trans. on
Computer Systems, Aug. 2000.

C. Liu, D. Edtrin, S. Shenker, and L. Zhang. Loca

Error Recovery in SRM: Comparison of Two Approaches.

IEEE/ACM Trans. on Networking, Dec. 1998.

A. Nakao, L. Peterson, and A. Bavier. Routing Underlay for
Overlay Networks. Proc. of ACM SGCOMM 2003, Aug.
2003.

L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into the
Internet. Proc. of ACM HotNets-I, Oct. 2002.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network. Proc.
of ACM SGCOMM 2001, Aug. 2001.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Baakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Servicefor Internet Applications. Proc. of ACM S GCOMM
2001, Aug. 2001.

I. Stoica, S. Shenker, and H. Zhang. Core-Stateless
Fair Queueing: a Scalable Architecture to Approxi-
mate Fair Bandwidth Allocations in High-speed Networks.
IEEE/ACM Trans. on Networking, 11(1), 2003.

L. Subramanian, |. Stoica, H. Balakrishnan, and R. Katz.
OverQoS: Offering Internet QoS Using Overlays. Proc. of
ACM HotNets-I, Oct. 2002.

J. Touch. Dynamic Internet Overlay Deployment and
Management Using the X-Bone. Proc. of IEEE ICNP 2000,
Nov. 2000.

D. Wetherall, J. Guttag, and D. Tennenhouse. ANTS:
Network Services without the Red Tape. |EEE Computer,
32(4), 1999.

A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Per-
formance in the Denali Isolation Kernel. Proc. of USENIX
OSDI 2002, Dec. 2002.

B. White, J. Lepreau, L. Staller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An In-
tegrated Experimental Environment for Distributed Systems
and Networks. Proc. of USENIX OSDI 2002, Dec. 2002.

