
Taking Snapshots of Virtual Networked Environments

Ardalan Kangarlou
Department of Computer

Science
Purdue University

ardalan@cs.purdue.edu

Paul Ruth
Department of Computer and

Information Science
University of Mississippi
ruth@cs.olemiss.edu

Dongyan Xu
Department of Computer

Science
Purdue University

dxu@cs.purdue.edu

Patrick Eugster
Department of Computer

Science
Purdue University

p@cs.purdue.edu

ABSTRACT
The capture of global, consistent snapshots of a distributed
computing session or system is essential to the system’s reli-
ability, manageability, and accountability. Despite the large
body of work at the application, library, and operating sys-
tem levels, we identify a void in the spectrum of distributed
snapshot techniques: taking snapshots of the entire dis-
tributed runtime environment. Such capability has unique
applicability in a number of application scenarios. In this
paper, we realize such capability in the context of virtual
networked environments. More specifically, by adapting and
implementing a distributed snapshot algorithm, we enable
the capture of causally consistent snapshots of virtual ma-
chines in a virtual networked environment. The snapshot-
taking operations do not require any modification to the
applications or operating systems running inside the virtual
environment. Preliminary evaluation results indicate that
our technique incurs acceptable overhead and small disrup-
tion to the normal operation of the virtual environment.

Categories and Subject Descriptors
C.4 [Computer-Communication Networks]: Miscella-
neous

General Terms
Reliability

Keywords
Global snapshots, virtualization, virtual network, checkpoint

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VTDC’07, November 12, 2007, Reno, NV, USA
Copyright 2007 ACM 978-1-59593-897-8/07/0011 ...$5.00.

1. INTRODUCTION
Distributed snapshots have been widely used as a means

to achieve reliability and fault/failure recovery in distributed
computing systems. During a distributed computing session,
a snapshot can be taken to capture and preserve the session’s
instantaneous execution state to insure against failure at a
later time. Upon failure, a recent snapshot can be used to
restore the execution state instead of restarting from the
beginning of the distributed computing session, thus sav-
ing computation time and resources while achieving failure
recovery. Recently, reliability has become an increasingly
desirable property in the emerging shared cyberinfrastruc-
tures [7]. In such an infrastructure, the dynamic resource
availability and possible failure of individual components
(e.g., a physical machine or cluster) call for the development
of a spectrum of reliability and fault recovery techniques
for the distributed computation activities on the infrastruc-
ture.

Meanwhile, significant research efforts have been made in
the development of distributed snapshot techniques at the
application, library (e.g., MPI library), and operating sys-
tem levels. However, we notice a void in the spectrum of
distributed snapshot techniques (more precisely, at one end
of the spectrum): taking snapshots of an entire distributed
runtime environment. For each of the networked machines
in such an environment, a distributed snapshot captures its
entire software execution state – including all applications
and the operating system. Although distributed snapshots
at this (low) level are coarse grained and heavy weight, they
have their own applicability as discussed later in this sec-
tion.

In this paper, we present a distributed snapshot capabil-
ity for virtual distributed environments, based on our ear-
lier virtual networking system called VIOLIN [8, 15]. More
specifically, our technique realizes the capability of taking a
distributed snapshot of an entire VIOLIN virtual networked
environment (or VIOLIN in short) consisting of multiple vir-
tual machines (VMs) connected by a virtual network (VN).
We hasten to point out that the proposed capability is not a
replacement of the existing higher-level distributed snapshot
techniques. Instead, it completes the spectrum of solutions
and provides a useful capability for the operation and man-
agement of VIOLIN virtual networked environments.

Residing below the VIOLIN virtual environment, the VI-
OLIN distributed snapshot capability does not require any
modification to the applications or operating systems run-
ning inside the VIOLIN; nor does it require the installation
of any additional library/middleware inside the VIOLIN. As
such, it helps improve reliability for legacy applications, run-
time libraries, and operating systems. We develop the VI-
OLIN distributed snapshot capability by adapting a classic
distributed snapshot algorithm [12] and implementing the
adapted algorithm on top of the Xen platform [3]. Our im-
plementation addresses a number of technical challenges to
guarantee that a distributed snapshot captures a causally
consistent execution state of the VIOLIN virtual environ-
ment.

To the best of our knowledge, distributed snapshot capa-
bility for virtual networked environments is not yet widely
available. Such capability benefits a number of application
scenarios. For example, it can be used in network emu-
lation experiments to take a snapshot of the entire emu-
lated environment for future replay. In such a scenario, it
is desirable to preserve every detail of the entire emulated
environment, including all running processes and the oper-
ating system states of each VM. This is particularly useful
in Internet malware emulation [9] where everything inside
the emulated environment is subject to attack and contam-
ination. Existing snapshot/checkpointing techniques at the
application, library, or operating system level do not ap-
ply to this scenario. Another scenario is the execution of
legacy parallel/distributed (binary) code without a built-in
snapshot/checkpointing capability. In this scenario, it may
be inconvenient, and potentially impossible, to apply exist-
ing library or operating system level snapshot/checkpointing
techniques without modifying and re-compiling the source
code of the application. For the above scenarios, the pro-
posed VIOLIN distributed snapshot capability will exhibit
unique convenience and effectiveness.

The rest of the paper is organized as follows: Section 2
discusses related works; Section 3 gives an overview of the
proposed capability as well as a technical summary of the VI-
OLIN virtual networking technique; Section 4 presents the
adapted distributed snapshot algorithm; Section 5 describes
the implementation details of VIOLIN distributed snapshot
on Xen; Section 6 presents our preliminary evaluation re-
sults using a real-world legacy parallel scientific application.
Finally, Section 7 concludes this paper.

2. RELATED WORK
From the algorithm perspective, Chandy and Lamport [4]

proposed the first global snapshot algorithm for systems
with FIFO communication channels. In their algorithm, the
snapshot initiator sends a control message to all neighboring
processes after it records its local state. Upon receiving the
first control message, a process that has not yet recorded
its state saves its state and sends control messages to all
neighboring processes. Eventually, control messages would
reach all processes in a distributed system and they all would
record their states. The FIFO property of communication
channels ensures causal consistency as no message sent af-
ter a local snapshot can arrive before the control messages
and hence no post-snapshot message can affect a recorded
snapshot state.

For non-FIFO channels, it is shown that a snapshot algo-
rithm has to be either inhibitory or has to piggy-back some

control information on messages. In inhibitory algorithms,
after a local snapshot, sending messages over a particular
channel is suspended until a control message is received
along that channel. In the piggybacking method, actions
of the underlying application are never delayed. However,
this comes at the expense of adding control information to
the basic messages. Lai and Yang [11] and Mattern [12] have
proposed algorithms for this family of snapshot algorithms.

From the system perspective, a variety of techniques have
been proposed to checkpoint a distributed execution. These
techniques can loosely be classified as application-level check-
pointing, library-level checkpointing, and system-level check-
pointing. In application-level checkpointing, application pro-
grammers implement checkpointing functionality as part of
the application code. Therefore, limitations of this approach
include the need for application source code as well as pro-
grammers’ familiarity with distributed program execution
and checkpointing.

In library-level checkpointing such as in LAM-MPI [16],
FT-MPI [6] and CLIP [5], an application code is linked to
the checkpointing library. In this approach, the checkpoint-
ing library is often part of the message passing library (e.g.,
MPI) for communications between distributed entities. One
benefit of this approach is the lower burden on the appli-
cation developer compared with the application-level ap-
proach. However, since it is coupled with a specific message
passing library, it cannot be applied to parallel/distributed
applications (e.g, an Internet worm emulation) that do not
utilize the message passing library.

System level checkpointing techniques such as CRAK [18]
and Zap [13] implement checkpointing functionality at the
operating system level by either modifying the kernel or
loading a special kernel module. Besides being able to save
the execution state of a process, an application-transparent
checkpointing technique needs to address challenges that
arise during the restoration of a checkpoint. Two such chal-
lenges are maintaining open connections and handling the
dependence of checkpoints on system level resources (e.g.,
specific processor identifiers or file descriptors) that may
not be reusable upon checkpoint restoration. In light of
these challenges, virtualization-based solutions such as ZapC
[10], Xen on InfiniBand [17], and our proposed technique
offer greater flexibility and portability. ZapC is an efficient,
thin virtualization layer that decouples a distributed appli-
cation from resource dependencies on the host and enables
transparent and coordinated application checkpoint/restart
on commodity clusters. Similar to our solution, Xen on In-
finiBand uses consistent VM states as checkpoints for Parti-
tioned Global Address Space (PGAS) programming models.
Moreover, to support VM migration and checkpointing on
InfiniBand networks, it adds global coordination functional-
ity to the ARMCI one-sided communication library. How-
ever, it targets a specific programming model (PGAS) and
a specific network platform (Infiniband) and thus cannot be
readily applied to legacy applications running on general-
purpose networked infrastructures (e.g., a commodity clus-
ter).

Finally, we do not address questions such as when to take
snapshots and where/how to store them. However, related
solutions have been proposed in [14] which can potentially
be integrated with the VIOLIN snapshot capability.

eth0 eth0eth0

eth0 eth0 eth0

Host 2

Host 1

vif1.0 vif3.0vif2.0

Domain2 Domain3Domain1

VIOLIN Switch

eth0

Domain0

vif1.0 vif3.0vif2.0

Domain2 Domain3Domain1

VIOLIN Switch

eth0

Domain0

violin−br

violin−tap

violin−br

violin−tap

Figure 1: An overview of VIOLIN execution envi-
ronment consisting of six virtual machines on two
hosts

3. SYSTEM BACKGROUND
In this section we give a brief introduction to the VIOLIN

virtual networked environment and its virtual networking
implementation, which influences the VIOLIN distributed
snapshot design. Further, we give an overview of the VIO-
LIN distributed snapshot capability.

A VIOLIN environment consists of multiple VMs con-
nected by a virtual network. Created on top of a shared
distributed infrastructure, multiple mutually-isolated VIO-
LINs can co-exist, each with its own IP address space, ad-
ministrative privilege, and customized runtime and network
services. Each VIOLIN is owned by a user or user group as a
virtual private distributed computing environment with the
same “look and feel” of a physical networked environment.
VIOLIN supports the execution of unmodified parallel and
distributed applications as well as the emulation of network
and distributed systems. Virtual networking is the key en-
abling technique behind VIOLIN as shown in Figure 1. The
VMs (i.e. the domains) in a VIOLIN are implemented on
top of the Xen virtual machine monitor and are connected
by VIOLIN switches running in domain 0 of the respective
physical hosts. The VIOLIN switch intercepts traffic gener-
ated by VMs in the VIOLIN – in the form of layer-2 net-
work frames – and tunnels them to their destinations using
a transport protocol (e.g., UDP or TCP).

The distributed snapshot will be taken by the VIOLIN
switches from outside of the VIOLIN environment. More
specifically, a VIOLIN snapshot consists of the memory and
disk images of each VM – taken at proper time instances
– to capture a consistent execution state of the entire vir-
tual environment. The main challenge is to ensure that the
multiple distributed VIOLIN switches each record their lo-
cal VM snapshots such that, when aggregated, they form
a causally consistent global snapshot. To address this chal-
lenge, we adapt a distributed snapshot algorithm and imple-
ment it inside the VIOLIN switches (detailed in the next two
sections). We point out that VIOLIN distributed snapshot
does not require modification to or cooperation from the ap-
plications and operating systems inside the VIOLIN. The
snapshot only incurs a small disruption to the VIOLIN’s ex-

a

b

c

d

time

C C’

Figure 2: Consistent cut C and incosistent cut C’

ecution (Section 6), which will continue after the distributed
snapshot is taken. The snapshot images will then be stored
for future restoration.

4. SNAPSHOT ALGORITHM
The goal of a distributed snapshot algorithm is to record a

causally consistent global state. If we could simultaneously
snapshot all virtual machines and the virtual network, then
we would have a causally consistent global state. However,
given that we cannot always assume globally synchronized
clocks, taking simultaneous snapshots is out of the question.
For this reason we relax the state requirements and record a
possible causally consistent state. A possible causally consis-
tent state corresponds to a global state that may have been
the states of the distributed entities (e.g., processes or VMs)
and their communications, if they were captured simultane-
ously. Such a causally consistent state can be reached by
means of finding a consistent cut. A cut is made of a se-
quence of events – one cut event at each distributed entity –
that divide each entity’s timeline into two parts. One part
corresponds to events before the cut event (past) and one
part corresponds to events after the cut event (future). If
a cut is consistent, then there are no messages passed from
the future to the past. Figure 2 illustrates a consistent cut C

and an inconsistent cut C′. As a result, it is safe to assume
all cut events in a consistent cut are taking place simultane-
ously and the local snapshots captured upon the cut events
can represent a valid global snapshot of the system.

We adapt Mattern’s distributed snapshot algorithm [12]
for capturing VIOLIN snapshots. As discussed in Section
2, Mattern’s algorithm is applicable to distributed systems
with non-FIFO channels. As we will show, VIOLIN’s snap-
shot algorithm is actually a simplification of Mattern’s algo-
rithm, due to VIOLIN’s approach to virtual networking.

Similar to Mattern’s algorithm, we use the concept of mes-
sage coloring to distinguish between pre-snapshot and post-
snapshot messages. By associating a color with each mes-
sage, a distributed entity (in our case a VIOLIN switch) can
be prevented from delivering a post-snapshot message before
and while the snapshot is taken. As a result, global causal
consistency is maintained by the VIOLIN switches across
the VIOLIN. The adapted distributed snapshot algorithm
works as follows:

1. The snapshot initiator – one of the VIOLIN switches
– takes a local snapshot by saving the states of the VI-
OLIN’s VMs residing in the same physical host. The
initiator then sends a TAKE SNAPSHOT message to
all other VIOLIN switches to take their local snap-
shots. After the local snapshot, the initiator changes

its message color to the post-snapshot color and only
accepts messages bearing that color.

2. Upon receiving the TAKE SNAPSHOT message or a
message bearing the post-snapshot color, a VIOLIN
switch takes its local snapshot. It then notifies the
initiator that it has taken its snapshot by sending a
SNAPSHOT SUCCESS message. While the snapshot
is being taken, the VIOLIN switch will discard all mes-
sages bearing the post-snapshot color. After the lo-
cal snapshot, it changes its message color to the post-
snapshot color and only accepts messages bearing the
same color.

3. The distributed snapshot procedure is complete when
the initiator receives the SNAPSHOT SUCCESS mes-
sages from all other VIOLIN switches.

The adapted VIOLIN distributed snapshot algorithm is
a simplified version of Mattern’s original algorithm. Due
to the nature of communication channels in VIOLIN, we are
not concerned with capturing in-transit messages at the time
snapshot is taking place. In-transit messages are those mes-
sages of pre-snapshot color that arrive at their destinations
after the local snapshots have been taken. In Mattern’s al-
gorithm a counter is used to keep track of the number of
messages sent along each communication channel. When
the count of messages sent is equal to the number of mes-
sages received, there will be no in-transit messages along
that channel.

We can sidestep the capture of in-transit messages in VI-
OLIN snapshots because VIOLIN realizes network virtual-
ization at layer-2 of the virtual network. As such, VIO-
LIN switches are not required to achieve reliable, in-order
delivery of the layer-2 (virtual) network frames. If an ap-
plication requires reliable packet delivery, a transport pro-
tocol (e.g., TCP) inside the virtual machines is expected
to handle the re-sending of lost data. As a result, VIO-
LIN snapshot algorithm does not need to guarantee that
in-transit messages reach their intended destinations upon
the restoration of the snapshot. For a wide range of par-
allel/distributed applications, VIOLIN snapshots generated
by the above algorithm will be able to restore their exe-
cution properly. For applications that employ a reliable
transport protocol (e.g., TCP), the VIOLIN snapshot pre-
serves the VM execution state to identify and re-transmit
the lost packets upon restoration. For applications that
use a best-effort transport protocol (e.g., UDP), packet loss
is an expected behavior which will be handled by the ap-
plication semantics. Hence, ignoring in-transit messages
would not impede the execution of applications in either
category.

Figure 3 illustrates the difference between the VIOLIN
snapshot algorithm and Mattern’s original algorithm. As
shown in the figure, the two algorithms result in the same
consistent cut for the participating VMs. However, the VI-
OLIN snapshot procedure can potentially end sooner than
Mattern’s algorithm because the VIOLIN algorithm does
not wait for the last in-transit message to arrive at its des-
tination. For the example in Figure 3, the VM on top of
V Sc realizes upon restart that it has not received an ac-
knowledgment for the packet it had sent to the VM on top
of V Sa before the snapshot. As a result it will re-send the
packet once it resumes. Note that in VIOLIN, all layer-2

��

��

��

M

takes local snapshot

time
VS takes local snapshot

V

VS takes local snapshot

VS

VS

b

a

VSc

b

c

aVS initiates snapshot and

Figure 3: An illustration of VIOLIN snapshot proce-
dure by three VIOLIN switches (V Sa, V Sb, and V Sc).
Pre-snapshot messages are colored red and post-
snapshot messages are colored light blue. Points
V and M are the time instances when VIOLIN and
Mattern snapshot algorithms complete the snapshot
procedure, respectively.

frames, including those carrying TCP ACKs get colored. In
Section 6, we will report the performance overhead incurred
by packet retransmission upon the completion of a VIOLIN
snapshot.

5. IMPLEMENTATION
In this section, we describe the details of implementing

the VIOLIN distributed snapshot algorithm presented in the
previous section. More specifically, we discuss the way VI-
OLIN snapshot achieves a consistent cut using the message
coloring scheme. Our implementation is based on the Xen
[3] VM platform, but it can easily be generalized to other
VM platforms with similar live VM snapshot capability. A
VM snapshot is live if the VM resumes execution upon the
completion of a snapshot. A single VM snapshot consists of
the states of its memory and disk at the time instance when
the snapshot takes place. We leverage Xen’s live snapshot
mechanism to obtain a VM’s memory image while we ap-
ply LVM snapshot mechanism [2] to capture the state of the
disk.

In VIOLIN, UDP tunneling is used to carry the layer-2
traffic between VMs in the same VIOLIN. For the VMs (be-
longing to the same VIOLIN) in the same physical host, they
communicate through a dedicated bridge as it is widely done
in a typical Xen setup. Hereafter, we refer to these two types
of communication as inter-host and intra-host communica-
tions, respectively. In vanilla VIOLIN, there is a VIOLIN
switch that performs the tunneling inside domain 0 for each
physical host participating in the VIOLIN. In the snapshot-
enabled VIOLIN, each VIOLIN switch has a color and it
assigns its color to the layer-2 frames originated from one
of its associated VMs through packet encapsulation which
incurs negligible overhead.

To handle inter-host communication, upon receiving a
packet, a VIOLIN switch delivers the packet to the recipi-
ent VMs only if the color of the packet matches the color
of the switch. If a switch receives a TAKE SNAPSHOT
message from the snapshot initiator or it receives the first
packet with the post-snapshot color, the VIOLIN switch will

take the snapshot of all the associated VMs, after which the
VIOLIN switch will change its color to post-snapshot and
acknowledges the initiator. After the color change, the VI-
OLIN switch will only deliver packets of the post-snapshot
color. In our implementation, we actually use three differ-
ent colors to distinguish between two consecutive snapshots.
More specifically, if the pre-snapshot and post-snapshot col-
ors are colors 0 and 1 respectively in the first snapshot, they
will be colors 1 and 2, 2 and 0, 0 and 1... in the subsequent
snapshots.

To handle intra-host communication, VIOLIN uses a sim-
ilar “bridge coloring” approach to preserve causal consis-
tency. In bridge coloring, two bridges are used for connect-
ing VMs residing on the same host: a pre-snapshot bridge
and a post-snapshot bridge, as shown in Figure 4. Before
a snapshot, VMs on the same host communicate through
the same pre-snapshot bridge without any VIOLIN switch
involvement. However, upon completion of a snapshot each
VM switches to the post-snapshot bridge. What follows is
that a packet on a post-snapshot bridge would never reach
a VM that is still at the pre-snapshot stage. Hence causal
consistency is maintained. Switching bridges is implemented
by modifying the xend snapshot interface: Right after sav-
ing the VM memory state and right before resuming a VM,
a bridge switch will be performed atomically. After the
bridge switch, the pre-snapshot and post-snapshot bridges
swap their roles: the pre-snapshot bridge becomes the post-
snapshot bridge and the post-snapshot bridge becomes the
pre-snapshot bridge (for the next snapshot in the future).

Based on the above switch/bridge coloring scheme, causal
consistency can be preserved for both inter-host and intra-
host communication, preventing the situation where a pre-
snapshot VM receives a message from a post-snapshot VM
in the VIOLIN virtual environment.

VIOLIN uses the Logical Volume Manager (LVM) snap-
shot feature [2] to capture the disk image of each VM. This
requires having a VM store its file system on LVM parti-
tions. LVM snapshot is a powerful feature that creates an
exact replica of a volume without halting the execution of
the system that is modifying the volume during snapshot.
VIOLIN takes a volume snapshot at the same time a bridge
switch operation is done. To minimize the disruption to
VM execution, VM and LVM images can be processed after
resuming the VM execution. Efficient handling and trans-
fer of the images in the snapshot is part of our on-going
work. The VIOLIN snapshot process is considered complete
once all the VIOLIN switches have successfully captured the
memory and disk images of their associated VMs.

We point out that there exist a number of limitations of
the VIOLIN distributed snapshot capability: First, it is not
suitable for distributed applications where one end of a (vir-
tual) network connection cannot tolerate some downtime of
the other end – while the VM is getting a snapshot. Sec-
ond, to use the VIOLIN snapshot capability, an application
must be self-contained within a VIOLIN. In other words,
the execution of the application should not involve any com-
munication with outside of the VIOLIN. Third, a VIOLIN
switch has a very limited view of the computation activities
inside the associated VMs. More precisely, it only knows
the existence of the VMs and the layer-2 network frames
that they generate. Therefore, VIOLIN snapshot by de-
sign cannot – and should not – provide explicit guarantee
of event ordering between application processes in the VMs.

eth0 eth0 eth0

eth0 eth0eth0

eth0 eth0eth0

After Snapshot

eth0 eth0 eth0

Host 2

Host 1

vif1.0 vif3.0vif2.0

Domain2 Domain3Domain1

VIOLIN Switch

blue−tapred−tap

eth0

Domain0

Host 2

Host 1

vif1.0 vif3.0vif2.0

Domain2 Domain3Domain1

VIOLIN Switch

blue−tapred−tap

eth0

Domain0

vif1.0 vif3.0vif2.0

Domain2 Domain3Domain1

VIOLIN Switch

blue−tapred−tap

eth0

Domain0

Before Snapshot

vif1.0 vif3.0vif2.0

Domain2 Domain3Domain1

VIOLIN Switch

blue−tapred−tap

eth0

Domain0
red−br blue−br

red−br blue−br

red−br blue−br

blue−brred−br

Figure 4: Packet coloring and bridge coloring in VI-
OLIN checkpointing. In this figure, red denotes the
pre-snapshot color and blue the post-snapshot color.

In fact, a non-deterministic application, by nature, may tra-
verse various paths to its termination even without taking
any snapshots.

6. EVALUATION
In this section, we study the runtime overhead incurred by

the VIOLIN snapshot procedure. The two major sources of
overhead in our approach are (1) saving a VM memory image
to the disk and (2) TCP backoff after the snapshot or upon
restoring a snapshot (at a future time). Other modifications
to the original VIOLIN such as coloring packets, switching
bridges, and LVM snapshots incur negligible overhead. For
experiments in this section, we use NEMO3D [1], a paral-
lel MPI-based nanotechnology simulation program that per-
forms nano-electric modeling of quantum dots. We choose
this application for two reasons: First, given the same input
parameters, the program generates a deterministic output;
hence we can verify the correctness of execution results with
and without snapshots. Second, the program is communica-
tion intensive thus we can study the impact of TCP backoff.

To study the overhead of VIOLIN snapshot under different
settings, we run the NEMO3D application in VIOLINs of
the same scale (each with the same input parameters) but

Figure 5: TCP sequence number trace for a
NEMO3D run with no snapshot

hosted by two different physical machine platforms. For the
first platform, we use two Sunfire V20Z servers each with
a single 2.6GHz AMD Opteron processor and we let each
server host 1, 2 or 4 VMs for the 2, 4 or 8-node VIOLIN.
For the second platform, we use 2, 4 and 8 PowerEdge 1750
Dell Servers each with 3.06GHz Intel Xeon processors. On
this platform we let each server host one VM of the VIOLIN.
On both platforms, each VM uses 700MB of RAM due to
the high memory requirement of NEMO3D and is set up
with MPICH2-1.0.5.

Before presenting the results, we use Figures 5 and 6 to
illustrate our evaluation methodology. The two figures show
the impact of a snapshot on the execution of a very short run
of NEMO3D (subsequent experiments involve much longer
runs). The figures are generated by plotting the TCP se-
quence number of packets transmitted in a 2-node VIOLIN
as a function of time where each VM is hosted by a SunFire
server. By using Xen logs, we can break the snapshot over-
head into its two major components: the VM checkpoint
period and the TCP backoff period. As shown in Figure 6,
TCP backoff dominates the overall snapshot period. It only
takes about 10 seconds to save the VM image whereas it
takes about 37 seconds for TCP congestion control mech-
anism to recover from a time-out and/or receipt of triple
ACKs that can happen following a snapshot and before both
the sender and receiver VMs transition to the post-snapshot
state.

In our experiments, we define the period between the ini-
tiation of a snapshot operation and the end of the TCP
backoff as the snapshot overhead. This makes our evalua-
tion different from (and in our view more complete than)
the evaluations reported in related works in Section 2: We
measure not only the overhead of the snapshot operation per
se but also the side effects of snapshot on application execu-
tion following the snapshot. We note that the TCP backoff
period is incurred by all system-level snapshot techniques
(e.g., checkpointing a process, a pod [10], or a VM as in our
work).

TCP backoff following a snapshot or upon a snapshot
restoration mainly stems from the packet losses during the
snapshot when the processes/pods/VMs become in-operational

Figure 6: TCP sequence number trace for a
NEMO3D run with snapshot

or when both the sender and receiver VMs are not in the
same pre-snapshot or post-snapshot state. However, we do
point out that the TCP backoff overhead varies for differ-
ent applications and systems (mostly due to varying amount
of application communication and secondary storage band-
width) and should not necessarily be regarded as a part of
the snapshot overhead. For the execution depicted in Figure
6, the overall snapshot period is about 47 seconds.

We also notice that in all our experiments, the TCP back-
off overhead is only a few seconds apart for different TCP
connections in the VIOLIN, so we decide to use one connec-
tion to measure the overhead as other connections experi-
ence a similar overhead at about the same time.

Tables 1 and 2 summarize the results we obtain from the
2, 4 and 8-node VIOLINs on the two physical platforms,
respectively. From now on we will refer to the Sunfire and
PowerEdge servers as Platform I and Platform II, respec-
tively. In each of the two tables, the first two rows re-
port the end-to-end execution time of NEMO3D (in minutes
and seconds) without snapshot and with a snapshot halfway
through its execution. The third row shows the total snap-
shot overhead, which is broken down to the VM checkpoint
(involving copying VM image to disk) and TCP backoff over-
heads in the fourth and fifth rows, respectively. The last row
measures the NEMO3D execution time from the start to the
time by which the snapshot is completely written to the disk
plus the time from the snapshot restoration to the comple-
tion of the execution.

From Table 1, we observe that the checkpoint duration
for each VM linearly scales with the number of VMs in each
server of Platform I. On Platform II, since each VM ex-
clusively runs in a server, the VM checkpoint duration re-
mains the same. In addition to the number of VMs per host,
the amount of RAM allocated to a VM and the secondary
storage bandwidth are the two main factors influencing the
checkpoint overhead for a VM. Also, due to VM placement,
the advertised receive window for TCP connections on Plat-
form I are much smaller compared to the constant values
seen on Platform II. This translates into larger advertised
receive windows and higher transmission rates for connec-
tions on Platform II, which in turn leads to the larger TCP

Platform I 2 VMs 4 VMs 8 VMs

Exe. time w/o snapshot 19m 30s 17m 03s 44m 31s
Exe. time with snapshot 23m 1s 19m 40s 46m 37s
Total snapshot overhead 10s 50s 69s
VM checkpoint overhead 10s 19s 41s
TCP backoff overhead 0s 31s 28s
Exe. time with restore 23m 41s 18m 25s 47m 15s

Table 1: Snapshot overhead measurement results on
Platform I

Platform II 2 VMs 4 VMs 8 VMs

Exe. time w/o snapshot 44m 43s 36m 18s 62m 36s
Exe. time with snapshot 47m 0s 36m 52s 63m 55s
Total snapshot overhead 73s 78s 122s
VM checkpoint overhead 20s 18s 20s
TCP backoff overhead 53s 60s 102s
Exe. time with restore 46m 29s 36m 56s 63m 18s

Table 2: Snapshot overhead measurement results on
Platform II

backoff overhead in Table 2.
Interestingly, we notice that the TCP trace for the 2-VM

VIOLIN on Platform I exhibits alternating CPU and net-
work intensive periods1. And it happens that the VIOLIN
snapshot is taken during one of the CPU intensive periods.
As a result, there is almost no TCP backoff overhead in this
case. For other applications with alternating computation
and communication intensive periods, VIOLIN can poten-
tially exploit this fact and minimize the snapshot overhead
by avoiding taking a snapshot during the communication in-
tensive periods. We note that some of the TCP backoff in
the 4-VM and 8-VM experiments for Platform I is due to
not setting the “forward delay” feature of the post-snapshot
and pre-snapshot bridges to 0.

In Tables 1 and 2, the application execution times with
(2nd row) and without (1st row) VIOLIN snapshot are rea-
sonably close2. This observation indicates that for long-
running applications (which are more likely to perform and
benefit from snapshots than short ones), the latency incurred
by the snapshot procedure tends to be insignificant in com-
parison with the long application execution time. To evalu-
ate the efficiency of snapshot-based failure recovery, we also
measure the time for VIOLIN to restore from its snapshot
and execute the program to completion. As shown in the
last rows of Tables 1 and 2, the end-to-end execution time
based on VIOLIN snapshot restoration is similar to the ex-
ecution time of the original run with snapshot (2nd row of
Tables 1 and 2).

1We do not notice a similar pattern in other experimental
traces.
2However, we note that the difference in execution time be-
tween the 1st and the 2nd rows is not exactly the snap-
shot overhead in the 3rd row. The reason is that other un-
reproducible factors such as network conditions also affect
the execution time of individual runs. In fact, we observe
such variation even between two runs – both without snap-
shot.

7. CONCLUSIONS
We have presented the design and implementation of a

distributed snapshot capability for the VIOLIN virtual net-
worked environment. By adapting a classic distributed snap-
shot algorithm, the VIOLIN distributed snapshot technique
captures a causally consistent execution state of the entire
virtual networked environment, which can be utilized for
fault-recovery, management, and replay of the virtual envi-
ronment. The capture of VIOLIN snapshots does not re-
quire modifications to the applications and operating sys-
tems running inside the VIOLIN, providing effective sup-
port for legacy applications as well as full system emulations.
Preliminary evaluation results using a real-world legacy ap-
plication indicate that our technique incurs reasonable over-
head and small disruption to a VIOLIN’s normal execution.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful com-

ments. We also thank Gerhard Klimeck, Hoon Ryu, and
Rick Kennell for their timely help with the NEMO3D exper-
iment setup. This work was supported in part by the Na-
tional Science Foundation under grants OCI-0438246, CNS-
0546173, CNS-0720665, OCI-0721680, OCI-0749140.

9. REFERENCES
[1] http://cobweb.ecn.purdue.edu/∼gekco/nemo3D/.

[2] http://tldp.org/HOWTO/LVM-HOWTO/.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. ACM
SOSP, 2003.

[4] K. M. Chandy and L. Lamport. Distributed
snapshots: Determining global states of distributed
systems. ACM Transactions on Computer Systems,
3(1):63–75, February 1985.

[5] Y. Chen, J. S. Plank, and K. Li. CLIP - a
checkpointing tool for message-passing parallel
programs. In Preecedings of the Supercomputing, San
Jose, California, November 1997.

[6] G. E. Fagg and J. Dongarra. FT-MPI: Fault Tolerant
MPI, supporting dynamic applications in a dynamic
world. In LNCS: Proceedings of the 7th European
PVM/MPI User’s Group Meeting. Springer-Verlag,
1908:346–353, 2000.

[7] R. Figueiredo, P. Dinda, and J. Fortes. A case for grid
computing on virtual machines. Proc. International
Conference on Distributed Computing Systems
(ICDCS), May 2003.

[8] X. Jiang and D. Xu. VIOLIN: Virtual internetworking
on overlay infrastructure. Department of Computer
Science Technical Report CSD TR 03-027, Purdue
University, July 2003.

[9] X. Jiang, D. Xu, H. J. Wang, and E. H. Spafford.
Virtual playgrounds for worm behavior investigation.
Proceedings of 8th International Symposium on Recent
Advances in Intrusion Detection (RAID 2005),
September 2005.

[10] O. Laadan, D. Phung, and J. Nieh. Transparent
checkpointing-restart of distributed applications on
commodity clusters. In Proceedings of the IEEE
International Conference on Cluster Computing
(Cluster 2005), September 2005.

[11] T. H. Lai and T. Yang. On distributed snapshots.
Information Processing Letters, (25):153–158, 1987.

[12] F. Mattern. Efficient algorithms for distributed
snapshots and global virtual time approximation.
Journal of Parallel and Distributed Computing, 18(4),
1993.

[13] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
design and implementation of Zap: A system for
migrating computing environments. In Proceedings of
the Fifth Symposium on Operating System Design and
Implementation (OSDI), Boston, MA, December 2002.

[14] X. Ren, R. Eigenmann, and S. Bagchi. Failure-aware
checkpointing in fine-grained cycle sharing systems. In
Proceedings of the 16th International Symposium on
High Performance Distributed Computing, June 2007.

[15] P. Ruth, X. Jiang, D. Xu, and S. Goasguen. Virtual
distributed environments in a shared infrastructure.
IEEE Computer, Special Issue on Virtualization
Technologies, 38(5), 2005.

[16] S. Sankaran, J. M. Squyres, B. Barret, A. Lumsdaine,
J. Duell, P. Hargrove, and E. Roman. The LAM/MPI
checkpoint/restart framework: System-initiated
checkpointing. In Proceedings of the LACSI
Sypsosium, October 2003.

[17] D. P. Scarpazza, P. Mullaney, O. Villa, F. Petrini,
V. Tipparaju, and J. Nieplocha. Transparent
system-level migration of PGAS applications using
Xen on Infiniband. In Proceedings of the IEEE
International Conference on Cluster Computing
(Cluster 2007), September 2007.

[18] H. Zhong and J. Nieh. CRAK: Linux
checkpoint/restart as a kernel module. Technical
Reports CUCS-014-01, Department of Computer
Science, Columbia University, New York, November
2001.

