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Abstract—A virtual networked infrastructure (VNI) consists of virtual machines (VMs) connected by a virtual network. Created for
individual users on a shared cloud infrastructure, VNIs reflect the concept of “Infrastructure as a Service” (IaaS) as part of the
emerging cloud computing paradigm. The ability to take snapshots of an entire VNI – including images of the VMs with their execution,
communication and storage states – yields a unique approach to reliability as a VNI snapshot can be used to restore the operation
of the entire virtual infrastructure. We present VNsnap, a system that takes distributed snapshots of VNIs. Unlike many existing
distributed snapshot/checkpointing solutions, VNsnap does not require any modifications to the applications, libraries, or (guest)
operating systems running in the VMs. Furthermore, by performing much of the snapshot operation concurrently with the VNI’s normal
operation, VNsnap incurs only seconds of downtime. We have implemented VNsnap on top of Xen. Our experiments with real-world
parallel and distributed applications demonstrate VNsnap’s effectiveness and efficiency.

Index Terms—Virtual Infrastructure, Infrastructure-as-a-Service (IaaS), Cloud Computing, Distributed Snapshots, Reliability
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1 INTRODUCTION
A virtual networked infrastructure (VNI) consists of
multiple virtual machines (VMs) connected by a virtual
network. In a shared cloud infrastructure, VNIs can be
created as private, mutually isolated “virtual computing
facilities” serving individual users or groups. For exam-
ple, a virtual cluster can be created to execute parallel
jobs with its own root privilege and customized runtime
library; a virtual data sharing network can be set up
across organizational firewalls to support seamless file
sharing; a virtual “playground” can be established to
emulate computer malware infection and propagation.
With the emergence of cloud computing [1], especially its
“Infrastructure as a Service” (IaaS) paradigm, the VNI is
expected to gain more attention in research and practice.

To bring reliability and resume-ability to VNIs, it is
highly desirable that the underlying cloud infrastructure
provides the capability of taking distributed snapshots
of an entire VNI. Such a snapshot includes images of all
VMs in the VNI, preserving their execution, communica-
tion, and storage states. The snapshot can later be used
to restore the entire VNI, thus supporting fault/outage
recovery, system suspension and resumption, as well as
troubleshooting, audit, and forensics.

In this paper, we present VNsnap, a system capable of
taking distributed snapshots of VNIs. Based on a virtual
machine monitor (VMM), VNsnap runs outside of the
target VNI. Unlike many existing distributed snapshot
(checkpointing) techniques at application, library, and
operating system (OS) levels, VNsnap does not require
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any modifications to software running inside the VMs
and thus works with unmodified applications and (guest)
OSes that do not have built-in snapshot/checkpointing
support. VNsnap is intended for virtual infrastructure
hosting in the cloud, the main technique behind the
IaaS paradigm where VMs or VNIs can be requested
on demand as a service by cloud users. VNsnap allows
an IaaS provider (e.g., Amazon EC2) to support VNI
recovery or replay, without knowing the details of a cloud
user’s VM setup or customization. As such, VNsnap
fills a void in the spectrum of checkpointing techniques
and complements – instead of replacing – the existing
solutions.

There are two main challenges in taking VNI snap-
shots. First, the snapshot operation may incur signifi-
cant system downtime, during which the VMs freeze all
computation and communication while their memory
images are being written to secondary storage. As shown
in our previous work [2], such downtime can be tens
of seconds long, which disrupts both human users and
applications in the VNI. Second, the snapshots of indi-
vidual VMs have to be coordinated to create a globally
consistent distributed snapshot of the entire VNI. Such
coordination is essential to preserving the consistency of
the VM execution and the application state when the
VNI snapshot is restored in the future.

To address the first challenge, VNsnap introduces an
efficient technique for taking individual VM snapshots
where much of the VM snapshot operation takes place
concurrently with the VM’s normal operation thus ef-
fectively “hiding” the snapshot latency from users and
applications. To address the second challenge, we instan-
tiate a classic global snapshot algorithm and show its
applicability to taking VNI snapshots. Furthermore, we
develop system-level techniques to mitigate the perfor-
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Fig. 1. A 4-VM VIOLIN based on Xen, hosted by two
physical machines.

mance impact of VNsnap.
We have implemented a Xen-based [3] prototype of

VNsnap for VIOLIN [4] – our instantiation of the VNI
concept. To evaluate the VIOLIN downtime incurred by
VNsnap and its impact on applications, we use two real-
world parallel/distributed applications with no built-
in checkpointing capability – one is a legacy parallel
nanotechnology simulation while the other is BitTorrent,
a peer-to-peer file sharing application. Our experiments
show that VNsnap is able to generate semantically cor-
rect snapshots of VIOLINs running these applications,
incurring less than a second of VM downtime in all
experiments.

2 VIOLIN OVERVIEW
For completeness, we give a brief overview of VIOLIN
and a previous VIOLIN snapshot prototype presented in
[2]. Based on Xen, a VIOLIN virtual networked environ-
ment (or “VIOLIN” for short) provides the same “look
and feel” of its physical counterpart, with its own IP ad-
dress space, network configuration, administrative priv-
ileges, and runtime support. VIOLIN has been deployed
in a number of real-world systems: in the nanoHUB
cyberinfrastructure (http://www.nanoHUB.org), VIOLINs
run as virtual Linux clusters for executing a variety of
nanotechnology simulation programs; in the vGround
emulation testbed [5], VIOLINs run as virtual “testing
grounds” for the emulation of distributed systems and
malware attacks.

As shown in Figure 1, a VIOLIN consists of multiple
VMs connected by a virtual network. In our implementa-
tion, VMs (i.e., guest domains) are connected by VIOLIN
switches running in domain 0 (the driver/management
domain of Xen) of their respective physical hosts. Each
VIOLIN switch intercepts link-level traffic generated by
the VMs – in the form of layer-2 Ethernet frames –
and tunnels them to their destination hosts using the
UDP protocol. VIOLIN snapshots are taken by VIOLIN
switches from outside the VMs. As such, there is no
need to modify the application, library, or OS (including
the TCP/IP protocol stack) that runs inside the VMs. A
VIOLIN snapshot can be restored on any set of physical

hosts without the need to reconfigure the VIOLIN’s
IP address space. This is due to the fact that VIOLIN
performs layer-2 network virtualization. As a result, its
IP address space is totally orthogonal to that of the
underlying hosting infrastructure.

In our previous work [2], we presented the first pro-
totype for taking VIOLIN snapshots. Unfortunately, that
prototype has serious limitations: by leveraging Xen’s
live VM checkpointing capability, the system has to
freeze each VM for a non-trivial period of time during
which the VM’s memory image is written to the disk. As
a result, taking a VIOLIN snapshot causes considerable
downtime to the VIOLIN, in the magnitude of tens of
seconds. Moreover, due to TCP backoff incurred by
the VM’s long freeze, it will take extra time for an
application to regain its full execution speed, following
a VIOLIN snapshot.

3 VNSNAP DESIGN AND IMPLEMENTATION
In this section, we present the design and implemen-
tation of VNsnap. We first describe our solution to
minimizing VM downtime during the VIOLIN snapshot
operation. We then propose an optimized implementa-
tion that reduces network bandwidth consumption for
periodic snapshots. Finally, we describe our solution to
taking distributed snapshots of a VIOLIN with multiple
communicating VMs.

3.1 Live VM Snapshots
3.1.1 Snapshot Daemon
VNsnap aims at minimizing the Xen live VM check-
pointing downtime thus making the process of taking
a VM snapshot truly live. We hide most of the snapshot
latency in the VM’s normal execution time leading to a
negligible (usually less than a second) VM downtime.
Our solution is inspired by Xen’s live VM migration
function [6]: instead of freezing a VM throughout the
snapshot [2], we take a VM snapshot much the same
way as Xen performs a live VM migration.

Xen’s live migration operates by incrementally copy-
ing pages from the source host to the destination host
in multiple iterations while a VM is running. In ev-
ery iteration, only the pages that have been modified
since the previous iteration get re-sent to the destina-
tion. Once the last iteration is determined (e.g., when a
small enough number of pages are left to be sent, the
maximum number of iterations are completed, or the
maximum number of pages are sent), the VM is paused
and only the few remaining dirty pages are re-sent to the
destination host. After the completion of this “stop-and-
copy” phase, the VM on the source host is terminated
and its copy on the destination host is activated. As a
result, during live migration a VM is operational for all
but a few tens/hundreds of milliseconds.

Following the same principle, our optimized live VM
checkpointing technique effectively migrates a running
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VM’s memory state to a local or remote snapshot file but
without the switch of control (namely the same VM will
keep running). To facilitate live snapshot, we introduce
an entity called snapshot daemon that “impersonates” the
destination host during live migration. The snapshot
daemon interacts with the source host in obtaining the
VM’s memory pages, which is, to the source host, just
like a live migration. However, the snapshot daemon
does not create an active copy of the VM. Instead, the
original VM resumes execution once the snapshot has
been taken.

xend / libxc

Xen

Domain 0

Domain 1

Domain 1  Snapshot 

DiskMemory

Optimized Snapshot Daemon

Domain 1  Snapshot 

DiskMemory

Snapshot Daemon

Fig. 2. Different snapshot daemon implementations.

The implementation of the snapshot daemon involves
making modifications to the xend and libxc components
of Xen that handle live VM migration. Our implementa-
tion is based on Xen 3.1, but it can be easily ported to
other VMMs that support live migration (e.g., VMware
ESX, KVM, etc.). The snapshot daemon can run either
locally on the same host as where the VM is running or
remotely on a different host. For the local run it would be
helpful to reserve a certain amount of CPU capacity for
the daemon in order to prevent a snapshot from affecting
the VMs’ execution. On a single-core machine this can
be done by the VMM which can enforce CPU capacity
allocations to different domains, whereas in a multi-
core machine this can be done by assigning the daemon
and the VMs to different cores. For a remote run, the
daemons consume much less resources of the source host
but will depend on a high-speed network between the
VM and snapshot daemon hosts for VM image transport.
Next, we present a technique to improve the VM image
transport efficiency.

3.1.2 Exploiting Snapshot Similarity
In this section, we present an optimization of the snap-
shot daemon implementation for a scenario where a
long-running application runs in a VIOLIN while we
periodically take its snapshots. In such a scenario, we have

the opportunity to exploit the similarity between consec-
utive snapshots of each VM in the VIOLIN, with the goal
of reducing the memory page transfer traffic between the
VM and the snapshot daemon and improving network
efficiency of the underlying cloud infrastructure. More
specifically, in the design presented in Section 3.1.1, all
memory pages of the VM will be transported to the
snapshot daemon during the first iteration of the live VM
snapshot operation. This will incur high traffic volume
considering the typical size of a VM’s memory image
and the large number of VMs running in cloud data
centers.

With the above background, we observe that there is
a high degree of similarity between memory images of
a VM at different times. There are two main reasons
for such a similarity. (1) Most code pages of a VM (for
both kernel code and user code) are read-only and thus
do not change at runtime. (2) More importantly, for a
range of long-running applications (including the ones
presented in Section 4), we notice that the percentage
of pages that are frequently dirtied is fairly low rela-
tive to the total number of memory pages of the VM.
This property is characterized by the writable working
set (WWS) concept utilized in live VM migration [6],
where only a small subset of pages belonging to the
WWS of a VM are frequently dirtied and have to be
frozen and transported during the stop-and-copy phase
of the VM migration. According to our profiling study
on a number of applications, the locality revealed by
the WWS during migration can also be exhibited over
a longer period of time during the execution of these
applications. As a result, we observe that a significant
percentage of a VM’s memory pages remain unchanged
between two consecutive VIOLIN snapshot operations.
If we skip those unchanged pages during the first itera-
tion of the live VM snapshot operation (Figure 2, bottom
– the white pages are skipped), a high volume of page
transport traffic can be avoided in the underlying cloud
infrastructure.

The first technical question for realizing the similarity-
aware optimization is: Before taking a live VM snap-
shot, how to identify those pages that have remained
unchanged since the previous snapshot? A body of
previous work proposed content-based page sharing for
VMs running on the same host in order to facilitate
higher server consolidation (e.g., [7], [8]). Such solutions
rely on computing the hash of memory pages of a VM
in order to identify identical pages for potential sharing
opportunities. We leverage a similar solution to identify
identical pages across different snapshot rounds. More
specifically, after completion of a VM snapshot opera-
tion, the snapshot daemon computes the hash values [9]
of a VM’s memory pages. It then sends the hash values
back to the host where the VM is running. When the next
snapshot starts, during the first iteration of the memory
page transfer, libxc will compute the current hash of each
page and compare it with the corresponding hash sent
from the snapshot daemon. The page will be transported
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to the snapshot daemon only if the two hash values are
distinct (which indicates that the page has been modified
since the previous snapshot).

The above solution requires modification of the snap-
shot daemon and slightly changes the VM migration
implementation. We will show in Section 4.1 that such
a simple method can result in significant reduction in
VM page transfer traffic. While hash computation is very
fast (0.013 ms to compute the hash of a 4KB page), it can
lengthen the snapshot operation for VMs with very large
memory.

A more efficient solution, particularly for scenarios
where very few pages get dirtied between two consec-
utive snapshot rounds is to identify modified pages by
trapping writes to VM pages. Content-based page shar-
ing systems, such as [8], also leverage such a mechanism
to implement copy-on-write (COW) for shared pages
among multiple VMs. Fortunately, Xen’s shadow mode
logging facilitates such a functionality if it is enabled
throughout the VM execution. Once this mode is enabled,
all VM pages become read-only so a write to a page
results in a fault that can be tracked by the Xen hyper-
visor. In fact, shadow mode logging is used during live
VM migration (and thus live snapshot) to keep track of
the pages that have been modified since the previous
iteration of migration. To prevent excessive write faults,
once a dirty page is identified it can become writable
again (only if the page is normally writable; e.g., it is
not a page table) so that future writes do not result in
faults. While handling faults does not incur any addi-
tional overhead during the snapshot operation, it slightly
degrades VM execution between snapshots. Handling
faults is slightly more expensive than computing hashes
(it takes 0.160 ms for Xen to process a write fault), but
for scenarios where very few pages change or when
snapshots are very frequent, such a solution would be
favorable to a hash-based approach.

The second technical question is: How to construct the
complete snapshot image of a VM with partial memory
transfer? Given that the snapshot daemon no longer
receives the entire set of a VM’s memory pages, the
daemon has to merge the modified pages received in
the current snapshot round with the unchanged pages
received previously so that a new, complete snapshot can
be generated. To facilitate easier assembly of the VM’s
snapshot, the snapshot daemon divides the snapshot
image of a VM into three segments. The first segment
contains metadata about the layout of the VM, such as
the number of pages in the VM. The second segment
which consists of all the memory pages of a VM is
reused by the snapshot daemon across different snapshot
rounds. Upon receiving a page, the snapshot daemon
replaces the old copy of a page with its newly received
copy. Finally, the third segment holds some execution
state information such as the VM’s virtual CPU context.
Once the snapshot operation is complete, the updated
three segments will be merged to create a complete VM
snapshot image.

3.2 Taking Distributed VIOLIN Snapshot
3.2.1 Overview
With the individual VM snapshots achieving minimal
downtime, we now present our approach to coordinating
VM snapshots in order to obtain a globally consistent,
distributed snapshot of a VIOLIN. We adopt a simplified
version of Mattern’s distributed snapshot algorithm [10]
which is based on message coloring. In VNsnap, the
algorithm is executed by the VIOLIN switches on the
layer-2 Ethernet frames generated by the VMs.

We point out that distributed snapshot algorithms
have long been proposed and applied [11], [12], [13],
[14], [15], [16] and thus are not our contribution. The
contribution of VNsnap is the adaptation of a classic
snapshot algorithm to the emerging cloud-based virtual
infrastructures, as well as the proof of its applicability.
The applicability is not straightforward for the following
reasons. First, in previous application scenarios, the al-
gorithm enforces causal consistency for the messages ex-
changed between the entities that execute the algorithm.
However, in VNsnap, the algorithm is executed by VIO-
LIN switches outside the VMs, yet the goal is to guarantee
causal consistency for the transport-level state inside
the VMs. Second, Mattern’s original algorithm assumes
reliable communication channels, whereas in VNsnap, the
VIOLIN switches forward layer-2 frames (encapsulating
the TCP/UDP packets from the VMs) through non-
reliable (fair-lossy by assumption) UDP tunneling (recall
Figure 1). Third, unlike some previous scenarios that
require extra logging functions to ensure correct message
delivery (e.g., [16]), the VIOLIN switches do not maintain
any transport protocol state. Finally, previous works
require modification to application, library, and/or OS
when applying the algorithm, while VNsnap does not
require any modification to the VMs’ application and
system software (including the network protocol stack).
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Fig. 3. Illustration of VNsnap’s snapshot algorithm: The
snapshot of V Mi begins at time Si and ends at Ti.

In VNsnap, the snapshot algorithm works as follows:
One VIOLIN switch (or “switch”) initiates a run of the
algorithm by sending a TAKE SNAPSHOT control message
to all switches running for the same VIOLIN. This
represents the initialization of an agreement protocol
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(e.g., 2PC). Upon receiving the TAKE SNAPSHOT message
or a frame from a post-snapshot VM, a VIOLIN switch
starts the snapshot operations for the VMs on the same
physical host. While a VM snapshot is in progress, its
underlying VIOLIN switch colors that VM and all the
frames originating from that VM with the pre-snapshot
color and prevents the delivery of frames from any
post-snapshot colored VM. Once the VM’s snapshot is
completed, the switch will color the VM with post-
snapshot color. When all VM snapshots in the same
host are completed, the switch notifies the initiator via a
SUCCESS message. If the initiator receives SUCCESS messages
from all switches of the VIOLIN, the agreement protocol
terminates by informing the switches to commit the
snapshots (otherwise to discard them).

At the heart of the algorithm lie the different treat-
ments of layer-2 frames transmitted between VIOLIN
switches. Before describing the details, we first define
the term “epoch”. For a VM, an epoch is the continuous
interval between the completion times of two consecu-
tive snapshot operations. In Figure 3, time Ti is when the
snapshot of V Mi completes and thus it marks the end of
one epoch and the beginning of the next epoch for V Mi

(1 ≤ i ≤ 4). A frame falls into one of the following three
categories:

1) A frame whose source and destination VMs are
in the same epoch (e.g., the frames labeled 1 in
Figure 3). Category 1 frames will be delivered to
the destination VMs.

2) A frame whose source VM is one epoch behind
the destination VM (e.g., the frame labeled 2 in
Figure 3). Category 2 frames will be delivered to
the destination VMs.

3) A frame whose source VM is one epoch ahead of
the destination VM (e.g., the frame labeled 3 in
Figure 3). Category 3 frames are dropped by the
destination VIOLIN switches.

3.2.2 Applicability of Algorithm

Our proof of applicability needs to show that the snap-
shot algorithm, executed outside of a VM, will preserve
the semantics of application-level message passing com-
munication via (unmodified) TCP or UDP inside of the
VM. For space constraints, we will focus on the case of
TCP while the proof for the UDP case is much simpler
and will only be briefly discussed. Inside the VMs, the
TCP transport protocol achieves reliable message deliv-
ery via acknowledgement, time-out and re-transmission
semantics. Interestingly, we will show that it is TCP’s se-
mantics that preserve the correctness of application-level
communications in the face of the snapshot algorithm.
Proof. The proof has two parts. In the first part, we
will show that, when restoring a VIOLIN snapshot, the
semantics of application-level message transport using
TCP will be preserved as in the original execution during

which the snapshot is taken1. Suppose, in the original
execution, V M1 sends a message m to V M2 via TCP.
Let P be the set of TCP packets that carry the content of
message m. Let V S(V Mi) be the VIOLIN switch running
in the host of V Mi(i = 1, 2). Let Ti(i = 1, 2) be the time
when the snapshot operation of V Mi completes and,
subsequently, the epoch before Ti be epoch e and the
one after Ti be epoch e + 1. To show that message m

will be successfully delivered in the execution restored
from the VIOLIN snapshot, we will show that for each
packet p ∈ P , following VIOLIN snapshot restoration,
V M2 will eventually see the receipt of p and V M1 will
eventually see the acknowledgment of p – denoted as
ACKp. Packet p is encapsulated in a layer-2 frame, which
is then tunneled from V S(V M1) to V S(V M2). Let f(p)
be the frame that successfully arrives at V S(V M2) (recall
the unreliable UDP tunneling). f(p) falls into one of the
following cases:

Case 1: f(p) is a category 3 frame. This means that
f(p) is sent by V S(V M1) in epoch e + 1 and received
by V S(V M2) in epoch e. According to the snapshot
algorithm, the category 3 frame f(p) will be dropped
by V S(V M2) and will not be delivered to V M2. As a
result, the snapshot of V M2 does not record the receipt
of p and the snapshot of V M1 does not record the receipt
of ACKp. Upon VIOLIN snapshot restoration, V M1 will,
by the TCP semantics, re-transmit p to V M2.
Case 2: f(p) is a category 2 frame. This means that

f(p) is sent by V S(V M1) in epoch e and received by
V S(V M2) in epoch e + 1. As a result, the snapshot of
V M2 does not record the receipt of p but the snapshot of
V M1 does record the sending of p. We can further infer
that the snapshot of V M1 does not record the receipt of
ACKp – if it did, the layer-2 frame that encapsulates
ACKp would have been sent by V S(V M2) in epoch e+1
and received by V S(V M1) in epoch e. This contradicts
the snapshot algorithm which drops category 3 frames.
Upon snapshot restoration, V M1 will, by the TCP se-
mantics, re-transmit p to V M2.
Case 3: f(p) is a category 1 frame. Here we have two

sub-cases:
Case 3.1: V M1 transmits p and receives ACKp in the

same epoch. (Case 3.1.1:) If both happen in epoch e,
the snapshot of V M1 will record the transmission and
acknowledgment of p. We further infer that the snapshot
of V M2 records the receipt of p: if not, ACKp would have
been carried by a category 3 frame, contradicting the
algorithm. Right upon snapshot restoration, both V M1

and V M2 will consider p successfully delivered. (Case
3.1.2:) If both happen in epoch e + 1, the snapshots of
V M1 and V M2 do not record p’s transmission and p will
be re-transmitted after snapshot restoration.

Case 3.2: V M1 transmits p in epoch e and receives
ACKp in epoch e + 1. As a result, the snapshot of V M1

does not record the receipt of ACKp. Upon snapshot

1. We assume that there is no host, VM, or network failure during
VIOLIN snapshot taking and restoration. The handling of failures is
done outside of the snapshot algorithm.
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restoration, V M1 will, according to the TCP semantics,
re-transmit p to V M2. Note that V M2 may or may not
have received p in epoch e. But in either case V M2 will
send ACKp to V M1 upon receiving the re-transmitted p,
according to the TCP semantics.

In the second part of the proof, we show that, when
restoring a VIOLIN snapshot, the semantics of TCP
connection establishment and tear-down will be pre-
served as in the original execution. These semantics
are specified by the well-known TCP state transition
diagram [17]. The TCP state transitions are triggered by
the receipt and/or transmission of a packet with its SYN
or FIN control bit set and the receipt of its corresponding
ACK. Conveniently, the transmission, acknowledgment,
and possibly re-transmission of these control packets
follow the same semantics as that of the TCP packet
p in the first part of the proof. As a result, we can
basically follow the same logic in the first part to show
that, following snapshot restoration, a control packet will
eventually be transmitted and acknowledged, which will
trigger the proper TCP state transitions on both sides of
the TCP connection.

As an example, suppose in the original execution,
V M2 (client) is trying to establish a TCP connection with
V M1 (server). During TCP’s three-way handshake, V M1

completes its snapshot while its TCP state is SYN RCVD.
At that moment, V M1 has sent control packet SYN,ACK to
V M2 but has not received the corresponding ACK. On the
other side, V M2 receives SYN,ACK, sends an ACK to the
now post-snapshot V M1, enters the ESTABLISHED state,
and then completes its snapshot. Upon VIOLIN snapshot
restoration, it may appear that the two VMs were in
inconsistent states, with V M1 stuck in SYN RCVD state
waiting for the ACK already sent by V M2. However, such
inconsistency will not last thanks to the TCP semantics:
V M1 will time-out and re-transmit SYN,ACK to V M2,
which will in turn re-send ACK to V M1. After that both
VMs are in ESTABLISHED state and the TCP connection
is established.

The proof above covers the entire life cycle of a TCP
connection inside the VIOLIN. One can see that the TCP
semantics play a critical role in showing the applica-
bility of the snapshot algorithm, despite the differences
between VIOLIN and previous application scenarios
(Section 3.2.1). Using a similar proof logic, we can check
the algorithm’s applicability under other connection-
oriented, reliable transport protocols. It is also very
straightforward to show that VIOLIN’s UDP tunneling
design preserves fair-lossiness for UDP-based transport
in applications. Our proof builds a “bridge” between the
classic algorithm and practice – with particular relevance
to the emerging virtual infrastructures in the cloud.

3.2.3 Mitigating Performance Impacts
Although the snapshot algorithm preserves the correct-
ness of the transport and application-level semantics
in a VIOLIN, it impacts VIOLIN’s network transport
performance.

For transport via TCP, the direct consequence of execut-
ing the algorithm is the TCP backoff inside the VIOLIN.
More specifically, since not all VMs finish their snapshot
operations at the same time, the algorithm has to drop
category 3 frames to enforce causal consistency between
the VM snapshots. Such frame drop results in temporary
backoff of active TCP connections inside the VIOLIN.
TCP backoff can happen at either a pre-snapshot or post-
snapshot VM. For a post-snapshot VM, TCP backoff is
attributed to the dropping of packets transmitted to a
pre-snapshot VM as these packets are encapsulated in
category 3 frames. For a pre-snapshot VM, TCP backoff
is also caused by the dropping of category 3 frames,
but here the category 3 frames carry the ACKs from a
post-snapshot VM acknowledging packets (in category 2
frames) from the pre-snapshot VM. The duration of the
TCP backoff is therefore directly related to the degree of
discrepancy among the VMs’ snapshot completion times.

For transport via UDP, dropping category 3 frames
means loss of the UDP packets carried by those frames.
Although reliable packet delivery should not be expected
based on UDP’s “best-effort” semantics, excessive loss
may exceed the tolerance level of some UDP-based
applications, leading to undesirable consequence (e.g.,
abnormal exit). In addition, we note that category 2
frames can also cause UDP loss – during the restoration
of a VIOLIN snapshot. Category 2 frames do not lead
to any loss when the snapshot is taken. However, when
the snapshot is restored in the future, the sender VM
will “believe” that it had sent some UDP packets prior
to the snapshot but the receiver VMwill not “remember”
receiving those packets (as they arrived after the receiver
VM’s snapshot operation). Although not semantically
wrong, such loss will have negative impact on an ap-
plication’s performance.

To mitigate the above impacts on VIOLIN transport
performance, we develop a technique called frame buffer-
ing and injection (FBI) to enhance VNsnap. The key idea is
that category 2 and 3 frames can actually be buffered by
their receiving VIOLIN switches during a snapshot and
later re-injected into the relevant VMs to reduce packet
loss. More specifically, a receiving VIOLIN switch will
keep a copy of each category 2 or 3 frame received.
Once a VM transitions to the post-snapshot state, the
switch will inject the buffered category 3 frames before
delivering any new frames. The buffered category 2
frames are saved as part of the VIOLIN snapshot (as
snapshot of in-transit traffic) and when the snapshot is
restored in the future, they will be delivered to destina-
tion VMs. Our experimental results indicate that FBI is
effective in reducing UDP packet loss in a VIOLIN and,
depending on the timing of frame injection, in alleviating
TCP backoff. Detailed description and analysis of our
evaluation results will be presented in Section 4.2.

3.2.4 Implementation
In our implementation, a VIOLIN switch enters the
SNAPSHOT state when it starts the snapshot-taking op-
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erations for the local VMs connected to it. It exits the
SNAPSHOT state when all the VM snapshots have com-
pleted. To handle the asynchronous completion of VM
snapshots on the same host, VNsnap implements two
pairs of bridges and tap devices: one pair for the pre-
snapshot VMs and the other pair for the post-snapshot
VMs. As a result, it is guaranteed that no frame from
a post-snapshot VM can reach a pre-snapshot VM on
the same host. We modify Xen’s xend to transition a VM
from the pre-snapshot bridge to the post-snapshot bridge
at the end of the stop-and-copy phase. We also extend
xend such that it will notify the VIOLIN switch when-
ever a VM finishes its snapshot operation. Specifically,
we define a signal handler inside the VIOLIN switch
which will receive a user-defined POSIX signal from xend
when a VM completes its stop-and-copy phase. Once
the VIOLIN switch has received the signals for all local
VMs belonging to the same VIOLIN, the switch will exit
SNAPSHOT state.
So far we have discussed the different ways VNsnap

captures the VM state and maintains causal consistency.
For a VIOLIN snapshot to be useful, it should also
include the file system state. To meet this goal, we store
a VM’s file system on an LVM [18] partition and use the
LVM snapshot capability to capture the state of the file
system at the time of snapshot. The main advantages
behind LVM snapshots are availability and speed. LVM
snapshots do not require a system using the logical
volume to be halted during the snapshot. It also does
not work by mirroring a logical volume to some other
partition. Instead, it records only changes made to a
logical volume after the snapshot and as a result is very
fast. A more efficient way to use LVM snapshots can
be found in [19]. In VNsnap, LVM snapshots are taken
during the (very short) stop-and-copy phase when a VM
is suspended. The snapshot partitions can be processed
after the VM resumes normal execution.

4 EVALUATION
In this section, we evaluate the effectiveness and effi-
ciency of VNsnap. First, we compare Xen’s and VN-
snap’s live checkpointing functionality. Second, we eval-
uate VNsnap’s frame buffering and injection technique.
Finally, we evaluate the impact of VNsnap on VIOLINs
running real-world parallel/distributed applications –
NEMO3D [20] and BitTorrent [21]. All physical hosts
involved in our experiments are Sunfire V20Z servers
with two 2.6GHz AMD Opteron processors and 4GB of
RAM. In our setup, both domain 0 and guest domains
run the 2.6.18 Linux kernel.

4.1 Downtime Minimization for Live VM Snapshots

We first evaluate the true live VM snapshot technique
(Section 3.1) for individual VMs in a VIOLIN. The evalu-
ation metrics include the total duration and VM downtime

of an individual VM snapshot operation. For compari-
son, we experiment with (1) Xen’s live VM checkpoint-
ing function (used in [2]) and (2) the VNsnap daemon
implementation. For both implementations, we measure
the metrics for the same VM running with 650MB of
RAM. The tests are run both when the VM is idle and
when it is executing the parallel application NEMO3D.
NEMO3D is a long-running (tens of minutes to hours),
legacy parallel simulation program without any built-
in checkpointing support and it is widely used by the
nanotechnology community for nano-electric modeling
of quantum dots.

Table 1 shows the averages of ten runs. Since VNsnap
daemon is based on Xen’s live migration function, it
involves multiple iterations of memory page transfer
during the snapshot operation (the “iteration” column)
while the VM is running. It is during the very last
iteration that the VM freezes and causes the downtime
(the “pages in last iteration” column). The number of it-
erations is proportional to the rate at which the workload
is dirtying the VM’s memory pages. For instance, we
observe that, during the NEMO3D execution, memory
pages can get dirtied at a rate about 125MB/s.

The most important metric in Table 1 is the VM
downtime. We have two main observations. First, the
VNsnap daemon incurs significantly shorter downtime
(ranging from 100 ms to 500 ms) than Xen’s checkpoint-
ing function (around 9 seconds). Second, for Xen live
checkpointing, the downtime remains almost the same
for both the “idle” and “NEMO3D” runs. VNsnap dae-
mon implementation, on the other hand, exhibit shorter
downtime for the “idle” runs than the “NEMO3D” runs.
The explanation for both observations lies in the fact
that for VNsnap daemon the VM is down only during
the stop-and-copy phase where only pages that belong
to the WWS of a VM are transferred (as explained in
Section 3.1.2). The duration of downtime is determined
by the WWS of the VM or the number of dirty pages
transferred in the last iteration – about 110 pages in the
“idle” run and 11,000 pages in the “NEMO3D” run –
out of the total 166,400 pages of the VM. This differs
from Xen’s VM checkpointing, where there is only one
iteration during which the VM freezes and all 166,400
pages are written to disk.

Another important metric from Table 1 is the total
snapshot duration. For both Xen checkpointing and
VNsnap daemon, the duration represents the amount
of time it takes for the snapshot image to be fully
committed to disk. We observe that for the “NEMO3D”
run, the VNsnap daemon incurs longer duration than
Xen checkpointing because of its multi-iteration memory
page transfer. It takes 15 seconds to transfer all pages to
the snapshot daemon with an additional 10 seconds for
the daemon to write the pages to disk. Given that writing
pages to disk does not interfere with VM execution and
is completely independent of the page transfer operation,
we do not include it in future results.
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State Duration(s) Iterations Downtime(ms) Pages in Last Iteration Size

Xen Live Checkpointing Idle 10 1 9154 166400 650MB
NEMO3D 10 1 9337 166400 650MB

VNsnap Idle 4+10 4 119 105 650MB
NEMO3D 15+10 25 468 11054 650MB

TABLE 1
Measurement results comparing Xen Live checkpointing with VNsnap.

VNsnap Optimized VNsnap
Index Duration(s) Iter.s Pg.s Transf.d Duration(s) Iter.s Pg.s Transf.d Saving (%) Pg.s Skipped

NEMO3D1 8 8 177052 7 15 49733 72% 139267
NEMO3D2 21 30 287568 14 30 160442 44% 153117
NEMO3D7 7 6 166685 7 4 31867 81% 134673
NEMO3D9 8 8 183367 8 19 77243 58% 156125
NEMO3D11 9 21 217029 9 26 108102 50% 156409

TABLE 2
Page transfer efficiency of the optimized VNsnap daemon.
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Fig. 4. The impact of different VM snapshot techniques on TCP throughput in a VIOLIN running NEMO3D. Traces are
obtained from tcpdump.

Similarity-aware VM snapshot optimization. We
also evaluate our similarity-aware optimization for VM
snapshot (Section 3.1.2). The results are shown in Table
2. We compare the number of memory pages transferred
during VIOLIN snapshot – with and without the opti-
mization. In each case, we start with taking snapshot
of an idle VIOLIN and focus on one of the VMs in a
VIOLIN with a total of 166,400 pages (650MB). For the
“with optimization” case, the VNsnap daemon uses this
idle-time snapshot as the “base” snapshot image for the
subsequent snapshot. After that we start running the
NEMO3D application and take periodic snapshots of
the VIOLIN every 10 minutes. Table 2 shows the results
from selected (thus non-consecutive) snapshot operation
instances (indicated by the index in the first column). The
instances are selected as they represent varying degree of
memory write intensity during the NEMO3D execution,
ranging from the least intensive (NEMO3D7) to the
most intensive (NEMO3D2) – indicated by the snapshot
duration and the number of page transfer iterations.

There are two main observations from the results in
Table 2. First, the optimized VNsnap system significantly
reduces the number of memory pages transferred during
each snapshot operation. The “Saving” column is the
percentage of fewer pages transferred in comparison
with the “without optimization” case. The degree of sav-

ing varies (from 44% to 81%) depending on the degree of
memory write intensity during the snapshot operation:
The higher the memory write intensity, the lower the
page transfer saving. More interesting is the second
observation: Regardless of the memory write intensity
during those snapshot operations, the number of pages
skipped from transfer (i.e., pages that are determined
as unmodified since the last snapshot) does not vary as
much – ranging from 134,673 to 156,409 pages. Relative
to the total number of pages of the VM (166,400 pages),
the percentage of pages skipped is consistently high
(from 81% to 94%). This observation can be explained by
the locality property exhibited by NEMO3D’s execution:
During most part of the execution, only a small number
of memory pages are being modified at any time, though
the memory write intensity varies over time. Even if
we look at a time window that spans two snapshot
operations, the subset of modified pages is still small
relative to the total number of pages of the VM. Our
profiling study shows that many long-running applica-
tions exhibit similar locality property.

Finally, our experiments also indicate that the over-
head of the optimization is negligible. More precisely,
our measurement results show that it takes no more
than 2.0 seconds to generate and compare page hashes
for each snapshot operation. We point out that, during
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hash calculation and comparison, the VIOLIN is running
normally and the overhead is justified by the reduction
of the page transfer overhead.
Impact of VM snapshot on TCP throughput. As
discussed in Section 3.2.3, individual VMs in a VIOLIN
may complete their snapshots at different times which
may induce TCP backoff. Figure 4 shows such impact on
a 2-VM VIOLIN executing NEMO3D, under no snapshot
(Figure 4(a)), Xen live checkpointing (Figure 4(b)), and
VNsnap daemon (Figure 4(c)). We focus on one TCP
connection between the two VMs. The flat, “no progress”
period shown in Figure 4(b) consist of two parts: (1) the
downtime of the sender VM during snapshot and (2)
the TCP backoff period due to the different snapshot
completion times of the two VMs. We observe that Xen
live checkpointing (Figure 4(b)) incurs 2-3 seconds of
TCP backoff, whereas the VNsnap daemon (Figure 4(c))
does not incur noticeable TCP backoff. More results and
analysis will be presented in the next subsections.

4.2 Effectiveness of Frame Buffering and Injection
In this section we evaluate the effectiveness of the frame
buffering and injection (FBI) technique (Section 3.2.3) in
reducing UDP packet loss and shortening TCP backoff
period and hence mitigating the impact of VNsnap algo-
rithm on transport performance. To study the effects of
frame buffering and injection under a controlled setting,
we introduce a 5-second artificial delay before one of
the VIOLIN switches issues a snapshot (by delaying the
propagation of TAKE SNAPSHOT message for five seconds).
We note that there are many factors that can potentially
influence the effectiveness of FBI, such as application
semantics and the number of VMs and VIOLIN switches.
Nonetheless, we focus here on a basic, “noise-free” sce-
nario for a 2-node VIOLIN (consisting of two VMs where
each VM resides on a different physical host; similar to
the 2-node NEMO3D experiment of Section 4.3) to gain
insights into the effectiveness of FBI in different settings.

4.2.1 Effectiveness of FBI for UDP
For applications using best-effort protocols such as UDP,
the main purpose of FBI is to alleviate packet loss. We
first show how FBI helps packet delivery for the ICMP
protocol. Figure 5 shows the RTT measurements for
ICMP (ping) packets with the default 1-second transmis-
sion interval. In this figure, despite the fact that receiver
VM (xen2) completes its snapshot operation about 5
seconds later than sender VM (xen1), all packets are
received by xen2. In particular, five ICMP packets (ICMP
sequence numbers 4-8) are buffered and injected into
xen2, as indicated by their longer RTTs (mostly time in
the VIOLIN switch buffer). Had FBI not been used, the
five packets would have been lost.

Our next experiment studies the effectiveness of FBI
in reducing packet loss from the perspective of a UDP-
based application. This experiment also involves two
VMs in a VIOLIN snapshot operation. There are two

xen1: # ping xen2
PING xen2 (10.0.13.51) 56(84) bytes of data.
64 bytes from xen2 (10.0.13.51): icmp seq=1 ttl=64 time=0.490 ms
64 bytes from xen2 (10.0.13.51): icmp seq=2 ttl=64 time=0.449 ms
64 bytes from xen2 (10.0.13.51): icmp seq=3 ttl=64 time=0.469 ms
64 bytes from xen2 (10.0.13.51): icmp seq=4 ttl=64 time=4584 ms
64 bytes from xen2 (10.0.13.51): icmp seq=5 ttl=64 time=3584 ms
64 bytes from xen2 (10.0.13.51): icmp seq=6 ttl=64 time=2584 ms
64 bytes from xen2 (10.0.13.51): icmp seq=7 ttl=64 time=1584 ms
64 bytes from xen2 (10.0.13.51): icmp seq=8 ttl=64 time=584 ms
64 bytes from xen2 (10.0.13.51): icmp seq=9 ttl=64 time=0.478 ms
64 bytes from xen2 (10.0.13.51): icmp seq=10 ttl=64 time=0.319 ms
64 bytes from xen2 (10.0.13.51): icmp seq=11 ttl=64 time=0.320 ms

Fig. 5. Impact of FBI on ICMP with 5-second snapshot
completion time discrepancy.

scenarios in the experiment: (1) the sender completes
the snapshot 5 seconds earlier than the receiver and
FBI buffers and injects category 3 frames during the
current execution; (2) the sender completes the snapshot
5 second later than the receiver and FBI re-injects cat-
egory 2 frames during the restoration of the VIOLIN
snapshot in the future. For each scenario, we perform the
measurement under various UDP packet transmission
intervals: 1 ms, 10 ms, and 100 ms. For comparison, we
also repeat the experiment without FBI. Table 3 shows
the average results for ten runs, which indicate that FBI
significantly reduces UDP packet loss (by close to 100%)
in both scenarios (1) (Table 3(a)) and (2) (Table 3(b)).

(a) Scenario 1: during current execution (FBI for category 3 frames)
Transmission Buffered Pkts. Lost Pkts. Lost Reduction

Interval Pkts. w/o FBI with FBI in Loss
1 ms 465 473 8 98%
10 ms 241 246 5 98%
100 ms 42 43 1 98%

(b) Scenario 2: during snapshot restoration (FBI for category 2 frames)
Transmission Buffered Pkts. Lost Pkts. Lost Reduction

Interval Pkts. w/o FBI with FBI in Loss
1 ms 473 486 13 97%
10 ms 227 236 9 96%
100 ms 44 45 1 98%

TABLE 3
Effectiveness of FBI in reducing UDP packet loss during

snapshot and snapshot restoration.

There are three points to note here. First, for FBI to be
effective, the VIOLIN switch buffer size for each VM and
the application socket buffer size should be large enough
to accommodate the buffered category 2 and 3 frames.
Second, while FBI greatly reduces packet loss, it does
not always completely prevent loss as shown in Table 3.
The source of these packet losses are VM downtime and
the detachment of I/O devices and bridge change that
take place during snapshot. Third, FBI may not be useful
for applications that are highly sensitive to timeliness of
data arrival (e.g., real-time video conferencing). How-
ever, for application that do not have stringent timing
requirement, use of FBI will significantly mitigate UDP
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packet loss both during the current VIOLIN operation
and during the restoration of VIOLIN snapshot in the
future.

4.2.2 Effectiveness of FBI for TCP
To study the impact of FBI on applications using TCP
transport, we study TCP backoff in a VIOLIN during
and after the snapshot. Before proceeding with the ex-
periment setup, we point out the two main challenges as-
sociated with FBI for TCP. First, the delivery of buffered
TCP packets requires stringent timing. To be of use, these
packets need to be injected within a narrow window
when the receiver VM has resumed normal execution
after the snapshot (or snapshot restoration) but before
the sender VM retransmits the buffered packets. In the
case of VIOLIN snapshot restoration, the sender VM
also needs to be fully operational first so that it can
receive the ACKs that indicate the successful delivery of
the buffered packets. Otherwise, these packets still have
to be retransmitted and FBI yields no benefits. Second,
many of the buffered packets are retransmitted packets
to begin with. As a result, only a small percentage of the
buffered packets are of real “help” to the progress of the
TCP window.

In this experiment, the sender VM sends TCP packets
to the receiver VM every millisecond. The sender VM
completes its snapshot about 5 seconds earlier than
the receiver VM. Figure 6 compares the network traces
recorded with and without FBI at the sender. For view-
ing convenience, we move up the “with FBI” curve
by 500000 units along the y-axis. Figure 6 shows that
FBI shortens TCP backoff period – the flat segment of
the curves in the figure – from 7.33 seconds (without
FBI) to 4.44 seconds (with FBI) which represents a 40%
reduction.

A closer examination of the results confirms that FBI’s
effectiveness varies based on the timing of the injection
within a “window of opportunity”. The window of oppor-
tunity, as shown in Figure 6, refers to the period during
which the sender VM has not successfully retransmitted
the buffered packets following the completion of the
receiver’s snapshot operation. More specifically, after
each failed retransmission, the sender doubles the time-
out interval before attempting a new retransmission.
Therefore, packet injection by FBI can effectively advance
the congestion window of the connection sooner as the
sender VM does not have to wait for the timeout to re-
send the unacknowledged packets during the exponen-
tial backoff period. The earlier the injection, the higher
the benefits of FBI are going to be. In the “with FBI” case
of Figure 6, the length of the window of opportunity is
4.24 seconds (starting when the receiver VM completes
its snapshot at 13.67 seconds) and packets are injected
0.59 second after the start of the window. Our analysis
above also indicates that a greater snapshot completion
time discrepancy widens the window of opportunity. As
such, FBI is particularly useful in scenarios where the
discrepancy is large between the two end points of a TCP
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Fig. 6. Effectiveness of FBI in shortening TCP backoff.

connection (more than 4 seconds). When discrepancy
is small, the window of opportunity is also small and
FBI does not yield much benefit. Fortunately, the TCP
backoff period will also be short in that case, which is a
favorable situation.

4.3 Taking Snapshot of a VIOLIN Running NEMO3D
To execute NEMO3D, we create VIOLINs as virtual
Linux clusters of varying size (with 2, 4, 8, and 16 VMs).
The underlying physical infrastructure is a cluster of 8
Sunfire V20Z servers connected by Gigabit Ethernet. For
the 2, 4, or 8-VM VIOLIN, each VM runs in a distinct
physical host and is allocated 650MB of memory. For the
16-VM VIOLIN, there are two VMs per host each with
650MB of memory. For each VIOLIN, we run NEMO3D
with the same input parameters and trigger the snapshot
algorithm at exactly the same stage of NEMO3D execu-
tion for Xen live checkpointing and the VNsnap daemon
implementations. For each implementation, we measure,
on a per-VM basis, the VM uptime and VM downtime
during the snapshot operation as well as the TCP backoff
experienced by the VM due to snapshot completion time
discrepancy. We note that the VM downtime plus the
TCP backoff constitute the actual period of disruption to
application execution inside the VIOLIN.

Figure 7 shows the results. The times shown are
averages of all VMs in a given VIOLIN from a given
experiment. We observe that VNsnap incurs very low
disruption (VM downtime + TCP backoff) – more specif-
ically 0.05, 0.8, 1.4, and 3.8 seconds for the 2, 4, 8, and
16-node VIOLINs, respectively. On the other hand, Xen
checkpointing incurs significantly higher VM downtime
as well as overall disruption period (from 10 to 35
seconds). The 16-node experiment further indicates that
Xen live checkpointing not only suffers from longer
downtime (about 20 seconds vs. less than 1 second for
VNsnap), but the downtime also scales with the number
of VMs that are simultaneously being snapshotted on the
same host (about 20 seconds with two VMs per host vs.
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(a) Xen Live Checkpointing (b) VNsnap

Fig. 8. Per-VM breakdowns of snapshot timing for the 8-node VIOLIN running NEMO3D.

Fig. 7. The breakdown of snapshot timing for 2, 4, 8 and
16-node VIOLINs running NEMO3D.

about 10 seconds with one VM per host as in the 2, 4,
and 8-node cases).

Figure 8 shows the individual result for each of the
8 VMs in the VIOLIN. As discussed in Section 4.1,
differences in VM snapshot completion times (shown by
the upper edges of the “VM downtime” bars) lead to
TCP backoff. As can be seen in Figure 8, the discrepancy
among the 8 VMs is very insignificant for VNsnap (less
than 1 second – Figure 8(b)). Our investigation reveals
that some of the hosts (e.g., the ones hosting VMs
3, 6, and 7) have longer disk write latency than the
others, leading to a noticeable difference in VM snapshot
completion times for Xen live checkpointing. On the
other hand, since for the VNsnap daemon disk writes
are decoupled from the snapshot operation as far as the
VMs are concerned, the VMs experience less discrepancy
in snapshot completion time and much less TCP backoff.

In all experiments, we validated the semantic correct-
ness of NEMO3D execution by comparing the outputs of
the following: (1) an uninterrupted NEMO3D execution,
(2) a NEMO3D execution during which a VIOLIN snap-
shot is taken, and (3) a NEMO3D execution restored from
the VIOLIN snapshot. We confirm that all executions
generated the same program output.

4.4 Taking Snapshot of a VIOLIN Running BitTorrent
In this section we study the impact of VNsnap on a
VIOLIN running the peer-to-peer BitTorrent application

[21]. The reason for choosing this application is to
demonstrate the effectiveness of VNsnap for a VIOLIN
running a communication and disk I/O-intensive
application that spans multiple network domains.
Figure 9 shows the experiment setup, where the VIOLIN
spans two different subnets at Purdue University. Our
testbed consists of 3 Sunfire servers in our lab at the
Computer Science (CS) Department and 8 servers at
the Center for Education and Research in Information
Assurance and Security (CERIAS). In the CS subnet, we
dedicate one server to run a remote VNsnap daemon.
Of the remaining two servers, we use one to run a
VIOLIN relay daemon (explained shortly) and the other
one to host two VMs: VM 1 (with 700MB of memory)
runs as a BitTorrent seed while VM 2 (with 350MB of
memory) runs an Apache webserver and a BitTorrent
tracker. In the CERIAS subnet, we use four servers
each hosting a VM with 1GB of memory that runs as
a BitTorrent client or seed. The remaining four servers
host a VNsnap snapshot daemon. The 6 VMs – two
in CS and four in CERIAS – constitute the BitTorrent
network. To overcome the NAT barrier between the two
subnets, we deploy two software-based VIOLIN relays
operating at the same level as the VIOLIN switches.
The VIOLIN relays run in hosts with both public and
private network interfaces so that they can tunnel
VIOLIN traffic across the NAT.

Fig. 9. The setup of the BitTorrent experiment.
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(a) Xen Live Checkpointing (b) VNsnap

Fig. 10. Per-VM breakdowns of snapshot timing for the VIOLIN running BitTorrent.

The goal of the BitTorrent network is to distribute
a 650MB file from two seeds (VMs 1 and 6) to all
participating clients (VMs 3, 4, and 5). The experiment
starts with the two seeds, one in CS and one in CERIAS.
We trigger the VIOLIN snapshot when all clients have
downloaded almost 50% of the file. At that time, the
average upload and download rates for each client are
about 1350KB/s and 3200KB/s, respectively.

Figure 10 compares the per-VM snapshot timing
breakdown under Xen’s live checkpointing and under
VNsnap. We observe that the total disruption caused
by the snapshot operation (i.e., VM downtime + TCP
backoff) is considerably less and at times negligible for
VNsnap (all below 2 seconds except VM 3 – Figure
10(b)). The disruption periods under Xen’s live check-
pointing range from 15 seconds to 25 seconds. Moreover,
the slower disk bandwidth on some hosts (i.e., those
hosting VMs 3 and 6) causes large discrepancy (up to
10 seconds) among the VMs’ snapshot completion times,
leading to non-trivial TCP backoff (Figure 10(a)).

When looking at the results for VNsnap (Figure 10(b)),
one notices that the VM snapshot completion times are
less uniform than those in the NEMO3D experiments.
There are three reasons behind this observation: First, as
described in the experiment setup, not all VMs are con-
figured with the same amount of memory. For instance,
given that VM 2 has only 350MB of memory, it completes
snapshot before other VMs. Second, unlike the NEMO3D
experiment where all VMs are equally active, some VMs
in the BitTorrent experiment are more active than others
(i.e., they have larger WWS). For example, at the time
of the snapshot, the three client VMs (VMs 3, 4, and 5)
are mostly communicating with VM 1, leaving the other
seed (VM 6) mostly idle and thus a shorter snapshot
duration for VM 6. Third, the workloads of the hosts
are not uniform, which can have an impact on the VM
snapshot times. For example, due to resource constraints
of our testbed, we have to run the CERIAS VIOLIN
relay on the same server that runs a VNsnap snapshot
daemon. As a result, it takes VM 3, which is served by
that daemon, longer time to finish its snapshot despite
the fact that VM 3 is just as busy as other clients (VMs 4
and 5). The longer duration of VM 3 snapshot manifests
itself as the TCP backoff during which VM 3 becomes the

only pre-snapshot VM in the VIOLIN as a result it cannot
receive ACKs from other post-snapshot VMs. Finally, we
validate the correctness of VNsnap by comparing the
checksum of the original file with the checksums of the
files downloaded during the runs when the snapshot is
taken and when it is restored.

5 DISCUSSION
In this section, we discuss two main issues surrounding
the overhead and applicability of VNsnap in a cloud
setting. The first issue concerns the lack of synchrony
in snapshot completion times of the individual VMs
that make up a VNI. While our proposed optimized
daemon and frame buffering and injection methods to
some extent alleviate this problem by reducing the du-
ration of snapshot (Section 4.1) and by reducing UDP
packet loss and TCP backoff (Section 4.2), it does not
make the snapshot operation completely transparent
to applications running in the VNI. Heterogeneity in
the memory size of VMs particularly exacerbates this
problem. One simple solution to reduce the snapshot
skew overhead is to modify the live VM migration
implementation such that the migration/snapshot takes
a uniform or bounded amount of time transferring VM
memory pages to snapshot daemons. As such, all VMs
in a VIOLIN will start their stop-and-copy phase at about
the same time. Considering the very short duration
of this phase (i.e., the VM downtime), the snapshot
completion times for the VMs will be of low discrepancy.
However, since VNsnap cannot completely eliminate the
discrepancy without making any modifications to VMs,
VNsnap requires applications to tolerate the short period
of disruption incurred by the snapshot algorithm. We
believe that many – though not all – cloud applications
meet this requirement.

The second issue concerns the restorability of a
VIOLIN snapshot. First, for a snapshot to be restorable,
the VIOLIN has to be self-contained. This means that
any application inside the VIOLIN should not depend
on any connections to outside the VIOLIN for execution.
This requirement exists because a snapshot may be
restored at an arbitrary time in the future. As a result,
the execution inside the VIOLIN should not depend
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on a connection to the outside that may time out by
the time a snapshot is restored. This problem can pose
complications for clients that connect to a cloud service
running in a VIOLIN whose state is being captured by
VNsnap. Two solutions to address this problem are:
(1) extending the VIOLIN snapshot to client hosts or
(2) requiring the execution state to completely reside
in the cloud and have the client interact with cloud
services via a stateless connection (e.g., a VNC session),
which can be re-established upon snapshot restoration.
Second, device virtualization which decouples the
virtual devices in a VM from the physical devices in
a host allows VM migration and snapshot restoration
across different sets of hosts. For example, we have seen
snapshots generated by VNsnap being restorable on
two sets of hosts with different 64-bit Intel processors
and NICs. Moreover, with VM migration (equivalent
to VM snapshot as far as VNsnap is concerned)
being supported across different processors (e.g., KVM
supports VM migration between Intel and AMD hosts),
snapshot restoration will become further insensitive to
host-level differences.

6 RELATED WORK

Many techniques have been proposed to checkpoint dis-
tributed applications, but few have addressed the need
for checkpointing an entire networked infrastructure.
Checkpointing distributed applications can be loosely
categorized into application-level, library-level (e.g., [22],
[11]), and OS-level (e.g., [23]) checkpointing. Although
these techniques are beneficial in their own rights and
work best in specific scenarios, they come with their own
limitations. Application-level checkpointing requires ac-
cess to application source code and is highly semantics-
dependent. Similarly, only a certain type of applications
can benefit from linking to a specific checkpointing li-
brary. This is because the checkpointing library is usually
implemented as part of the message passing library
(such as MPI) that not all applications use. OS-level
checkpointing techniques often require modifications to
the OS kernel or require new kernel modules. Moreover,
many of these techniques fail to maintain open con-
nections and accommodate application dependencies on
local resources such as IP addresses, process identifiers
(PIDs), and file descriptors. Such dependencies may
prevent a checkpoint from being restorable on a new
set of physical hosts. VNsnap complements the existing
techniques yet it is not without its own limitations
(Section 5).

Virtualization has emerged as a solution to decou-
ple application execution, checkpointing and restora-
tion from the underlying physical infrastructure. ZapC
[14] is a thin virtualization layer that provides check-
point/restart functionality for a self-contained virtual
machine abstraction, namely a pod (PrOcess Domain),
that contains a group of processes. Due to the smaller

checkpointing granularity (a pod vs. a VM), ZapC is
more efficient than VNsnap in checkpointing a group
of processes. However, ZapC does not capture the entire
execution environment which includes the OS itself. Xen
on InfiniBand [15] is a Xen-based solution with a goal
similar to VNsnap, but it is designed exclusively for the
Partitioned Global Address Space programming models
and the InfiniBand network. Hence, unlike VNsnap,
it does not work with legacy applications running on
generic IP networks.

Recently, many solutions have been proposed based
on Xen migration to address fault-tolerance in virtual-
ized environments [24], [25], [19], [26]. [24] advocates
using migration as a proactive method to move pro-
cesses from “unhealthy” nodes to healthy ones in a
high performance computing environment. Though this
method can be used for planned outages or predictable
failure scenarios, it does not provide protection against
unexpected failures nor does it create checkpoints.

Remus [25] is a practical VM-transparent service that
protects unmodified software against physical host fail-
ures. The focus of Remus is high availability of individ-
ual VMs whereas VNsnap focuses on the reliability of
distributed VNIs. Remus leverages an enhanced version
of Xen migration to efficiently transfer a VM state to a
backup site at high frequencies (i.e., 40 times per second
for Remus vs. every few minutes for VNsnap). It also
implements a network buffering method similar to FBI.
The main difference between the two methods is that in
Remus buffering is done at the end host running the
sender VM so that network activity corresponding to
speculative execution would not reach the destination
while the synchronization to backup is in progress. How-
ever, in VNsnap buffering takes place at the destination
VIOLIN switch (as a sender VM or its corresponding
physical host are unaware of the current epoch of a
receiver VM) to mitigate the side effects of the snapshot
algorithm. [27] is an effort similar to Remus with the
goal of improving state synchronization between a VM
and its backup site. It employs a hashing method similar
to VNsnap that also operates at sub-page granularity.

The closest work to VNsnap from the application
point of view (i.e., checkpointing distributed execution)
is an advanced system [19] that enables frequent, trans-
parent checkpointing of closed distributed systems in
Emulab [28]. Being parallel efforts, VNsnap and [19]
share similar goals with different system requirements:
[19] requires high-accuracy clock synchronization to
avoid the distributed snapshot algorithm and to achieve
high fidelity and transparency for network experiments.
Therefore, [19] requires modifications to the guest kernel
of VMs. On the other hand, VNsnap is geared towards
IaaS clouds where IaaS providers have no or minimal
control over the custom VMs used by cloud users.
Therefore, while clock synchronization helps VNsnap
to synchronize individual VM snapshots (Section 5), an
IaaS provider can safely use VNsnap without making
any assumption about the hosted VMs – in particular,
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VMs can be unsynchronized, paravirtualized, fully vir-
tualized, and distributed across multiple data centers.

While pre-copying memory pages to a backup site or a
checkpoint file seems to be the dominant trend, a few
techniques have been proposed to post-copy pages in
order to reduce the VM downtime during migration [29],
[30]. While post-copy approaches incur less downtime
and result in fewer page transfers as only one copy
of a page is transferred, they may not be suitable for
checkpointing VMs based on the pace at which they
lazily transfer the memory pages. One advantage of
using pre-copying is that VNsnap can easily be general-
ized to other virtualization platforms with live migration
support (e.g., VMware ESX, KVM) while checkpointing
solutions based on post-copying rely on heavily modi-
fying the hypervisor and possibly the guest kernel.

7 CONCLUSION
We have presented the VNsnap system to take consis-
tent snapshots of an entire VNI, which include images
of the VMs with their execution, communication, and
storage states. To minimize system downtime incurred
by VNsnap, we develop optimized live VM snapshot
techniques inspired by Xen’s live VMmigration function.
We adapt a distributed snapshot algorithm to enforce
causal consistency across the VM snapshots and ver-
ify the algorithm’s applicability. Our experiments with
VIOLINs running unmodified OS and real-world par-
allel/distributed applications demonstrate the unique
capability of VNsnap in supporting VNI reliability for
the emerging IaaS cloud computing paradigm.
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