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Abstract

Code injection attacks are a top threat to today’s In-
ternet. With zero-day attacks on the rise, randomiza-
tion techniques have been introduced to diversify software
and operation systems of networked hosts so that attacks
that succeed on one host cannot succeed on others. Two
most notable system-wide randomization techniques are
Instruction Set Randomization (ISR) and Address Space
Layout Randomization (ASLR). The former randomizes
instruction set for each process, while the latter random-
izes the memory address space layout. Both suffer from a
number of attacks. In this paper, we advocate and demon-
strate that by combining ISR and ASLR effectively, we can
offer much more robust protection than each of them in-
dividually. However, trivial combination of both schemes
is not sufficient. To this end, we make the key observa-
tion that system call instructions matter the most to attack-
ers for code injection. Our system, RandSys, uses system
call instruction randomization and the general technique
of ASLR along with a number of new enhancements to
thwart code injection attacks. We have built a prototype
for both Linux and Windows platforms. Our experiments
show that RandSys can effectively thwart a wide variety of
code injection attacks with a small overhead.

1 Introduction

A prevalent form of attacks on the Internet, commonly
known as code injection attacks, is to exploit a software
vulnerability on a host and cause malicious execution of
either injected attack code or pre-existing code (such as
libc functions). Such attacks can exploit many vulner-
ability types, such as input validation errors, exception
condition errors, and race conditions. Code injection at-
tacks pose serious threat to the Internet; fast- and wide-
spreading worms such as CodeRed [3], Blaster [5], and
Sasser [6] all depend on the successful execution of in-
jected code to complete their infections and replications.
In this paper, we focus on remote machine-code injection
attacks, but not on other injection attacks, such as SQL in-
jection and Cross-Site Scripting attacks. For the purpose
of exposition, we use the conventional term “shellcode” to
refer to the injected code.
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While patches can protect known vulnerabilities, zero
day exploits are on the rise [7] and demand a more proac-
tive approach. Forrest et al [22] advocated building di-
versity into software and operating systems of networked
hosts in the first place. There are two main system-wide
randomization techniques proposed since: Instruction Set
Randomization (ISR) [12, 13, 24, 33] and Address Space
Layout Randomization (ASLR) [2, 14, 15, 37]. ISR cre-
ates a randomized instruction set for each process so that
instructions in shellcode fail to execute correctly even
though attackers have already hijacked the control flow
of the vulnerable process. ASLR, instead, randomizes the
memory address layout of a running process (including
library, heap, stack, and relative distances between data
and code ) [2, 14, 15, 37] so that it is hard for attackers
to locate injected shellcode or existing program code, pre-
venting attackers from hijacking the control flow.

Both randomization schemes suffer from a number of
attacks. ISR is vulnerable to attacks that avoid using in-
jected machine instructions. For example, ISR suffers
from return-into-libc attacks [12, 13, 24] in which at-
tackers call pre-existing library functions (e.g., system/())
without the need of injecting malicious instructions.
Meanwhile, ASLR suffers from attacks that avoid us-
ing specific memory addresses. Although ASLR makes
control-flow hijacking more difficult, shellcode locations
might still be easy to guess. For example, a new form
of attack which we call “code spraying” attacks, could ex-
ploit a buggy application behavior and “spray” a shellcode
repetitively throughout large write-able user-level mem-
ory areas (say 256MB) — this leaves only 4 bit entropy
in the current 32 bit architecture for attackers to guess the
location of a shellcode replica. Furthermore, control data
can be overwritten without knowing their precise location.
For example, attackers can overflow a memory area that
likely contains a code pointer, with repetitive guessed ad-
dresses [14] — an attack termed as “address spraying”.

In this paper, we advocate and demonstrate that by
combining ISR and ASLR effectively, we can offer much
more robust protection than each of them individually. Al-
though a trivial combination of ISR and ASLR can address
the aforementioned attacks, such a system cannot be prac-



tically deployed. The reason is that ISR incurs prohibitive
performance overhead because of its per-instruction de-
randomization and lack of hardware support [12, 13, 24].
Here, we make the key observation that system call in-
structions are almost always used by shellcode to carry out
its malicious actions. Therefore, we can simply random-
ize the system call instructions which matter the most to
attackers and significantly reduce the ISR overhead. Our
system, called RandSys, uses system call instruction ran-
domization and the general technique of ASLR to thwart
code injection attacks. We refer to system call instructions
and their associate library APIs as system service inter-
face. RandSys performs randomization at the process load
time by instrumenting the process with a thin transparent
virtualization layer that randomizes system service inter-
face; while at run-time, it de-randomizes the instrumented
interface for correct execution.

However, by randomizing only selective instructions,
attackers have more power if they can overcome the ASLR
part of the scheme and hijack the control flow. To this end,
we strengthen the state-of-the-art ASLR schemes with a
number of new techniques. We perform function name
randomization so that function import and export tables
are essentially encrypted and attackers are unable to hand-
craft assembly code to access these tables. Furthermore,
we employ “decoys” in the function export table point-
ing to access-protected “guard pages”, so that RandSys
can undermine “function fingerprinting” attacks that walk
through function export tables and look for a known func-
tion fingerprint. We also carefully manage randomization
in function import and export tables so that attackers can-
not correlate two tables in finding a function.

RandSys raises the bar for code injection attacks sig-
nificantly. To launch a successful attack, attackers would
need to mount kernel code injection attacks or non-
control-data attacks [16]. RandSys does not defeat ker-
nel code injection attacks because it targets user-level at-
tacks by randomizing system service interface between
user programs and the kernel. In non-control-data attacks,
security-critical application data (such as configurations,
user input, or decision-making data) rather than control
data (such as return addresses or function pointers) are
corrupted by memory error exploits. In such attacks, since
code injection may not happen in the first place, RandSys
would not be effective. In addition, RandSys may cause
disruptions to programs with self-modifying code, where
a system service invocation instruction may be dynami-
cally created. Another limitation of RandSys is that it
makes debugging and diagnostic tasks more difficult, a
common problem in randomization-based techniques.

We have built a prototype of RandSys in both Linux
and Windows platforms. Our experiments show that
RandSys can defeat a wide variety of code injection at-
tacks while incurring low performance penalty. RandSys
is independent of vulnerability-specific details, and hence

can defeat zero-day attacks. Our RandSys prototype has
successfully thwarted attacks on the Windows JView Pro-
filer vulnerability (MS05-037/July, 2005) and the Mi-
crosoft Visual Studio .NET “msdds.dll” vulnerability (Au-
gust 17, 2005) before their patches became available.
RandSys readily supports all the applications in our exper-
iments, including the Apache/llS web server, various FTP
daemons, Internet Explorer and Firefox web browsers.

In the rest of the paper, we first present the RandSys de-
sign in Section 2. We then give a detailed security analysis
of RandSys in Section 3. We describe the RandSys imple-
mentation in Section 4 and demonstrate its effectiveness
against a number of real-world attacks in Section 5. We
compare RandSys with related work in Section 6. Finally,
we conclude in Section 7.

2 RandSysDesign

In this section, we first present our design of load-time
randomization and run-time de-randomization schemes in
RandSys. Then we present a method for dynamic code
injection detection as our next line of defense.

2.1 Load-Time Randomization

System Call Load-Time Randomization When a pro-
cess is created, RandSys takes over the control (e.g., in-
tercepting the sys_execve system call in the kernel) before
program execution. RandSys searches for system call in-
vocations, such as “int $0x80” in Linux and “int $0x2e” or
“sysenter” in Windows. For each identified system call i
at memory location L;, the original system call number S?
is overwritten with a new, randomized system call number
ST using the following equation:
St = Rk (57, Li).

Ry is our load-time system-call randomization algo-
rithm using key K. Ry takes two parameters: the origi-
nal system call number S?, and the location of the call L;.
Note that even the same system call at different locations
will yield different call numbers. We maintain the key K
in the kernel space. And we used DES encryption in our
prototype. A more aggressive scheme can further random-
ize the system-call calling convention, such as permuting
the roles among EAX, EBX, ECX, and EDX registers or
padding system call parameters.

In Windows, dynamically linked libraries may be
loaded into a process at run-time. In RandSys, we in-
strument and randomize system calls in these libraries by
intercepting library-loading APIs (e.g., “LoadLibraryA”).
Note that an attacker may attempt to misuse this support.
We defer the related security analysis to Section 3.

Library API Load-Time Randomization RandSys en-
ables two types of library API randomization: library re-
mapping and function randomization.

Library re-mapping is an existing ASLR technique,
which renders exploits (e.g., regular return-into-libc at-
tacks) that depend on predetermined memory addresses



useless. Library re-mapping randomizes library base ad-
dresses and re-organizes internal functions. Randomizing
the library base addresses makes it hard to predict the ab-
solute address of a library. Re-organizing internal func-
tions makes the relative address-based attacks unlikely to
succeed. The re-mapping modifies the import and export
function tables used by dynamic linking. For example, re-
organizing exported functions alters the .dynamic/.dynstr
section in Linux or the Export Address Table (EAT) in
Windows, while re-organizing imported functions modi-
fies the PLT/GOT component in Linux and the Import
Address Table (IAT) in Windows. Library re-mapping
does not need to be de-randomized at run-time since func-
tion import and export tables already contain randomized
function locations.

Function randomization is one of our new enhance-
ments to strengthen existing ASLR schemes. It provides
function name randomization and API calling convention
shuffling. Function name randomization makes function
name-lookup unique to each process, while API calling
convention shuffling randomizes the run-time API inter-
face by shuffling existing parameters and padding new
ones. Function randomization is needed because we want
to prevent attackers from handcrafting machine code to
access function import and export tables and to look for
the randomized location of desired function names.

Name randomization replaces a function name with an-
other randomized name string. We note that a naive name
randomization scheme that generates an identical function
name for both the import library and the export library
would suffer from the correlation attack. An attacker can
correlate the imported function names from one library
(e.g., through IAT in Windows) with the exported func-
tion names in another (e.g., through EAT), and infers the
function. To counter this attack, name randomization ap-
plies different randomization algorithms based on whether
the function is imported or exported: (1) If a function
is exported to other library modules, the corresponding
function name F'g is randomized to another name string
Fp = Rg(Fg), where R is the randomization algorithm
applied to the exported function names. (2) If a function
is imported by module M;, the imported function name
Fy is randomized to another name F* = R;(Fy¢,M;),
where R; is the randomization algorithm with two param-
eters: the imported function names and the run-time base
address of the importing library module M;. Note that al-
though different modules may import the same function,
R; generates different randomized names. (3) Finally, the
name inconsistency caused by these two different random-
ization functions can be resolved at run-time by a dedi-
cated process-specific name resolution routine, such as a
customized dl_runtime_resolve() in Linux or GetProcAd-
dress() in Windows.

Function fingerprinting is a commonly used attack
technique. One variant of such technique scans the func-

tion export tables and searches for a known function fin-
gerprint that is in the form of either an instruction se-
quence or the function’s hash value. To combat this type
of attack, we add “decoy” entries to the function import
and export tables; each decoy entry points to a guard
page, which is a page with the access protection such as
PROT_NONE in Linux or PAGE_NOACCESS in Windows.
Any attempt to read, write, or execute on a guard page will
result in an access violation exception.

2.2 Run-Time De-randomization

System Call De-randomization The execution of the sys-
tem call instruction (e.g., “int $0x80” in Linux or “int
$0x2e” or “sysenter” in Windows) generates a software
trap to kernel mode and invokes the system call dispatcher.
The system call dispatcher dispatches the system service
routine according to the register that contains the system
call number (e.g., EAX). In RandSys, we customize the
system call dispatcher to perform de-randomization. The
dispatcher first inspects the stack or its context environ-
ment to derive the actual memory location L; at which
a system call ¢ with randomized system call number S7*
is made. RandSys then recovers the original system call
number S¢ = Ry (S?, L;) where Ry is the run-time de-
randomization algorithm of its load-time counterpart R .

Function Name Resolution As described in Section 2.1,
function name randomization purposely causes name in-
consistency between functions in export table and the
same functions imported by other modules in their
respective import tables.  To resolve this inconsis-
tency, we use a run-time name resolution function Rz
which maps a randomized imported function name to
its corresponding randomized exported function name
with the import module base address M; as a param-
eter: Rg(R;(plaintext_function_name, M;), M;) =
Rg(plaintext_function_name).

2.3 Dynamic Injection Detection

One attack against RandSys is to identify and jump to
existing application code (including libc functions) that
invokes system service interface. To this end, we develop
a dynamic injection detection scheme to enable defensive
execution of the existing program code, including the de-
tection and termination of a shellcode execution. Since
a shellcode is dynamically injected into a running pro-
cess, the code page containing the shellcode needs to be
writable for the injection. However, at the same time,
the shellcode is not a part of the original program code.
Hence, there are two inherent characteristics associated
with the code page containing the shellcode: (1) it is
writable; and (2) it is not mapped from the executable
file. Note that these two characteristics will not be ex-
hibited in any normal program that does not contain any
self-modifying code. Based on this observation, we use
the following heuristics to detect shellcode’s existence on



a page when an existing system call or library function is
invoked:

DYNAMICINJECTIONDETECTION(EBP)

1 depth «+— 0

2 while ISSTACKFRAMEVALID(EBP)

3 and (depth < BACKTRACE_DEPTH)

4 do return_addr «— GETRETURNADDR(EBP)

5 code_page — GETPAGEFROMADDR(return_addr)

6 if ISPAGEWRITABLE(code_page)or not

7 DOESPAGECOMEFROMFILE(code_page)

8 then return INJECTION.DETECTED

9 EBP «— GETNEXTFRAME(EBP); depth «— depth + 1
0

10 return UNDETECTED

Essentially, the detection algorithm is a recursive stack-
based inspection algorithm, which traverses the stack
frame to assess whether the code page containing the re-
turn address matches these two characteristics. Dynamic
injection detection can be performed for any library API
(within its prologue or epilogue). In addition, the system
call dispatcher, which performs run-time system call de-
randomization, can also be extended to perform this task.

3 Security Analysis

Attacks Using Direct System Service Invocation An at-
tacker may directly use system calls in shellcode. The
system call randomization of RandSys easily defeats such
straightforward attacks. Furthermore, RandSys is resilient
to replay attacks where attackers re-use randomized sys-
tem calls. This is because our randomization algorithm
takes the memory location of a system call as a parameter
— two system calls with the same system call number will
be de-randomized into two different system call numbers
since they are at different locations.

Attackers may attempt to acquire the randomization
key directly. This attempt is also defeated by RandSys.
The reason is that the randomization key is stored in the
kernel space; and user-level programs are unable to get the
randomization key. Note RandSys is not effective against
kernel-level code injection attacks which could be used to
tamper the key or carry out other malicious actions.

Attackers could also try to construct plaintext-
ciphertext pairs to brute-force the key. RandSys makes
this very difficult. Firstly, a strong encryption algo-
rithm and a long key makes it almost impossible to crack
the key. Secondly, because our randomization algorithm
is location-dependent, attackers are forced to scan code
memory to collect the precise locations as well as the se-
mantics of the instructions. Our decoy and guard page
mechanisms (Section 2.1) can detect and undermine such
scanning activity. Lastly, our dynamic injection detection
technique in Section 2.3 serves as another line of defense.

Attacks Using Indirect System Service Invocation In-
stead of invoking system service interface directly, an at-
tacker may try to reuse existing system service invocations
in the vulnerable program. To this end, an attacker must
first accurately locate the memory location of the desired

system call or associated library API invocation instruc-
tions, and then branch to that location to eventually invoke
the intended system service. RandSys makes such attacks
hard to succeed in a number of ways:

Firstly, the use of ASLR makes the memory location
of both shellcode and pre-existing code (e.g., libc func-
tions) hard to predict, and hence effectively defeats return-
into-libc attacks and making control flow hijacking dif-
ficult. An advanced form of the return-into-libc attack,
called return-into-dl attack was introduced by Nergal to
compromise PaX [2] — a representative ASLR implemen-
tation [29]. In this attack, attackers do not directly in-
voke a libc function. Instead, it “returns” to the dynamic
linker’s functions (e.g., dl_runtime_resolve()) to look up
the randomized location of the desired function by its
name. RandSys can defeat this attack in two ways: (1) The
dl_runtime_resolve function (or GetProcAddress in Win-
dows) is randomized by library-remapping; (2) Even if
the attacker can handcraft dl_runtime_resolve function (or
GetProcAddress in Windows) to directly access function
import or export tables for randomized function locations,
our function randomization mechanism (Section 2.1) ef-
fectively undermines such attempts.

Secondly, even if attackers can successfully hijack
the control flow of a process, since RandSys random-
izes system calls and their associated library APIs, the
only way for attackers to invoke system services is to
find the memory locations of the desired system service-
invocation instructions in the pre-existing program code.
Such memory-scanning activity can be efficiently under-
mined by our trap mechanisms such as decoys and guard
pages. Although it is possible for attack code to peek
through the stack, find the location of a particular func-
tion, and then calculate the offset of the intended system
service call within the function, such approach requires an
in-depth understanding of run-time program stacks (and
possibly program semantics).

Lastly, even if the memory location of desired sys-
tem service invocation in the pre-existing program code
is identified, the attack code still faces the challenge of
regaining control after unidirectionally reaching that lo-
cation. The reason is that a remote attack often needs
to chain together a sequence of system service calls to
achieve its goal.

We point out that Nergal et al [29] introduced two main
techniques, “esp-lifting” and “frame-faking”, for chaining
system service invocations. These techniques manipulate
the stack, such as lifting the ESP register or forging a
stack frame, to regain the control after one libc call is in-
voked. However, both approaches have their own limita-
tions: as acknowledged in [29], “esp-lifting” is only appli-
cable for those binaries compiled with a certain optimiza-
tion switch, i.e., -fomit-frame-pointer; and “frame-faking”
must be aware of the precise locations of those fake frames
— this can be effectively defeated by RandSys. Further-
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ENTRY (system_call)
pushl %oeax
SAVE_ALL
GET_CURRENT (2ebx)
testb $0Ox02,tsk_ptrace(ebx) # PT_TRACESY S
ine tracesys

#ifdef CONFIG_RANSYS
movl 2eesp,%Yoeax

# save orig_eax

call SYMBOL_NAME(randsys_derand)
#endif
cmpl $(NR_syscalls),%eax
jae badsys
call *SYMBOL_NAME(sys_call_table)(,%eax,4)
movl Y%eax,EA X (2oesp) # save the return value

Figure 1. System Call Randomization and De-randomization in RandSys (Linux Version)

more, both techniques can be mitigated by RandSys’ dy-
namic injection detection since the detection algorithm in
Section 2.3 can be simply extended to detect the existence
of those “esp lifting” or “frame faking” instructions.

Now, we examine another threat: as RandSys supports
run-time library loading (Section 2.1), attackers might at-
tempt to abuse this support to make an illegitimate library
loading. More specifically, after circumventing ASLR and
hijacking the control flow, an attacker may intentionally
invoke LoadLibraryA to load a library with intended func-
tions. Since this library call needs to make several sys-
tem calls (e.g., reading files from the disk) and RandSys
thwarts illegitimate direct system calls and captures il-
legitimate direct invocation of the pre-existing LoadLi-
braryA code, attackers must rely on pre-existing program
code to indirectly invoke the LoadLibraryA call and then
come up with a way to re-capture control after loading the
library. Based on our earlier discussion, RandSys make
such attempts hard to succeed.

4 Implementation

In this section, we describe the RandSys proof-of-
concept implementation in both Linux and Windows plat-
forms. Due to space constraint, system call randomization
will be mainly described in the context of Linux platforms
while library APl randomization will be presented by fo-
cusing on Windows platforms.

4.1 Execution Control Interception

Load-time control interception In Linux-based sys-
tems, RandSys intercepts the sys_execve system call and
then applies load time randomization (Section 2.1). For
Windows, the implementation is different: A DLL library
is first injected to existing running processes and the DLL
library will hook a number of critical library APIs, includ-
ing CreateProcess(). Once a new process is created, the
hooked CreateProcess() will create the new process in a
suspended state and then perform the necessary load time
randomization before resuming process execution.

Run-time control interception Run-time con-
trol interception mainly involves the system call de-
randomization and library APl name resolution. RandSys
has a kernel module to patch the system call dispatcher

so that it can transparently convert a randomized system
call number to its original number. To achieve transparent
library API name resolution, RandSys hooks a number of
related function calls such as dlsym() in Linux and Get-
ProcAddress() in Windows. To support run-time library
loading, additional functions such as LoadLibraryA() in
Windows are also modified.

Exception inter ception The introduction of decoy en-
tries and guard pages (Section 2.1) provides an oppor-
tunity to detect and identify illegitimate read or execute
accesses. RandSys hooks the exception handler, i.e.,
SIGSEGV in Linux and the Structured Exception Han-
dler (SEH) [8] in Windows. More specifically, our Win-
dows prototype hooks the KiUserExceptionDispatcher
API, which is exported by ntdll.dll, to intercept the ex-
ception raised by the process. Once an exception is inter-
cepted, RandSys checks whether it is caused by reference
to a decoy entry. If not, the exception will be passed to
the normal SEH chain. Otherwise, it is considered as an
illegitimate access and the current prototype will attempt
to terminate the mis-behaving process.

We would like to point out that exception interception
can be leveraged to thwart brute-force attacks. Existing
works [32, 34] have demonstrated that the brute-force at-
tack is able to defeat both ISR [12, 24] and ASLR [2]
schemes. However, the detection of brute-force attacks is
relatively easy because they will result in frequent crashes
in the victim processes. Since our RandSys prototype di-
rectly intercepts possible exceptions before they are dis-
patched, it is by design robust against brute-force attacks.

4.2 System Calls Randomization

After gaining the execution control at load-time,
RandSys will first attempt to locate those instructions
making system calls. It can disassemble all process code
segments and find the system call instructions, i.e., “int
$0x80” in Linux or “int $0x2e/sysenter” in Windows.
However, this may incur considerable load-time latency.
An alternative is to perform an offline analysis to iden-
tify the system call locations (Section 5.1). For each sys-
tem call occurrence, the original system call number will
be randomized (Section 2.1) as another system call num-
ber, which can later be interpreted by the RandSys ker-



Red Hat Linux 8.0

Windows XP Professional (SP2)

libc-2.2.93.50 | 1d-2.2.93.50

ntdll.dll

user32.dll

gdi32.dil

imm32.dll

winsrv.dil

#Sysiem Cals 235 39

284

266

366

18

21

Table 1. Sample Library Modules and Number of System Calls in Each Module

nel. Once the new system call number is calculated, the
instruction assigning the original system call number to
the EAX register will be instrumented to reflect the new
system call number. Figure 1 shows how the original
Linux system call dispatcher, i.e., ENTRY(system_call), is
modified to support RandSys. Note that the RandSys ker-
nel SYMBOL _NAME(randsys_derand) needs to inspect the
stack to locate the exact calling location, which is needed
to recover the original system call number. Table 1 shows
a number of library modules and the number of system
calls within each library module.

4.3 Library APl Randomization

Library re-mapping Right after a new process is cre-
ated but before its instructions are executed, RandSys will
take over its execution, inspect the loaded modules, and
attempt to re-map or re-base these modules to other ran-
dom locations. As mentioned in Section 2.1, library re-
mapping requires certain modifications to IAT/EAT table
entries affected. The purpose of re-mapping libraries is to
make their absolute and relative addresses less predictable.
In addition, special decoy entries are intentionally planted
to trap possible illegitimate references.

Function randomization RandSys intercepts two im-
portant function calls, i.e., LoadLibraryA() and GetPro-
cAddress(). The first function is extensively used by Win-
dows systems to enable run-time library loading and needs
to be intercepted to perform delayed load-time random-
ization. The second function is also extensively used by
Windows systems to resolve a function based on its string
name. Since the function names will be randomized dif-
ferently based on their resident modules, the interception
of GetProcAddress() is necessary to resolve possible name
inconsistency. Note both Windows and Linux have a well-
defined interface to resolve functions at run-time, making
this randomization procedure straightforward.

5 Evaluation

In this section, we first present RandSys latency mea-
surement results in Section 5.1. We then present a num-
ber of experiments with more than 60 real code injec-
tion attacks, including those attacks from well-known
self-propagating worms (Section 5.2). As RandSys does
not require any prior knowledge about vulnerabilities and
their exploitation means, RandSys is effective against
zero-day exploits. This capability is demonstrated by re-
sults from two zero-day “in-the-wild” exploits, which did
not have any software patch when we conducted our ex-
periments (Section 5.3).

5.1 RandSys Latency

By performing load-time randomization and run-time
de-randomization, RandSys introduces both load-time and
run-time latency to the protected process. To measure the
latency, we set up two physical hosts (with alias RAN-
SYS_LINUX and RANSYS_WIN, respectively). RAN-
SYS_LINUX is a Dell desktop PC running Red Hat Linux
8.0 with 596.913MHz Intel Pentium 111 (Katmai) proces-
sor and 384MB RAM while RANSYS_WIN is another
Dell desktop PC running Windows XP Professional (SP2)
with 2.2GHZ Intel Xeon processor and 512MB RAM. We
use several popular applications for RandSys latency mea-
surement. The results are shown in Table 2.

Table 2 indicates that RandSys with online disassembly
incurs much longer load-time latency than RandSys using
offline analysis. It may appear that the load time due to on-
line disassembly is unacceptable to frequently used appli-
cations. However, we note that the disassembly only needs
to be performed once when a new application is first intro-
duced. The disassembly result can be reused in future runs
without incurring the disassembly latency again. Table 2
also shows that system call de-randomization only intro-
duces a small performance degradation, which is largely
caused by the de-randomization algorithm. The DES al-
gorithm usually takes only 1, 200 CPU cycles (2 microsec-
onds) to perform decryption.

5.2 Thwarting Existing Code-Injection Attacks

We have experimented with over 60 existing code-
injection attacks. RandSys is able to thwart all these at-
tacks. Table 3 shows a selected subset of those attacks,
including the recent Zotob worm [9]. Especially, the last
column of Table 3 highlights the thwarting techniques
from RandSys that defeat the corresponding attacks. In
the following, we choose four representative attacks by the
Lion worm [4], Slapper worm [30], MSBlast worm [5],
and Sasser worm [6] to elaborate how RandSys success-
fully corrupts their infections. Due to space constraint,
an in-depth analysis of their attack code is omitted in this
paper and interested readers are referred to [10].

Effectiveness of system call randomization It is in-
teresting to point out that the two shellcodes injected by
the Lion worm and the Slapper worm have very similar
functionality: when the shellcode in either Lion or Slap-
per worms is executed, it first searches for the socket of
the active TCP connection established with the attacking
machine and reuses this connection for further infection
such as spawning a shell. More specifically, the shell-
code cycles through all the file descriptors and issues a



Red Hat Linux 8.0 Windows XP Professional (SP2)
Apache Web Server (httpd-2.0.40-8) | vsftpd FTP Server (vsftpd-1.1.0-1) Internet Explorer 6.0
Load-Time Latency 11.1 (seconds) 3.9 (seconds) > 1 (minute)
(Online Disassembly)
Load-Time Latency 0.3 seconds 0.3 seconds 0.5 seconds
(Offine Analysis)
Run-Time Latency 1500 cycled/syscall 1500 cycles/syscall 1650 cycles/syscall 1650 cycles/syscall

Table 2. Load-time and Run-time Latency of RandSys

[ Attack | Reference | Description | Plafform | Thwarting RandSys Techniques |
CodeRed MS01-033 Unchecked Buffer in the Windows Enhanced ASLR
CAN-2001-0500 Index Server ISAPI Extension (EAT Randomization)
Slammer MS02-039 Buffer Overrun in the SQL Windows Enhanced ASLR
CAN-2002-0649 Server 2000 Resolution Service (IAT Randomization)
MSBlast MS03-026 Buffer Overrun in Windows Enhanced ASLR
CAN-2003-0352 the RPC DCOM service (EAT Randomization)
Sasser MS04-011 Buffer Overrunin Windows Enhanced ASLR
CAN-2003-0533 the LSASS service (EAT Randomization)
Witty CAN-2004-0362 1CQ Parsing Vul. in the I SS Protocol Windows Enhanced ASLR
Analysis Module (PAM) component (EAT Randomization)
Zotob M S05-039 Buffer Overrun in the Plug and Windows Enhanced ASLR
CAN-2005-1983 Play service (August 14, 2005) (EAT Randomization)
Ramen CVE-2000-0917 LPRng Format String Bug Linux System Call
CVE-2000-0573 WU-FTPD Format String Bug Randomization
CVE-2000-0666 RPC.STATD Format String Bug
Lion CAN-2001-0010 BIND 8 Buffer Overrun Linux Sys. Cdl Rand.
Slapper CAN-2002-0656 OpenSSL 0.9.6d Buffer Overrun Linux Sys. Call Rand.
Malicious M S05-002 Vulnerability in the Cursor Windows Enhanced ASLR
Web Site | CAN-2004-1305 and Icon Format Handling in |E (EAT Randomization)
Malicious MS05-014 Heap Memory Corruption in Windows Enhanced ASLR
Web Site | CAN-2005-0055 IE DHTML method (Decoys + Guard Pages)
Malicious M S05-020 Race Condition in IE DHTML Windows Enhanced ASLR
Web Site | CAN-2005-0053 Object Memory Management (EAT Randomization)
Malicious M S05-025 PNG Image Rendering Windows Enhanced ASLR
Web Site | CAN-2005-1211 Memory Corruption in |E (Decoys + Guard Pages)
Zero-Day M S05-037 IE View Profi ler Vulnerability Windows Enhanced ASLR
Exploit CAN-2005-2087 (July 6, 2005) (EAT Randomization)
Zero-Day M S05-052 Visual Studio .NET “msdds.dll” Remote Windows Enhanced ASLR
Exploit CAN-2005-2127 | Code Execution Exploit (August 17, 2005) (EAT Randomization)

Table 3. A Representative Subset of Code Injection Attacks Thwarted by RandSys

sys_getpeername system call on each file descriptor un-
til the call succeeds and indicates that the peer TCP port
is from the attacking machine. The system call random-
ization of RandSys effectively breaks the consistent static
system call mapping in Linux and thus successfully cor-
rupts the worm infection. More specifically, each worm
infection is corrupted when the first system call, namely
sys_getpeername, is attempted.

Effectiveness of enhanced ASLR randomization
The first two worm examples show the effectiveness of
system call randomization. We next demonstrate the ef-
fectiveness of our enhanced ASLR techniques in defeating
the MSBIlast worm and the Sasser worm. Note that neither
worm assumes static system call mapping. Instead, they
leverage library APIs for their actions. More specifically,
they first leverage the PEB data structure [10] to locate
the kernel32.dll base address and then look up its EAT ta-
ble to find the requested function name. As analyzed in

[10], the Sasser worm attempts to dynamically locate the
following functions: GetProcAddress, CreateProcessA,
ExitThread, and LoadLibraryA, from the kernel32.dll li-
brary. The LoadLibraryA function will be later invoked
to load the ws2_32.dll library, which exports a number of
basic networking-related library APIs, such as bind, lis-
ten, and accept. Our enhanced ASLR schemes, particu-
larly library API randomization, randomize the EAT ta-
ble entries, breaking the dynamic lookup process in the
shellcode and thus successfully corrupting the infection.
More specifically, each worm infection is corrupted when
a function name resolution is attempted, which occurs at
the beginning of the shellcode execution.

5.3 Thwarting Real-World Zero-Day Exploits
We have used RandSys against two zero-day exploits,

each of which exploits an unpatched IE web browser
vulnerability. As these two exploits are quite simi-



lar in both the nature of the vulnerabilities (JView Pro-
filer vulnerability/MS05-037 and Microsoft Visual Studio
.NET “msdds.dIlI” vulnerability MS05-052) and the ex-
ploitation means (code-spraying attacks), we only detail
one exploit in the rest of this section. Figure 2 shows
the malicious content of an “in-the-wild” exploiting web
page, which takes advantage of the JView Profiler vulner-
ability (MS05-037) and utilizes the code-spraying attack

(4) Next, the attack code attempts to locates the ker-
nel32.dll base address by iterating the SEH [8] chain un-
til the last SEH handler is located. Based on the facts
that (i) the last SEH handler resides inside the kernel32.dll
module and (ii) a module is always aligned on 64K-byte
boundaries, the code uses the last SEH hander as a start-
ing point for walking down with an increment of 4K bytes.
A check is performed to see if the two characters at that

as described below: point are “MZ”, which usually marks the MSDOS header.

Once a match is found, it is assumed that the base address

Explretion of kernel32.dll has been located.

<htm ><body>
<SCRIPT | anguage="j avascript">

(5) Finally, this base address is used to parse the PE
file format to locate the EAT name table. Each name entry
within the EAT table is checked to locate those intended
function APIs, such as “LoadLibraryA”, “SetErrorMode”,
and “ExitProcess”.

Under RandSys, the EAT names have been random-
ized. As aresult, the exploitation is effectively thwarted at

|
l

|

|

|

shel | code =unescape("%14343" +" %i4343") ; 1 1 Preparing a basic block
i v containing the NOP-sled
shel | code+=unescape("%eafa"); shel | code+=unescape(" %90c6") ! and a shel | code

l

|

|

l

|

|

l

bi gbl ock = unescape(" %0D0D%0D0D") ; b

The size of the basic block
is at least 0x40000 bytes
or 256K bytes

header si ze = 20;
slackspace = headersi ze+shel | code. | engt h;

whi | e (bigblock. | engt h<sl ackspace) bi gbl ock+=bi gbl ock;

fillblock = bigbl ock.substring(0, slackspace); | /2: Replicating the basic block
into 750 other bl ocks,

bl ock = bi gbl ock. substring(0, bigbl ock.|ength-slackspace); I each of which contains the
’ NOP-sled and a shel | code.
whi | (bl ock. | engt h+sl ackspace<0x40000) bl ock = bl ock+bl ock+fi | | bl ock; /!

In total, the shellcode is
sprayed into 750 * 256K

step (5) described above. The new “spray-and-hit” strat-

nenory = new Array(); 4 or 187.5M bytes

egy of code-spraying attack also demonstrates the unique
advantage of RandSys over the ASLR scheme.

for (i=0;i<750;i++) nemory[i] = block + shellcode;

</ SCRI PT> 3. Triggering the JView Profiler

<obj ect cl assi d="CLSI D: 03D9F3F2- BOE3- 11D2- B081- 006008039BF0" ></ obj ect > }( 57 vulnerabili ty (MB05-037)

X
</'body><scri pt >l ocati on. rel oad(); </scri pt></htni>

Figure 2. An “In-the-wild" Malicious Web
Page with the Code-Spraying Attack

(1) A javascript-based code snip in the malicious web
page first prepares a basic memory block of 256K bytes
containing a large NOP-sled (performing nop operations)
and a particular shellcode. This block is then replicated
to 750 other memory blocks. As a result, the shellcode
(including the NOP-sled) is sprayed all over the allocated
heap space of 187.5M bytes.

(2) The JView Profiler Vulnerability (MS05-037) is
triggered, which results in the execution of the shellcode
located somewhere in the allocated heap space. Note that
existing ASLR schemes can make the actual location of
the injected shellcode (contained in the allocated heap
space) hard to predict. However, the code-spraying attack
is able to overcome this challenge by populating the shell-
code in a large memory space. As long as the overwritten
code pointer (e.g., return address) points to somewhere in-
side this large memory space, the shellcode will eventually
get executed.

(3) Once the shellcode is executed, it starts to unfold it-
self by performing an XOR operation. It then jumps into
the middle of the unfolded shellcode body by skipping the
first 16 bytes, which turns out to be the hash values of four
different function names, i.e., “LoadLibraryA”, “SetEr-
rorMode”, “ExitProcess”, and “URLDownloadToFileA”.
These functions or their actual memory addresses need to
be resolved before the exploitation can proceed. The first
three functions are exported by the kernel32.dIl module
while the last one is exported by the urlmon.dll module.

6 Redated Work

Building diversity into networked computers for bet-
ter security was first advocated by Forrest et al [22]. Re-
cent work has applied the same diversity principle to code-
based instruction set randomization (ISR) [12, 13, 24, 33]
and memory-based layout randomization (ASLR) [2, 14,
15, 37]. ISR makes the “working” instruction set hard to
predict, and is able to foil the execution of injected ma-
chine instructions. However, it is vulnerable to attacks that
avoid using injected machine instructions, such as return-
into-libc and return-into-dl attacks. ASLR randomizes the
memory layout and is robust against attacks that hijack
predetermined specific memory addresses. However, it is
susceptible to code spraying and address spraying attacks
which avoid using specific memory locations. Recalling
the code spraying example described in Section 5.3, the
attack code prepares a large heap space (750256 K bytes)
and then fills it all over with the intended shellcode. Af-
ter that, the attacker only needs to guess the location of a
shellcode replica with a probability of 750 * 256 K /232 =
4.6%, which contains a very low entropy (4 bits if taking
into account that the Windows kernel occupies the upper
half memory space). Note that ASLR is fundamentally
susceptible to such spraying attack: not only in current 32-
bit architecture, but also in the next-generation 64-bit ar-
chitecture. By effectively and practically combining both
ISR and ASLR, RandSys is able to defeat these attacks
fundamental to each of ISR and ASLR individually.

Non-Execute (NX) [1, 23, 35] protection support from
both hardware vendors (such as Intel and AMD) and op-
erating system providers (e.g., W X support in OpenBSD
and Data Execution Protection from Microsoft) pro-



Example Attack Categories
Regular code injection attacks | return-into-libc | return-into-dl code-spraying
(e.g., stack-smashing attacks) attacks attacks attacks
ISR X X VA
ASLR/PaX v VA X X
Non-eXecute Vi X X VA
RandSys V N N N

Table 4. Comparison of RandSys with Other Protection Approaches

vides page-level memory protection (read, write, or exe-
cute) and renders the injected machine instructions non-
executable. Similar to ISR, NX fails to cope with attacks
which avoid using injected machine instructions, includ-
ing return-into-libc and return-into-dl attacks.

Table 4 summarizes the unique position of RandSys in
relation to ISR, ASLR (with PaX [2] as an representative
ASLR example), and NX.

Chew et al [17] described an operating system-based
randomization approach, which not only provides basic
memory space layout randomization, but also attempts to
system-wide re-number system calls. Note that the no-
tion of system call re-numbering [17] is close to the sys-
tem call randomization in RandSys. However, there are a
number of fundamental differences: Their re-numbering
is implemented by recompiling the kernel with a different
but another fixed system call mapping. As a result, any re-
mapping attempt requires the physical machine rebooting,
and the re-mapping is achieved at the granularity of ma-
chines — different processes still have the same system
call mapping. In contrast, RandSys establishes a unique
system call mapping for each individual process at its cre-
ation time. In addition to system call number randomiza-
tion, RandSys also provides an enhanced ASLR protec-
tion.

In addition to the randomization efforts to counter
code injection attacks, various other techniques [11, 18,
19, 20, 21, 25, 28, 31, 36] are also proposed to address
this attack. Broadly speaking, static analysis techniques
[21, 28, 36] attempt to statically analyze program source
code to discover possible vulnerabilities, while dynamic
analysis techniques [11, 18, 19, 20, 25, 27, 31] lever-
age run-time information to dynamically detect or con-
fine possible attacks. By comparison, like ISR and ASLR,
RandSys introduces diversity into existing computer sys-
tems in the first place, which is attack- or vulnerability-
independent.

7 Conclusion

In this paper, we have presented RandSys, a novel sys-
tem that effectively combines Instruction Set Random-
ization (ISR) and Address Space Layout Randomization
(ASLR). This combination allows RandSys to defeat at-
tacks fundamental to each of ISR and ASLR individually.
Another contribution of our work is that we randomize

only system-call instructions rather than the entire instruc-
tion set, hence effectively address the performance prob-
lem of ISR. We have also developed new techniques that
make control flow hijacking extremely difficult, including
decoys, guard pages, independent randomization for both
import and export tables, as well as a defensive execution
scheme that detects shellcode-contained pages. We have
implemented and evaluated RandSys for both Linux and
Windows. Our experiments show that RandSys can effec-
tively thwart a wide variety of code injection attacks on
the Internet with a small overhead.
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