
Formal Model-Driven Discovery
of Bluetooth Protocol Design Vulnerabilities

Jianliang Wu
Purdue University

wu1220@purdue.edu

Ruoyu Wu
Purdue University

wu1377@purdue.edu

Dongyan Xu
Purdue University
dxu@purdue.edu

Dave (Jing) Tian
Purdue University
daveti@purdue.edu

Antonio Bianchi
Purdue University

antoniob@purdue.edu

Abstract—The Bluetooth protocol suite, including Bluetooth Classic,
Bluetooth Low Energy, and Bluetooth Mesh, has become the de facto
standard for short-range wireless communications. While formal
methods have been applied to Bluetooth security, existing efforts
either focus on one configuration of a protocol or one protocol of
the suite, without considering other configurations or interactions
among protocols. As a result, manual analysis still dominates the
state-of-the-art security research of Bluetooth specification.

To enable automatic Bluetooth security analysis with formal guaran-
tees, we propose a comprehensive formal model for Bluetooth protocol
suite covering both the key sharing phase and the data transmission
phase, in all the three Bluetooth protocols, and detecting their design
flaws automatically. Our formal model, written in ProVerif, adopts
a modular design by abstracting each step within a protocol into an
interface and implementing different methods in each step as modules
to instantiate the interface, throughwhich all possible configurations of
a protocol could be examined. We further abstract different Bluetooth
protocols into modules enabling the modeling of their interactions and
relax the threat model to allow reasoning about semi-compromised
devices. We use this model to formally verify 418 security properties
and find 82 violationswith attack examples capturing 5 knownvulnera-
bilities and discovering 2 new security issues. Bluetooth SIG confirmed
our independent discovery of these 2 new issues, with one issue assigned
a CVE and the other issue acknowledged in a security notice. Our
model provides one step towards formally verified Bluetooth security.

I. INTRODUCTION

The Bluetooth protocol has become the de facto standard
for short-range wireless communications, powering billions of
devices [1] and paving the way for its domination in the era of
the Internet of Things (IoT) and 5G. The modern version of the
Bluetooth protocol suite defines three wireless communication
protocols: Bluetooth Classic (BC), Bluetooth Low Energy (BLE),
and Bluetooth Mesh (Mesh), enabling high throughput, power
saving, and peer-to-peer network respectively.
Since one design flaw in the specification can affect billions of

devices, formal methods have been applied to Bluetooth security
to discover design flaws. Unfortunately, existing efforts either
focus on one configuration of a protocol or one protocol of the
suite, and thus cannot discover vulnerabilities exploiting other
configurations or in other protocols. For instance, prior works
target either only one mode of Bluetooth pairing [2]–[5] or only
the BLE stack [6]. Consequently, BThack [7] attacks that exploit
the combination of different configurations during pairing remain
unrevealed. Moreover, it is not uncommon for modern Bluetooth
devices such as smartphones to support BC/BLE dual stacks, if
not triple stacks (BC/BLE/Mesh). None of the existing efforts
has explored the interactions between different stacks. Due to the
current limitation of Bluetooth security formal analysis, manual

efforts, such as BThack [7] and BadBluetooth [8], still dominate
the state-of-the-art Bluetooth security research.
To enable practical and automatic Bluetooth security analysis

with formal guarantees, we need to address three challenges: (C1):
Protocol complexity. The complexity of the protocol makes the
comprehensive modeling of the key sharing phase challenging and
error-prone. For example, there are four modes in Secure Simple
Pairing [9, p.983], such as Numeric Comparison and Just Works,
and three different cases in the Passkey Entry mode [9, p.990].
(C2): Co-existing protocol stacks. Real-world devices commonly
deploy dual or even triple stacks for different connectivity. The
interactions among these co-existing protocol stacks will not be
captured when only one protocol stack is formally verified. (C3):
Semi-compromised devices. Modern Bluetooth attacks [8], [10],
[11] often involve a semi-compromised device during a connection,
e.g., an Android phone with a malicious app installed. Attackers
do not have the root permission to manage the Bluetooth stack(s)
within the device such as reading secret keys, but they could
use the service provided by the Bluetooth stacks(s) to initiate or
accept connections. A practical formal model needs to capture the
attacker’s capability precisely.
In this paper, we propose a comprehensive ProVerif [12] model

for Bluetooth covering both key sharing and data transmission
phases, and all three Bluetooth protocols, including BC, BLE, and
Mesh. In the key sharing phase, we model the pairing protocol
used by BC and BLE to agree on a shared secret key. For Mesh,
we model the provisioning protocol that is used to distribute
pre-generated secret keys. In the data transmission phase, we model
the authentication and encryption protocols of BC, BLE, and Mesh,
considering that one device might be semi-compromised.
To solve all three challenges mentioned earlier, our ProVerif

model adopts a modular design by abstracting each step within
a protocol into an interface and implementing different methods in
each step as modules to instantiate the interface, through which all
possible configurations or modes of a protocol could be examined.
We further abstract different Bluetooth protocol stacks into modules
enabling the modeling of their interactions, and we provide a
two-layer design of the data transmission model, a stack layer and
an application layer, capturing the attacker’s capability accurately.
We design and implement our model using ProVerif, and

formally verify Bluetooth security using 418 security properties ex-
tracted from the specification covering the two phases (key sharing
and data transmission) and three different protocol stacks (BC, BLE,
andMesh).Our formal verification finds 82 violations and generates
corresponding attack examples, capturing 5 known weaknesses and
discovering one new vulnerability and one security issue.

The new vulnerability allows attackers to steal secret keys during
Mesh provisioning. We independently discover this vulnerability,
which has been confirmed by Bluetooth SIG and assigned
CVE-2020-26560 [13], [14] (together with another group). The
new security issue allows an attacker to launch cross-stack attacks,
e.g., attacking BC through BLE. Bluetooth SIG acknowledged our
findings regarding this cross-stack issue and mentioned it together
with CVE-2020-15802 [15]. However, Bluetooth SIG does not
consider it as a vulnerability. We also reported our findings to
different Bluetooth hardware/software vendors.
In summary, this paper’s contributions are as follows:
∙ We conduct a literature study on formal models for Bluetooth
security and systematically compare different models based
on coverage of phases, stacks, configurations, threat models,
etc. Our study shows that no existing formal models have
examined all possible configurations in SSP or Mesh, or
considered a semi-compromised device during a connection.

∙ We design and implement a comprehensive formal model
for Bluetooth security using ProVerif, covering both the
key sharing and the data transmission phases, and all three
Bluetooth protocols. The modular design of our model allows
for enumerating every possible configuration of SSP and
Mesh provisioning protocol, and capturing the attacker’s
ability of semi-compromising a device.

∙ Our formal analysis, based on the comprehensive model,
has successfully reproduced 5 known vulnerabilities of BC
and BLE, and discovered one new vulnerability affecting
Mesh and one security issue affecting the interaction between
BC and BLE. Bluetooth SIG confirmed our independent
discovery of the two new issues, with one issue assigned a
CVE and the other issue acknowledged in a security notice.

Our model is available publicly on GitHub [16].

II. BACKGROUND

Bluetooth is a short-range radio frequency (RF) standard for data
exchange between different devices, such as smartphones, laptops,
and IoT devices. Bluetooth involves three different protocols,
namely Bluetooth Classic (BC), Bluetooth Low Energy (BLE), and
the recently released Bluetooth Mesh (Mesh) [17]. BC and BLE
devices work in a central-peripheral fashion to form a piconet [9,
p.414], while Mesh allows devices to form a mesh network based
on BLE advertising. For the ease of description, we also use central
to refer to the device initiating a request and peripheral to refer to
the device responding to a request in Mesh.
There are security mechanisms, such as encryption and

authentication, in each of the Bluetooth protocols to provide
confidentiality and authenticity guarantees for communication. To
correctly perform encryption and authentication, key sharing is
needed. When two Bluetooth devices first connect, they perform
a key-sharing procedure, such as the pairing protocol for BC
and BLE, to generate or distribute shared keys. During the data
transmission, session keys are derived from the shared keys and
are used to perform authentication and encryption.

A. Key Sharing
Different Bluetooth protocols use different procedures to

generate or distribute shared keys. BC and BLE share similar

Secure Simple Pairing (SSP) procedure to generate the shared keys,
while Mesh leverages the provisioning process to distribute the
pre-generated keys.
Secure Simple Pairing. SSP introduces four modes: Just Works
(JW), Out of Band (OOB), Passkey Entry (PE), and Numeric
Comparison (NC). The mode is chosen based on the user I/O
interfaces (e.g., screen and keyboard) of the pairing devices. Each
mode has four steps: ¶ Elliptic-Curve Diffie-Hellman (ECDH)
key exchange, · authentication stage 1, ¸ authentication stage 2,
and ¹ shared key calculation. All steps except Step · are the same
in the four modes. In detail, two pairing Bluetooth devices first
exchange their ECC public keys and calculate the ECDH shared
secret key (Step ¶). In Step ·, each device generates a random
number and exchanges it with the other device. A user action, such
as pressing a button or inputting a PIN, is involved to help the
devices authenticate each other in the OOB, PE, and NC mode.
JW does not require such user action, and thus does not support
authentication. In Step ¸, each device calculates a confirmation
value and exchanges the value with the other. Then, both devices
check whether the received value is correct or not. In Step ¹, both
devices derive the shared key using the ECDH shared secret key
and the random numbers generated in Step ·.
Provisioning. Mesh mandates a two-layer encryption scheme
(i.e., the network-layer encryption and application-layer encryption)
and leverages a provisioning process to distribute the network
key. After the distribution of the network key, the application
key, protected by the network-layer encryption, can be distributed.
During provisioning, the device that initiates provisioning and
provides the keys is called the provisioner.
The provisioning procedure also consists of four steps, ¶

invitation, · ECDH key exchange, ¸ authentication, and ¹ key
distribution. In Step ¶, the provisioner discovers the Mesh device
and initiates the provisioning procedure. There are two ways to
perform the key exchange in Step ·, either through an out-of-band
(OOB) channel, such as Near Field Communication (NFC), or
through the Bluetooth channel.

In Step¸, there are four different authenticationmethods, namely
Output OOB, Input OOB, Static OOB, and No OOB. In this step,
the provisioner and the Mesh device generate a random number
individually and exchange it. A user action, such as inputting a PIN,
is involved when the Output OOB and Input OOB are used. Static
OOB leverages a pre-shared secret number to help the two devices
authenticate each other. The No OOB method does not require the
user action or pre-shared secrets, and is therefore not authenticated.
In Step ¹, both the provisioner and the Mesh device derive

a session key using the ECDH shared secret key and the random
numbers generated in Step ¸. Then, the provisioner sends the
network key (encrypted using the session key) to the Mesh device.
This key is used for encryption at the network layer. After that, the
provisioner can distribute the application key to the Mesh device.
This key is used for encryption at the application layer.

Due to the different key exchange and authentication methods,
there are eight different modes in total for provisioning. Similar
to the modes in SSP, the mode is chosen based on the user I/O
capabilities of the Mesh device.

2

TABLE I: Detailed comparison of known Bluetooth formal verification papers.KS: key sharing, DT: data transmission, CE: concurrent
execution, CD: compromised device.

Formal Verification Stack Target Supported Pairing Mode (BC/BLE) CE CDBC BLE Mesh KS DT JW NC PE OOB Mode Combination
Chang et al. [2] ● ● ● ● ●
Arai et al. [3] ● ● ● ● ●
Cremers and Jackson [5] ● ● ● ● ●
Sethi et al. [4] ● ● ● ● ●
BLE reconnection [6] ● ●
Our model ● ● ● ● ● ● ● ● ● ● ◐ ●

◐: Support concurrent execution only in the data transmission phase.

B. Data Transmission
Once the key sharing finishes, devices are ready to transmit data

using the shared keys for authentication and encryption. If devices
disconnect and reconnect, the shared keys generated during the key
sharing phase are re-used. BC, BLE, and Mesh follow different
procedures during data transmission.
BC. After the SSP, two BC devices first perform a two-way
challenge-response authentication procedure to authenticate each
other. During the authentication, the shared secret key is used to
calculate the response. After the authentication, both BC devices
derive a session key using the shared key and use the session key
for encryption.
BLE. BLE handles data transmission differently from BC. BLE
does not have the authentication procedure in data transmission. A
central BLE device may perform data transmission in two different
ways [6] (i.e., reactive and proactive) during the data transmission.
In the reactive case, the central device sends the request to the
peripheral device in plaintext and enables encryption only if an
error message is received from the peripheral. In the proactive case,
the central device enables encryption first and then sends the request.
In both cases, to enable encryption, both the central and peripheral
devices first derive a session key from the shared key.
Mesh. Like BLE data transmission,Mesh does not have authentica-
tion either in data transmission. After provisioning, when a central
device sends data, it first performs application-layer encryption
using the application key and the network-layer encryption using
the network key. Then it broadcasts the encrypted data using BLE
advertising.

III. MOTIVATION

Though Bluetooth is widely used in mobile phones, laptops, and
IoT domains [1], it suffers fromattacks exploiting design flaws in the
specification [6]–[8], [18]–[20], such as BLESA [6] and BThack [7].
Most of the design flaws [7], [8], [18], [19] are discovered through
manual analysis, which requires significant manual effort. Formal
analysis, an effective automated approach to detect protocol design
vulnerabilities, has also been applied to the Bluetooth domain.
Chang et al. [2] perform the first formal verification of SSP.

Their analysis considers the Dolev–Yao [21] attack model and
covers the NC mode. They model infinite SSP sessions running
concurrently and identify that a device might not be correctly
authenticated if the user action in one session is interpreted as the
action in another session.

Arai et al. [3] model and verify an “improved” version of SSPNC
mode proposed by Yeh et al. [22]. Their model also uses the Dolev–
Yao threat model and supports concurrent execution of SSP. They
identify that the “improved”NCmode is vulnerable to replay attacks
and impersonation attacks. However, the “improved” NC mode is

not adopted by the specification [9], and thus their model does not
represent the majority of Bluetooth devices in the real world.
Cremers and Jackson [5] develop a new way to model Diffie-

Hellman (DH) groups and thus achieve a precise and fine-grained
DH key exchange modeling in SSP. Because of this precise
modeling, they rediscover the invalid curve attack [23]. They also
model and verify the effectiveness of different mitigations of the
attack. Their model assumes the Dolev–Yao threat model, supports
concurrent execution, and covers the NC mode.
Sethi et al. [4] also model and verify the NC mode of SSP.

They assume that the device might be compromised, which is
different from the formal analyses mentioned earlier. Based on this
assumption, they propose the misbinding attack. With this attack,
the user may pair with a wrong device if the device she intends
to pair is compromised.
The formal analyses mentioned earlier only model and verify

the key sharing phase of BC and BLE. Wu et al. [6], on the
other hand, model and verify the data transmission of BLE. They
identify that the reactive approach of the central BLE device in
data transmission can lead to spoofing attacks. However, their
model only applies to BLE.

Table I shows a detailed comparison between the existing formal
analyses of Bluetooth and what we propose. As summarized in
the table, prior works fail to comprehensively model Bluetooth
in different ways. Prior analyses [2]–[5] of SSP only cover the
NC mode without other modes, not to mention the combination
of different modes and the data transmission phase. Unfortunately,
attacks such as BThack [7] exploit the combination of the NC and
PE modes in SSP to launch Man-in-the-Middle (MitM) attacks.
Therefore, it is crucial to formally verify not only a single pairing
mode but also all possible mode combinations. Besides, as Table I
(the Target column) shows, prior analyses also fail to cover both
the key sharing and data transmission phases. Most importantly,
all prior formal analyses do not cover Mesh. These limitations call
for a comprehensive model for Bluetooth protocols.
To address shortcomings of the existing formal analyses of the

Bluetooth protocol, in this paper, we build a comprehensive model
that covers the security-critical protocols (e.g., SSP and provi-
sioning) during both key sharing and data transmission. Besides
more realistic, the modular design of our model (see Section IV-C)
allows for modeling different scenarios in a comprehensive manner,
such as the different mode combinations in SSP. Finally, our model
covers all Bluetooth protocols (i.e., BC, BLE, and Mesh).
As Table I (CE column) shows, our model does not support

multiple sessions executing concurrently in the key sharing phase.
Supporting concurrent execution for key-sharing protocols will
be one of our future works, as we will discuss in Section VII.
Meanwhile, our model supports concurrent execution of unlimited

3

sessions in the data transmission phase.

IV. A COMPREHENSIVE BLUETOOTH FORMAL MODEL

In this section, we first introduce the threat model we consider,
then we discuss the modeling challenges and our solutions,
followed by details on our model design and implementation.

A. Threat Model
During the key sharing between two devices, we assume the

adversary has the capabilities defined in the Dolev–Yao model [21],
i.e., the attacker can intercept, inject, and overhear messages
transmitted in the Bluetooth physical channels between the
communicating endpoints, whereas all the out-of-band channels
are secure. For BC and BLE, we assume the central and peripheral
devices use the latest Secure Connections Pairing [9, p.276] (since
Bluetooth v4.2) during pairing.
In the data transmission, besides the Dolev–Yao adversary, we

also consider the situation where an attacker compromises one
of the endpoints by, for instance, installing a malicious app on a
smartphone. In this scenario, we assume that cryptographic keys
used by the Bluetooth stack (e.g., the shared secret key) cannot
be obtained by an attacker. This assumption is justified by the
fact that even if an attacker is able to install malicious code on
an endpoint (e.g., a malicious app on an Android smartphone),
they are normally not able to fully compromise the operating
system (e.g., the Android OS), which manages the Bluetooth stack.
However, in this scenario, the attacker can use the malicious app
to communicate with already paired devices. These assumptions
are in line with many previous works in the field [8], [10], [11].
Finally, we assume that the cryptographic algorithms are

correctly implemented according to the specification, and the
attacker is within the Bluetooth range when launching attacks.

B. Modeling Challenges and Solutions
C1: Protocol complexity. Bluetooth is designed to support devices
with different I/O capabilities during key sharing. The specification
defines four modes in SSP and eight modes in Mesh provisioning
(see Section II-A). For PE and OOB modes in SSP, each of them
has three different cases. Moreover, there are 19 different scenarios
in the data transmission phase (see Table IV). For instance, a laptop
may connect to a speaker only for audio streaming, which needs
only BC connections. A smartphone can connect to a smartwatch,
whichmay need bothBC andBLE connections. It is error-prone and
challenging to comprehensively model and verify all the possible
scenarios during key sharing and data transmission. Additionally,
existing works only consider the NC mode of SSP in key sharing
and the BLE connection in data transmission. Even worse, their
NC model can hardly be reused for modeling other modes.
Solution: We adopt a modular design in our formal model to solve
this challenge. Specifically, we design each sub-protocol in the SSP
and provisioning protocols as an individual module. The interfaces
between steps define the input and output data of a module. The
modules that belong to the same step have the same interface. For
example, as shown in Figure 1, the NC module in Step · has
the same interface as the JW module. In this case, we can replace
or add modules to build the SSP and provisioning models with
different modes and mode combinations. A similar modular design
also applies to the modeling of the data transmission phase.

The modular design is flexible for supporting existing Bluetooth
protocols. Compared with existing modeling approaches (Table I),
the modules in our model are reusable. For example, the model of
the NC mode of SSP in [2] can hardly be reused for modeling the
PE mode, because the different steps in SSP are coupled together.
In contrast, we make most of the modules in one mode reusable for
the modeling of another mode. For instance, as shown in Figure 1,
we reuse the modules for Step ¶, ·, and ¹ in different SSP modes
and mode combinations. The flexibility of the modular design
enables us to comprehensively model all real-world cases in the
key sharing phase and data transmission phase.
The modular design is extensible for future protocol modeling.

If a new protocol for SSP or provisioning is introduced, most of
our modules can still be used in modeling the new protocol. For
example, suppose a new authentication method is introduced in
Mesh provisioning. To model the new protocol, we only need to
develop a newmodule for the new authentication method in Step ¸
(see Figure 2) while the modules in Step ¶, ·, and ¹ can be reused.
C2: Co-existing protocol stacks. Different Bluetooth protocol
stacks interact with each other. For instance, BC/BLE dual-stack
devices support both BC and BLE connections; Mesh leverages
BLEunder the hood as its transport layer. To capture the interactions
among different protocol stacks, we need to model all of them in a
unified formal model.
Solution: Following the modular design of our formal model,
we treat BC, BLE, and Mesh as individual modules that follow
the same interface externally. The plug-and-play nature of the
modules significantly alleviates the burden in modeling all possible
co-existing stacks in the data transmission phase.
C3: Semi-compromised devices. In the data transmission phase,
we also consider the situation where one device is compromised. A
naive way to model the compromised device is to allow the attacker
to access the secret keys generated in the key sharing phase by, for
example, sending the keys to an open channel under the attacker’s
control. However, this approach does not align with the real-world
scenarios (and our threat model), as we discussed in Section IV-A,
where the attacker cannot obtain the keys.
Solution: To precisely model the attacker’s capability, we propose
a two-layer design of the data transmission model. Both central
and peripheral devices have two layers, i.e., a stack layer and an
application layer. The stack layer is responsible for authentication
and encryption in data transmission, while the application layer de-
termineswhat data to transmit.When the device is not compromised,
the stack layer sends/receives data to/from the application layer via
a secure channel. If the device is semi-compromised, besides the
secure channel, the stack layer also sends/receives data to/from the
application layer through an open channel. As a result, attackers
cannot obtain the shared keys, but can still inject malicious inputs
through the semi-compromised device.
The modular design makes it easier to model devices with

different attacker’s capabilities. For example, we can assess the
security of Bluetooth under the semi-compromised devices attack
model by replacing the stack modules with semi-compromised
ones, without changing other modules.
C. Model Design and Implementation

In this section, we elaborate on the modular design of our model
and its implementation in ProVerif [12]. We first discuss how we

4

Central Peripheral

PKa

PKb

Cb
Na
Nb

(PKa, PKb, DHKey) (PKa, PKb, DHKey)

Step : Authentication stage 2
(1). Calculate confirmation Ea
(2). Send Ea
(3). Receive Eb and check confirmation Eb, abort if check fails

(DHKey, Na, Nb, ra, rb) (DHKey, Na, Nb, ra, rb)

Step : Authentication stage 1
Just

Works

...

User
Confirm pairing if

Va = Vb

Step : Authentication stage 2
(1). Calculate confirmation Eb
(2). Receive Ea and check confirmation Ea, abort if check fails
(3). Send Eb

Ea
Eb

Step : Shared key calculation
(1). Calculate shared key shkey

(DHKey, Na, Nb)

Step : Shared key calculation
(1). Calculate shared key shkey

(DHKey, Na, Nb)

Secure channel
Insecure channel

Step : ECDH PK exchange
(1). Send PKa
(2). Receive PKb
(3). Calculate shared secret ECDH key DHKey

Step : ECDH PK exchange
(1). Receive PKa
(2). Send PKb
(3). Calculate shared secret ECDH key DHKey

Numeric Comparison
(1). Select random number Na, and set ra = rb = 0
(2). Receive commitment Cb
(3). Send Na
(4). Receive Nb
(5). Check commitment Cb, abort if check fails
(6). Calculate verification Va and display Va to user
(7). Continue to Step 3 if confirmed by user

...

Just
Works

Step : Authentication stage 1

Numeric Comparison
(1). Select random number Nb, and set ra = rb = 0
(2). Calculate commitment Cb and send Cb
(3). Receive Na
(4). Send Nb

(5). Calculate verification Vb and display Vb to user
(6). Continue to Step 3 if confirmed by user

1 1

22

3 3

4 4

Fixed interface

Fixed interface

Fixed interface

Fixed interface

Fixed interface

Fixed interface

Fig. 1: Modular design of the Secure Simple Pairing (SSP) model when the Numeric Comparison (NC) mode is used. Solid rectangles
indicate different modules. The text in blue shows the interfaces between steps.
1 //Interface between steps
2 table p1c(bt_addr, public_key, public_key, dhkey).
3 table p2c(bt_addr, random_num, random_num, random_num,

random_num, dhkey).
4 //Central step 1
5 let step1c(pri_A: private_key) = (
6 let PKa = get_pub_key(pri_A) in ...
7 let DHKm = p256(PKb, pri_A) in
8 //Send data to Step 2
9 insert p1c(addr_B, PKa, PKb, DHKm)).
10 //Central step 2 NC mode
11 let step2cnc() = (
12 //Get data from Step 1
13 get p1c(=addr_B, PKa, PKb, DHKm) in ...
14 //Send data to Step 3
15 insert p2c(addr_B, Na, Nb, ra, rb, DHKm)).
16 //Central step 3
17 let step3c() = (...).
18 //Central step 4
19 let step4c() = (...).
20 //Central step 2 JW mode
21 let step2cjw() = (
22 get p1c(=addr_B, PKa, PKb, DHKm) in ...
23 insert p2c(addr_B, Na, Nb, ra, rb, DHKm)).
24 ...
25 // User action in NC mode
26 let usernc() = (
27 in(central_user_ch, va: random_num);
28 in(peripheral_user_ch, vb: random_num);
29 if va = vb then out(central_user_ch, yes);
30 out(peripheral_user_ch, yes)).
31 // Central SSP NC mode
32 step1c|step2cnc|step3c|step4c
33 // Central SSP JW mode
34 step1c|step2cjw|step3c|step4c
35 // Central SSP NC and JW mode
36 step1c|step2cnc|step2cjw|step3c|step4c

Listing 1: Implementation of the central device modules and the
user module (NC mode) of SSP. Each module is implemented with
one process macro. The interfaces between steps are implemented
by tables.

design and implement the pairing model used by BC/BLE in their
key sharing, followed by modeling of Mesh provisioning. At last,
we detail the modeling of BC/BLE/Mesh data transmission.

1) Modeling Secure Simple Pairing: Figure 1 illustrates our for-
mal model design of SSP. We define three interfaces between four
steps, as the text in blue shows. We model each sub-protocol as an

individual module, represented by the solid rectangles in the central
and peripheral devices in the figure. The modules that belong to the
same step share the same interface. Specifically, the four modules
in Step · have the same interfaces, indicated by (PKa, PKb,
DHKey) and (DHKey, Na, Nb, ra, rb) in Figure 1.
As we mentioned earlier, in some SSP modes (i.e., NC and PE),
users need to perform certain actions.We alsomodel the user action
as a module (the User rectangle).
Following the Dolev–Yao attack model, we model the

communication within a device (i.e., communication between
steps) and the interaction between a device and the user through
secure channels, represented by solid arrows. The data transmission
between devices is via an open channel (dashed arrows).
We use the simplified implementation of the central device,

as listed in Listing 1, to showcase how we implement the SSP
model in ProVerif. We implement the interfaces using tables in
ProVerif (Line 2 and Line 3). Each module is implemented as
a process macro (e.g., step1c). The module starts by getting
inputs from the pre-defined table (e.g., Line 13 and Line 22) and
ends by inserting its outputs into a table (e.g., Line 9, Line 15, and
Line 23). Listing 4 in the Appendix shows the full implementation
of the central device modules.
We build the model of the central device in SSP NC mode by

splicing the corresponding modules (Line 32 in Listing 1). With
our modular design, SSP JWmode can be conveniently constructed
by replacing the NC module with the JW module (Line 34 in
Listing 1) at Step ·. We can also build the SSP model with both
NC and JWmodes by adding the JWmodule (Line 36 in Listing 1).
Accordingly, the whole model of SSP NC mode can be modeled as
step1c|step2cnc|step3c|step4c|step1p|step-
2pnc|step3p|step4p|usernc, where the step1p,
step2pnc, step3p, and step4p are the corresponding
modules of the peripheral device.

2) Modeling Mesh Provisioning: The Mesh provisioning model
follows the same design philosophy as the design of the SSP model.
As illustrated in Figure 2, we define three interfaces between
steps, indicated by the blue text in the figure. We model each

5

Get Rn from Mesh
device and input on

Provisioner

Provisioner Mesh device

PI
PCap

PS

PKd

(PI, PCap) (PI, PCap)

(PKp, PKd, DHKey, PI, PCap, PS)

Step : ECDH PK exchange

PCONFp
PCONFd

Step : Key distribution
(1). Calculate session key
(2). Encrypt keys with session key and send
(3). Receive p_complete

Step : Key distribution
(1). Calculate session key
(2). Receive keys
(3). Encrypt p_complete with session key and send

Encrypted keys
Encrypted p_complete

No OOB PK
(1). Send provisioning start (PS)
(2). Send PKp
(3). Receive PKd
(4). Calculate shared secret ECDH key DHKey

OOB
PK

Step : ECDH PK exchange

No OOB PK
(1). Receive PS
(2). Receive PKp
(3). Send PKd
(4). Calculate shared secret ECDH key DHKey

OOB
PK

Step : Authentication

Output OOB
(1). Select random number Rn and displays to user
(2). Select random number PRd
(3). Receive PCONFp
(4). Calculate confirmation PCONFd and send
(5). Receive PRp and check PCONFp, abort if fails
(6). Send PRd

Input
OOB

...

UserStep : Authentication

...

Output OOB
(1). Receive Rn from user
(2). Select random number PRp
(3). Calculate confirmation PCONFp and send
(4). Receive PCONFd
(5). Send PRp
(6). Receive PRd and check PCONFd, abort if fails

Input
OOB

PRp
PRd

(PKp, PKd, DHKey, PI, PCap, PS)

(PKp, PKd, DHKey, PI, PCap, PS) (PKp, PKd, DHKey, PI, PCap, PS)

Secure channel
Insecure channel

Step : Invitation
(1). Send provisioning invitation (PI)
(2). Receive PCap

Step : Invitation
(1). Receive PI
(2). Send device capabilities (PCap)

PKp

1

22

33

44

1

Fixed interface

Fixed interface

Fixed interface

Fixed interface

Fixed interface

Fixed interface

Fig. 2: Modular design of the Mesh provisioning model when No OOB public key exchange and Output OOB authentication method
are used. Solid rectangles indicate the different modules, and the text in blue shows the interfaces between steps.

sub-protocol as a module, represented by the solid rectangles in
the provisioner and Mesh device. The two key exchange modules
in Step · share the same interfaces ((PI, PCap) and (PKp,
PKd, DHKey, PI, PCap, PS)). The four authentication
method modules in Step ¸ also have the same interface ((PKp,
PKd, DHKey, PI, PCap, PS)). The provisioning may
also involve user interactions, which are also modeled as modules
(User rectangle).

To align with the Dolev–Yao adversary capabilities, the
communication within each device (i.e., communication between
steps) is through secure channels (solid arrows between steps
in Figure 2). The interaction between device and user is
also through secure channels (solid arrows between the User
and provisioner/Mesh device). The communication between the
provisioner and theMesh device is through an open channel (dashed
arrows). We implement the provisioning model in a similar way to
the SSP model. Using the provisioning modules, we can construct
all eight (see Section II-A) possible provisioning modes infallibly.

3) Modeling Data Transmission: Figure 3 illustrates our
two-layer design of the data transmission model, as mentioned
in Section IV-B. We define a fixed interface between the stack
layer and the application layer (the arrows between the stack
layer and the application layer). Without losing generality, we
model both central and peripheral devices using three stacks,
supporting all three Bluetooth protocols (dashed rectangles in the
central/peripheral device). For each Bluetooth stack, we module an
application using this stack for data transmission at the application
layer (dashed rounded rectangles in the central/peripheral device).
We model each stack and application as a module, as the solid
rectangles in central and peripheral devices indicate. To model
different connection scenarios, we model the central device with
three applications covering BC/BLE/Mesh, while the peripheral
device may have any combination of applications.

Although the pairing is similar in BC and BLE, there is still a
difference in the key derivation. If the pairing is through BC, the
central/peripheral device first generates the shared key (i.e., the link
key) of BC and then derives the shared key (i.e., the long-term key)
of BLE. Otherwise, if the pairing is performed through BLE, the
central/peripheral device generates the long-term key first and then
derives the link key of BC from the long-term key of BLE. In either
case, users need to perform pairing only once. Since the pairing
may be done either through BC or BLE, we use two modules to
capture this behavior (the key generation rounded rectangle). When
the peripheral device has only a BC application, the pairing is
performed through BC. Similarly, if the peripheral device has only
a BLE application, the pairing is performed through BLE. The
pairing is performed either via BC or BLE when the peripheral
device has both BC and BLE applications. We model both cases
when the peripheral device has both BC and BLE applications.

As discussed inSection IV-A,we also consider that oneBluetooth
device is semi-compromised during data transmission. While this
choice does not align with the assumption of Bluetooth security in
the specification, it is common in the real world. For example, a
smartphonemay install amalicious app, or a voice assistantmight be
hacked [24], [25]. Without losing generality, we assume that the pe-
ripheral devicemight be semi-compromisedwhile the central device
is always trusted. When the device is not compromised, the commu-
nication between the stack layer and the application layer is through
secure channels (the solid arrow between the stack layer and the
application layer in Figure 3). If the peripheral is semi-compromised,
besides the secure channel, the stack layer also communicates with
the application layer through an open channel (the dashed arrow
between the peripheral device’s stack layer and application layer).

We first assume the key sharing phase is secure and verify the data
transmission phase separately.We use predefined private keys as the
generated or distributed secret keys. Considering that a composed

6

ApplicationApplication

Stack

Stack

Central Peripheral

Bluetooth Classic
(1). Obtain the shared key (link key)
(2). Two-way authentication
(3). Derive session key from the link key
(4). Get data from app,
encrypt with the session key and send
(5). Receive data, decrypt and send to app

Bluetooth Classic
(1). Obtain the shared key (link key)
(2). Two-way authentication
(3). Derive session key from the link key
(4). Receive data, decrypt and send to app
(5). Get data from app,
encrypt with the session key and sendEncrypted data

Encrypted data

Bluetooth Low Energy
(1). Obtain the shared key (long term key)
(2). Derive session key from the long term key
(3). Get data from app,
encrypt with the session key and send
(4). Receive data, decrypt and send to app

Bluetooth Low Energy
(1). Obtain the shared key (long term key)
(2). Derive session key from the long term key
(3). Receive data, decrypt and send to app
(4). Get data from app,
encrypt with the session key and send

Encrypted data

 Encrypted data

Bluetooth Mesh
(1). Obtain the network key
(2). Get data from app,
encrypt with network key and send
(3). Receive data,
decrypt with network key and send to app

Bluetooth Mesh
(1). Obtain the network key
(2). Receive data,
decrypt with network key and send to app
(3). Get data from app,
encrypt with network key and send Encrypted data

Secure channel Insecure channel

BC app
(1). Send BC_req
(2). Receive BC_rsq

BLE app
(1). Send BLE_req
(2). Receive BLE_rsq

Mesh app
(1). Encrypt Mesh_req
with application key
and send
(2). Receive Mesh_rsq Encrypted data

BC app
(1). Receive BC_req
(2). Send BC_rsq

BLE app
(1). Receive BLE_req
(2). Send BLE_rsq

Mesh app
(1). Receive Mesh_req
(2). Encrypt Mesh_rsq
with application key
and send

Key generation

Pairing
via BT

Pairing
via BLE

Fi
xe

d
in

te
rf

ac
e

Fi
xe

d
in

te
rf

ac
e

O
pe

n
ch

an
ne

l
(c

om
pr

om
is

ed
)

Fig. 3: Design of the data transmission model. Solid rectangles represent the modules of stacks and applications. The central and
peripheral devices support all three stacks. The central device has all three applications while the peripheral device may have any
combination of the applications.

protocol of two secure protocols may not be secure [26], we also
verify the key sharing together with data transmission as one proto-
col. In this case, we splice the modules from key sharing and data
transmission to generate a newprotocol covering both phases.When
verifying as one protocol, the secret keys used in data transmission
are from the key sharing phase instead of being predefined. To
better align with the real-world scenario where one device (e.g., a
smartphone) can transmit data to several devices (e.g., a headset and
a smartwatch) concurrently, we allow each device to have unlimited
BC/BLE/Mesh sessions, which use different secret keys.
We use the implementation of the peripheral device in data

transmission, as shown in Listing 5 in the Appendix, to present
our implementation of the data transmission model in detail.
The interfaces between the stack layer and the application layer
are implemented as private channels when the peripheral is not
compromised (Line 2-4). If the peripheral is semi-compromised,
the interfaces are defined as open channels (Line 6 and Line 7). We
implement each stack and application as a module, such as BCP
and BCappp in the listing. By splicing corresponding modules,
we build models for different scenarios in data transmission.
For example, we splice the stack-layer modules and the BLE
application module to build the model for the scenario where
only BLE connections are used for data transmission (Line 67).
If the peripheral device has both BC and BLE applications, we can
add the BC application module (Line 69). We also implement the
semi-compromised stacks as modules (e.g., BCPC and BLEPC).
We replace the stack-layer modules with the compromised ones
to model the semi-compromised peripheral device (Line 71).

V. VERIFIED SECURITY PROPERTIES AND FINDINGS

We first describe the security goals of SSP, Mesh provisioning,
and data transmission, which we extract from the specification.
Then we discuss how we verify whether the protocols achieve these
security goals via asserting the authenticity and confidentiality of
certain messages in the protocol. After that, we present how we
implement these assertions in ProVerif. At last, we discuss the
result and performance of the verification. All the properties are

verified on a ThinkPad X1 Yoga 3rd gen laptop with 16G RAM
and an Intel i5-8350U CPU.

To ease reproducibility of our results, we created a repository [16]
containing, for each table in this section (Table II, Table III, Table IV,
Table V, and Table VI), a script to run our model. The same repos-
itory also contains ProVerif-generated attack traces for all the iden-
tified security violations. Additionally, for each detected violation,
we provide a detailed explanation of its corresponding attack trace.

A. Secure Simple Pairing
According to the specification [9, p.271], the NC and PE

modes of SSP are authenticated and provide MitM protection. The
OOB mode also provides MitM protection if the OOB channel
is resistant to MitM attacks [9, p.274], which is the case in our
model. To verify the authenticity of these three SSP modes, we
verify the authenticity of the messages sent by the central and
peripheral devices (property A1 and A2). Specifically, A1 refers
to the authenticity of the central device’s confirmation value
(Ea), and A2 represents the authenticity of the peripheral device’s
confirmation value (Eb) in Step ¸ (see Figure 1). Listing 2 in
the Appendix shows how we implement the A1 and A2 assertions
in ProVerif. The central device emits a send_central event
before sending Ea (Line 6). The peripheral device emits a
recv_peripheral event if the received Ea passes the
check (Line 12). If A1 holds (the query at Line 15), we can assert
that the Ea received by the peripheral device is always from the
central device, which means the peripheral device authenticates
the central device. Vice versa, the central device authenticates the
peripheral device if A2 holds (the query at Line 17 in Listing 2).

Note that there might be different combinations of the three SSP
modes during an SSP session. We also verify such properties in
all combinations of these SSP modes by plugging in the different
modules mentioned earlier. Since the JW mode is not authenticated
and it is vulnerable to MitM attacks [9, p.274], A1 and A2 in SSP
JW mode will be violated.
Verification. We first verify the security properties in each mode
of SSP (Rows #1-8 in Table II). Then, we verify the properties in

7

TABLE II: Result and performance of the authenticity verification
in different mode(s) of the SSP protocol (one session per device).
A1: Central device authenticates peripheral device, A2: Peripheral
device authenticates central device.

Mode(s) Property/Perf. (seconds) Related
A1 A2 Attack

1 JW 7/0.07 7/0.06 MitM
2 NC ✓/0.19 ✓/0.19 –
3 PECoPi ✓/0.07 ✓/0.06 –
4 PECiPo ✓/0.09 ✓/0.08 –
5 PECiPi ✓/0.07 ✓/0.07 –
6 OOBCoPi ✓/0.04 ✓/0.05 –
7 OOBCiPo ✓/0.04 ✓/0.04 –
8 OOBCioPio ✓/0.06 ✓/0.06 –
9 NC & PECoPi 7/1.86 7/1.73 BThack [7]
10 NC & PECiPo 7/0.83 7/0.72 BThack [7]
11 NC & PECiPi ✓/0.30 ✓/0.28 –
12 NC & OOBCoPi ✓/0.25 ✓/0.25 –
13 NC & OOBCiPo ✓/0.24 ✓/0.24 –
14 NC & OOBCioPio ✓/0.27 ✓/0.26 –
15 PECoPi & OOBCoPi ✓/0.11 ✓/0.11 –
16 PECoPi & OOBCiPo ✓/0.12 ✓/0.10 –
17 PECoPi & OOBCioPio ✓/0.13 ✓/0.12 –
18 PECiPo & OOBCoPi ✓/0.13 ✓/0.12 –
19 PECiPo & OOBCiPo ✓/0.13 ✓/0.12 –
20 PECiPo & OOBCioPio ✓/0.15 ✓/0.14 –
21 PECiPi & OOBCoPi ✓/0.11 ✓/0.12 –
22 PECiPi & OOBCiPo ✓/0.12 ✓/0.11 –
23 PECiPi & OOBCioPio ✓/0.13 ✓/0.13 –
24 NC & PECiPi & OOBCoPi ✓/0.35 ✓/0.36 –
25 NC & PECiPi & OOBCiPo ✓/0.36 ✓/0.35 –
26 NC & PECiPi & OOBCioPio ✓/0.38 ✓/0.37 –

+ PECoPi: Central outputs a random number, and the user inputs the number on the
peripheral in the PE mode.
+ PECiPo: Peripheral outputs a random number, and the user inputs the number on
the central in the PE mode.
+ PECiPi: User inputs the same number on both central and peripheral in the PE mode.
+ OOBCoPi: Central can output data to the OOB channel, and the peripheral can get
data from the OOB channel as input in the OOB mode.
+ OOBCiPo: Peripheral can output data to the OOB channel, and the central can get
data from the OOB channel as input in the OOB mode.
+ OOBCioPio: Central and peripheral can both output data to and get data from the
OOB channel in the OOB mode.
+ Different rows correspond to the different usages of SSP, which are chosen based
on the user interface capabilities of the central and peripheral devices.

all possible mode combinations (Rows #9-26 in Table II). Note
that if one mode (e.g., JW) is vulnerable, the mode combination
that includes this mode is also vulnerable, because the attacker can
always use the vulnerable mode to perform SSP. There is no need
to verify such mode combinations. In total, we verify 52 (26x2)
security properties in 26 different modes and mode combinations.

Table II shows the result and performance of our verification. The
security property violations in JW (#1) confirm that JW is vulner-
able to MitM attacks. The generated attack trace shows that the at-
tacker can impersonate the peripheral device and perform the periph-
eral device’s procedures described in Section II-A to violate property
A1. Similarly, the attacker can also impersonate the central device
and follow the central device’s procedures to violate property A2.
Our analysis also indicates that NC and PE (#2-5) are not

vulnerable individually. However, in certain combinations of NC
and PE (#9 and #10), A1 and A2 can be violated.

According to the ProVerif-generated attack trace, the attacker can
violate A1 in #9 with the following steps. First, when the central
device starts pairing, the attacker impersonates the peripheral
device and uses the NC mode. Then, the attacker exchanges her
public key with the central device. After that, the attacker sends
a commitment value to the central device and exchanges a random
number with it ((1), (2), (3), and (4) in Step · in Figure 1). The

central device calculates Va and displays it to the user. Since the
central device supports both the NC and PE modes, the user may
think the central device is using the PE mode in which the central
displays a number. In this case, the user may directly confirm Va.
After the user confirmation of Va, the attacker can exchange a
confirmation with the central device and violate A1.
To violate the A2 property in #9, the attacker can conduct the

following steps, given in the corresponding attack trace generated by
ProVerif shown in Listing 6 in the Appendix. First, when the benign
central device starts pairing, the attacker impersonates the peripheral
device and uses theNCmode.Meanwhile, the attacker impersonates
the central device and starts the pairing with the benign peripheral
device using the PE mode. Then, the attacker exchanges her public
key with both the central and peripheral devices. In the pairing with
the central device using the NC mode, the attacker first follows the
same procedure in SSP Step · when violating the A1 property, as
described previously. Since the user may think the central and pe-
ripheral devices are using the PEmode, she may input the displayed
number (Va) on the central device into the peripheral device. As a
result, the peripheral device uses Va as the PIN during its pairing
with the attacker in the PE mode. The attacker can calculate Va
during her pairingwith the central device in theNCmode. Then, the
attacker can also use Va as the PIN during her pairing with the pe-
ripheral device in the PEmode. Since the attacker and the peripheral
device both use Va as the PIN, the SSPStep· in the PEmode can
successfully finish. At last, the attacker exchanges a confirmation
with the peripheral device in Step ¸ to violate the A2 property.

Following similar procedures when violating A1 and A2 in
#9, the attacker can also violate A1 and A2 in #10. These four
violations correspond to the BThack attack (CVE-2020-10134) [7].

B. Mesh Provisioning
The Mesh specification [17, p.253] states that the No OOB

authentication is not authenticated, while the other three
authentication methods (i.e., Output OOB, Input OOB, and Static
OOB) are authenticated. Therefore, we want to verify whether the
authenticated modes in provisioning guarantee authenticity. To this
aim, we verify two properties related to authenticity.
Like the authenticity verification in SSP, we verify the

authenticity of provisioning by asserting the authenticity of the
central and peripheral devices’ messages (property A3 and A4).
A3 represents the authenticity of the provisioner’s random number
(PRp) in Step ¸ (see Figure 2). If A3 holds, it asserts that the
PRp received by the Mesh device is always from the provisioner,
which means the provisioner is authenticated by the Mesh device.
A4 refers to the authenticity of the Mesh device’s random number
(PRd) in Step ¸. Like A3, if A4 holds, it indicates that the Mesh
device is authenticated by the provisioner. The implementation of
A3 and A4 assertions is similar to the implementation in Listing 2.

Besides authenticity, we also verify the confidentiality of keys
(property C1) and p_complete (property C2) messages in
Step ¹ (see Figure 2). Considering the security-critical nature
of keys, we also verify its strong secrecy [27] (SS) property.
Listing 3 in the Appendix shows the implementation of the
confidentiality assertions in ProVerif. If C1 and C2 (the queries
at Line 18) hold, we assert that the attacker cannot obtain keys
or p_complete in plaintext. If SS (the query at Line 19) holds,

8

TABLE III: Result and performance of the security property veri-
fication in the Mesh provisioning protocol (one session per device).
A3: Provisioner authenticates the Mesh device, A4: Mesh device
authenticates the provisioner, C1: Confidentiality of keys, C2:
Confidentiality of p_complete, SS: Strong secrecy of keys.

PK Ex. Auth.
Method

Property/Performance (seconds) Related
A3 A4 C1 C2 SS Attack

1

OOB

O.OOB 7/0.17 ✓/0.16 ✓/0.15 ✓/0.15 ✓/0.54 –
2 I.OOB 7/0.11 ✓/0.11 ✓/0.10 ✓/0.10 ✓/0.29 –
3 S.OOB 7/0.10 ✓/0.11 ✓/0.10 ✓/0.10 ✓/0.25 –
4 N.OOB 7/0.11 ✓/0.11 ✓/0.10 ✓/0.10 ✓/0.26 –
5

No
OOB

O.OOB 7/0.41 ✓/0.37 7 /0.36 ✓/0.35 7/5.28 BlueMAN
6 I.OOB 7/0.22 ✓/0.24 7 /0.21 ✓/0.20 7/1.19 BlueMAN
7 S.OOB 7/0.22 ✓/0.23 7 /0.22 ✓/0.20 7/0.89 BlueMAN
8 N.OOB 7/0.42 7 /0.40 7 /0.39 7 /0.36 7/5.00 MitM

the attacker cannot tell the difference when keys changes. We
verify the same properties for the No OOB authentication method.
Verification. We explore all eight modes of the Mesh provisioning
protocol. In total, we verify 40 (8x5) security properties for the
Mesh provisioning protocol.

Table III shows the result and performance of our verification of
the Mesh provisioning protocol. The security violations of Row #8
in Table III confirm thatNoOOBauthentication is not authenticated
and is vulnerable to MitM attacks. However, when the OOB public
key exchange is available, the Mesh device can correctly authenti-
cate the provisioner, as Row #4 shows. This is based on the assump-
tion that the OOB channel for public key exchange is secure, which
is the case in ourmodel. Since theMesh device’s public key is sent to
the provisioner through a secure channel, the attacker cannot get the
Mesh device’s public key, thus cannot calculate the valid ECDH se-
cret key and impersonate the provisioner. In this case, the provision-
ing protocol is immune toMitM attacks. For the same reason, when
the OOB public key is available, the attacker can impersonate the
Mesh device but cannot derive the session key and get the keys
in plaintext, as indicated by Rows #1-3. The strong secrecy property
of keys also holds when OOB public key exchange is used.
Our formal analysis also indicates that the provisioner cannot

correctly authenticate the Mesh device in all eight provisioning
modes (A3 column). The reason is that the attacker can use the
record-and-replay approach to pass the check on the provisioner
due to a design flaw in the protocol (see Section VI-A). Even worse,
when the OOB public key exchange is not available, the attacker
can not only bypass the check on the provisioner, but she can also
get all values used to derive the session key and session nonce. As
a result, the attacker can obtain the keys distributed to the Mesh
device even when using the authenticated modes (Rows #5-7).
Based on the attack traces provided by ProVerif when detecting

the violations in Rows #5-7, we develop the Bluetooth Mesh
Authentication Neutralization (BlueMAN) attack. The BlueMAN
attack allows the attacker to obtain the distributed keys during
provisioning. We will present more details about the BlueMAN
attack in Section VI-A.

C. Data Transmission
In data transmission, the encryption is designed to provide

eavesdropping protection.We verify whether the attacker can obtain
the transmitted data in plaintext by verifying the confidentiality
of transmitted messages. Specifically, C3 to C8 represent the
confidentiality of BC_req, BC_rsp, BLE_req, BLE_rsp,
Mesh_req, and Mesh_rsp in Figure 3.

Verification. We explore all 19 possible connection scenarios,
including the ones in which one device is semi-compromised (see
Section IV-C). In total, we verified 114 (19x6) security properties
in the data transmission.
Table IV shows the result and performance of our verification.

We note that some ProVerif-generated attack traces are the same
when detecting a violation in different connection scenarios. We
consider detected violations as being related to the same attack if
they share the same attack trace.
When no device is compromised, the verified properties hold

except C5 in Row #3. The attacker can violate this property
following the steps given in the attack trace provided by ProVerif.
In the reactive way of data transmission in BLE, the central device
sends data (BLE_req) in plaintext to the peripheral device first.
As a result, the attacker can obtain the data in plaintext, violating
C5. This violation corresponds to the BLESA [6] attack.
Rows #2, #9, #13, and #17 show that C3 can be violated when

the peripheral is semi-compromised. These violations have the
same attack trace. According to the attack trace generated by
ProVerif, the attacker can violate C3 with the following steps.
First, when the central device sends data, the central and peripheral
devices perform a two-way challenge-response authentication
in which the link key (generated during pairing) is used. During
the authentication, the attacker forwards the data from the
central/peripheral device to the peripheral/central device. Since
the central and peripheral devices share the same link key, they
can successfully authenticate each other. After that, the central and
peripheral devices derive the same session key and session nonce.
When receiving the data (BC_req) from the BC app, the BC
stack on the central device encrypts the data with the session key
and session nonce, and sends the encrypted data to the peripheral
devices. Upon receiving the encrypted data, the semi-compromised
peripheral device may decrypt it with the session key and session
nonce and send the decrypted data to the attacker. These violations
correspond to the Mis-binding [10] and BadBluetooth [8] attacks.
Rows #5, #11, #15, and #19 show that C5 can be violated if

the peripheral is semi-compromised. These violations also share
the same attack trace. As the attack trace shows, the attacker can
violate C5 with the following steps. When the central device sends
data, it first exchanges two random numbers that are used to derive
the session key and session nonce with the peripheral device. In
this step, the attacker forwards the random numbers from the
central/peripheral device to the peripheral/central device. As a result,
the central and peripheral devices can derive the same session key
and session nonce. When receiving the data (BLE_req) from the
BLE app, the BLE stack on the central device encrypts the data with
the session key and session nonce and sends the encrypted data to
the peripheral devices. Upon receiving the encrypted data, the semi-
compromised peripheral device may decrypt it with the session
key and session nonce and send the decrypted data to the attacker.
These violations correspond to the Co-located App attack [11].

Our formal analysis also reveals that in Rows #5, #11, #15, and
#19, C3 can be violated when the peripheral is semi-compromised.
As the attack trace shows, when the benign apps use BLE for
communications, the central and peripheral devices first pair
through BLE and derive the same long term key. The central and
peripheral devices may also derive the link key of BC from BLE’s

9

TABLE IV: Result and performance of the security property verification in data transmission (unlimited sessions per device). C3:
Confidentiality of BC_req, C4: Confidentiality of BC_rsp, C5: Confidentiality of BLE_req, C6: Confidentiality of BLE_rsp,
C7: Confidentiality of Mesh_req, C8: Confidentiality of Mesh_rsp.

Connection(s) Assumption
Verified Properties, Performance (seconds), and Related Attack (if violated)

BC BLE Mesh
C3 C4 C5 C6 C7 C8

1 BC-only Not compromised ✓/0.09 ✓/0.10 ✓/0.10 ✓/0.10 ✓/0.10 ✓/0.10
2 Peripheral is semi-compromised 7/0.12 (BadBT, MisBd) ✓/0.16 7/0.14 (CSIA) ✓/0.13 ✓/0.14 ✓/0.13
3

BLE-only
Not compromised (reactive) ✓/0.09 ✓/0.10 7/0.10 (BLESA [6]) ✓/0.10 ✓/0.10 ✓/0.10

4 Not compromised (proactive) ✓/0.09 ✓/0.10 ✓/0.11 ✓/0.11 ✓/0.13 ✓/0.11
5 Peripheral is semi-compromised 7/0.13 (CSIA) ✓/0.13 7/0.20 (CoApp) ✓/0.16 ✓/0.14 ✓/0.17
6 Mesh-only Not compromised ✓/0.16 ✓/0.18 ✓/0.18 ✓/0.20 ✓/0.18 ✓/0.18
7 Peripheral is semi-compromised ✓0.26 ✓/0.31 ✓/0.29 ✓/0.30 ✓/0.30 ✓/0.29
8 BC & BLE (pairing

via BC)
Not compromised* ✓/0.05 ✓/0.06 ✓/0.06 ✓/0.06 ✓/0.06 ✓/0.06

9 Peripheral is semi-compromised 7/0.07 (BadBT, MisBd) ✓/0.08 7/0.08 (CSIA) ✓/0.08 ✓/0.10 ✓/0.08
10 BC & BLE (pairing

via BLE)
Not compromised* ✓/0.05 ✓/0.07 ✓/0.06 ✓/0.06 ✓/0.06 ✓/0.06

11 Peripheral is semi-compromised 7/0.07 (CSIA) ✓/0.08 7/0.08 (CoApp) ✓/0.08 ✓/0.08 ✓/0.08
12 BC &Mesh Not compromised ✓/0.18 ✓/0.21 ✓/0.25 ✓/0.20 ✓/0.19 ✓/0.20
13 Peripheral is semi-compromised 7/0.31 (BadBT, MisBd) ✓/0.33 7/0.34 (CSIA) ✓/0.34 ✓/0.32 ✓/0.32
14 BLE &Mesh Not compromised* ✓/0.19 ✓/0.21 ✓/0.21 ✓/0.20 ✓/0.21 ✓/0.20
15 Peripheral is semi-compromised 7/0.30 (CSIA) ✓/0.33 7/0.41 (CoApp) ✓/0.43 ✓/0.37 ✓/0.35
16 BC & BLE &Mesh

(pairing via BC)
Not compromised* ✓/0.18 ✓/0.21 ✓/0.21 ✓/0.20 ✓/0.21 ✓/0.22

17 Peripheral is semi-compromised 7/0.31 (BadBT, MisBd) ✓/0.34 7/0.35 (CSIA) ✓/0.32 ✓/0.34 ✓/0.34
18 BC & BLE &Mesh

(pairing via BLE)
Not compromised* ✓/0.19 ✓/0.24 ✓/0.23 ✓/0.23 ✓/0.22 ✓/0.26

19 Peripheral is semi-compromised 7/0.31 (CSIA) ✓/0.40 7/0.41 (CoApp) ✓/0.39 ✓/0.35 ✓/0.35
* : BLE uses the proactive approach in data transmission.
BadBT: BadBluetooth attack [8], MisBd: Device mis-binding attack [10], CoApp: Co-located App attack [11].

long term key. Then, the attacker can follow the same procedure
described when C3 is violated in Rows #2, #9, #13, and #17 to
obtain the BC’s data in plaintext. As a result, even though the
benign apps use BLE for communication between the central and
peripheral devices, the attacker can access the BC data.
Table IV also shows that C5 can be violated in Rows #2, #9,

#13, and #17. As the attack trace indicates, when the benign apps
use BC for communications, the central and peripheral devices
first pair through BC and derive the link key. The central and
peripheral devices may also derive the long term key of BLE
from the BC’s link key. Then, the attacker can follow the same
procedure described when C5 is violated in Rows #5, #11, #15,
and #19 to obtain the BC’s data in plaintext. As a result, though
the benign apps use BC for communication between the central
and peripheral, the attacker can access the BLE data.
These eight violations (C3 in Rows #5, #11, #15, and #19, and

C5 in Rows #2, #9, #13, and #17) enable the attacker to illegally
access the data across stacks, i.e., BC to BLE or BLE to BC. The
root cause of this issue is that the device still derives the shared key
of BC (or BLE) from the shared key of BLE (or BC) even though
the BC (or BLE) connections are not used (see Section VI-B). We
develop the Cross Stack Illegal Access (CSIA) attack based on the
attack traces provided by ProVerif when detecting these violations.
We present more details about the CSIA attack in Section VI-B.

It is noteworthy that the security properties (C7 and C8) in Mesh
during data transmission hold in ourmodel evenwhen the peripheral
device is semi-compromised. While BC and BLE only require link-
layer security (i.e., encryption and authentication at the link layer),
the Mesh specification mandates application-layer security besides
link-layer security. As a result, the attacker cannot decrypt the data
(Mesh_req) due to the unavailability of the application key.

D. Key Sharing and Data Transmission
In Section V-A, V-B, and V-C, we verify key sharing and data

transmission separately. In this section, we verify key sharing and
data transmission as one protocol, as mentioned earlier. We verify
the same properties (i.e., A1, A2, C3, C4, C5, and C6) related to

TABLE V: Result and performance of the verification of SSP and
data transmission in BC and BLE as one protocol (devices are not
compromised; one session per device).

M* Property/Performance (seconds)
A1 A2 C3 C4 C5 C6

#1 7/0.97 7/0.97 7/0.84 7/0.87 7/0.86 7/0.93
#2 ✓/1.08 ✓/0.97 ✓/0.90 ✓/0.90 ✓/0.95 ✓/0.90
#3 ✓/0.46 ✓/0.38 ✓/0.36 ✓/0.39 ✓/0.36 ✓/0.41
#4 ✓/0.43 ✓/0.48 ✓/0.38 ✓/0.41 ✓/0.38 ✓/0.44
#5 ✓/0.39 ✓/0.35 ✓/0.43 ✓/0.37 ✓/0.40 ✓/0.35
#6 ✓/0.27 ✓/0.28 ✓/0.24 ✓/0.33 ✓/0.25 ✓/0.28
#7 ✓/0.27 ✓/0.24 ✓/0.24 ✓/0.26 ✓/0.25 ✓/0.26
#8 ✓/0.40 ✓/0.35 ✓/0.33 ✓/0.35 ✓/0.35 ✓/0.40
#9 7/13.09 7/12.68 7/12.14 7/12.49 7/12.96 7/12.64
#10 7/5.46 7/5.38 7/5.32 7/5.02 7/4.91 7/5.00
#11 ✓/1.38 ✓/1.49 ✓/1.38 ✓/1.43 ✓/1.29 ✓/1.31
#12 ✓/1.39 ✓/1.45 ✓/1.20 ✓/1.31 ✓/1.30 ✓/1.21
#13 ✓/1.37 ✓/1.30 ✓/1.22 ✓/1.25 ✓/1.22 ✓/1.34
#14 ✓/1.36 ✓/1.43 ✓/1.44 ✓/1.42 ✓/1.45 ✓/1.45
#15 ✓/0.79 ✓/0.80 ✓/0.76 ✓/0.75 ✓/0.80 ✓/0.80
#16 ✓/0.74 ✓/0.69 ✓/0.72 ✓/0.68 ✓/0.70 ✓/0.75
#17 ✓/0.97 ✓/0.82 ✓/0.77 ✓/0.78 ✓/0.81 ✓/0.86
#18 ✓/0.83 ✓/0.84 ✓/0.73 ✓/0.72 ✓/0.74 ✓/0.71
#19 ✓/0.74 ✓/0.78 ✓/0.73 ✓/0.74 ✓/0.81 ✓/0.72
#20 ✓/0.81 ✓/0.83 ✓/0.84 ✓/0.89 ✓/1.08 ✓/0.83
#21 ✓/0.70 ✓/0.76 ✓/0.66 ✓/0.68 ✓/0.69 ✓/0.67
#22 ✓/0.71 ✓/0.74 ✓/0.71 ✓/0.76 ✓/0.68 ✓/0.89
#23 ✓/0.85 ✓/0.84 ✓/0.88 ✓/0.71 ✓/0.74 ✓/0.80
#24 ✓/2.08 ✓/2.11 ✓/1.80 ✓/1.78 ✓/1.96 ✓/1.71
#25 ✓/1.94 ✓/1.78 ✓/1.98 ✓/1.71 ✓/1.69 ✓/1.70
#26 ✓/1.94 ✓/1.96 ✓/1.93 ✓/1.82 ✓/1.99 ✓/1.90

* : The corresponding mode or mode combination in Table II.

BC/BLE as we did in previous sections. For Mesh, we also verify
the same set of properties (i.e., A3, A4, C1, C2, SS, C7, and C8)
of Mesh as we did previously.
Verification. Similar to the verification in Section V-A, we verify
the properties in all possible 26 different cases in BC/BLE. In total,
we verify 156 (26x6) properties. Table V shows the result and
performance of the verification for each property. The identified
violations in Rows #1, #9, and #10 correspond to the same attacks
(i.e.,MitM andBThack) indicated by #1, #9, and #10 in Table II.We
verify all 8 cases and 56 (8x7) properties for Mesh. Table VI shows
the result and performance of the verification. Like the violations in
Table III, the detected violations in Rows #5, #6, and #7 correspond

10

TABLE VI: Result and performance of the verification of the
provisioning and data transmission in Mesh as one protocol
(devices are not compromised; one session per device).

M* Property/Performance (seconds)
A3 A4 C1 C2 SS C7 C8

#1 7/2.50 ✓/2.54 ✓/2.78 ✓/2.90 ✓/12.92 ✓/2.70 ✓/2.66
#2 7/1.44 ✓/1.43 ✓/1.49 ✓/1.43 ✓/7.70 ✓/1.41 ✓/1.42
#3 7/1.39 ✓/1.49 ✓/1.38 ✓/1.47 ✓/7.35 ✓/1.37 ✓/1.48
#4 7/1.40 ✓/1.62 ✓/1.44 ✓/1.51 ✓/7.81 ✓/1.41 ✓/1.35
#5 7/13.30 ✓/13.88 7/14.19 ✓/12.92 7/275.61 7/13.17 ✓/13.22
#6 7/3.53 ✓/3.54 7/3.43 ✓/3.43 7/43.94 7/3.45 ✓/3.38
#7 7/3.56 ✓/3.38 7/3.29 ✓/3.42 7/42.38 7/3.29 ✓/3.57

#8 7/ 7/ 7/ 7/ 7/ 7/ 7/
287.56 292.88 283.27 277.24 15596.11 279.42 282.89

* : The corresponding mode in Table III.

to the BlueMAN attack, and the violations in Row #8 are related to
MitM attacks.

VI. CASE STUDY

In this section, we discuss the two new attacks, Bluetooth Mesh
Authentication Neutralization (BlueMAN) attack (Section VI-A)
and the Cross Stack Illegal Access (CSIA) attack (Section VI-B),
based on the traces generated by ProVerif during the formal
verification.

A. Bluetooth Mesh Authentication Neutralization Attack
Assumption. The attacker has the capabilities of the Dolev–Yao
adversary and is present within the Bluetooth range during the
provisioning procedure.

Provisioner Mesh deviceAttacker

Step 1: Invitation

Provisioning invitation (PI) Provisioning invitation (PI)

Device capabilities (PCap)Device capabilities (PCap')

Step 2: ECDH key exchange (NO OOB PK)

Provisioning start (PS) Provisioning start (PS)

Provisioner PK (PKp) Attacker PK (PKa)

Mesh device PK (PKd)Attacker PK (PKa)

(1). Calculate ECDH
secret key (DHKey)

(1). Calculate ECDH
secret key (DHKey)

Step 3: Authentication (Output OOB)

(1). Calculate ECDH
secret key (DHKey')

(2). Select random (Rn) and display to user

(4). Select random number (PRp) and
calculate confirmation (PCONFp)

(3). User inputs Rn on the provisioner

Provisioner confirmation (PCONFp)

Device confirmation (PCONFp)

Provisioner random number (PRp)

Device random number (PRp)

(5). Check confirmation

Step 4: Key distribution

(6). Calculate session key (6). Calculate session key

Network key (encrypted)

Provisioning complete

Fig. 4: Detailed procedure of the BlueMAN attack.

Procedure. The attacker first launches a MitM attack in the first
two steps of the provisioning procedure. During the third step, the
attacker can record the data from the provisioner and replay the
data to the provisioner to pass the check on the provisioner. In the
last step of provisioning, the attacker can derive the session key and
session nonce. As a result, the attacker can decrypt the message
sent by the provisioner and get the distributed keys.

Figure 4 illustrates the detailed procedure of the BlueMAN attack
when the out-of-band (OOB) public key exchange is not available
and the Output OOB authentication is used. The attacker acts as the
MitM during the provisioning Step 1 and 2. In Step 1, the attacker
receives the provisioning invitation (PI) from the provisioner and
replays the PI to the Mesh device. Then, the attacker receives the
device capabilities (PCap) from theMesh device and sends her own
device capabilities (PCap’) to the provisioner. During Step 2, the
attacker receives the provisioner’s public key (PKp) and sends her
own public key (PKa) to theMesh device. The attacker also receives
the Mesh device’s public key (PKd) and sends PKa to the provi-
sioner. Accordingly, the provisioner calculates its ECDH secret key
with the provisioner’s private key and the attacker’s public key. The
attacker calculates her ECDH secret key with the attacker’s private
key and the provisioner’s public key. Therefore, the provisioner and
the attacker share the same ECDH secret key (DHKey).
Step 3 is the most critical step to successfully launch the attack.

To better present the attack, we first describe how Step 3 of the
provisioning works normally. Then, we discuss how the attacker
interacts with the provisioner.

When the attacker is not present, as shown in Step¸ Figure 2, the
Mesh device selects a randomnumber (Rn) and displays the number
to the user. The user then inputs the number on the provisioner.
After that, the provisioner selects another random number (PRp)
and computes the confirmation value (PCONFp) with Equation (1),
(2), and (3), where s1() and k1() functions are defined in
the specification [17, p.103] based on AES-CMAC.

PCSalt=s1(PI||PCap′||PS||PKp||PKd) (1)
PCKey=k1(DHKey,PCSalt,“prck”) (2)

PCONFp=AES−CMACPCKey(PRp||Rn) (3)
PCONFd=AES−CMACPCKey(PRd||Rn) (4)

Then, the provisioner sends PCONFp to the Mesh device. After
receiving PCONFp, the Mesh device also selects a random
number (PRd), calculates the confirmation value (PCONFd) with
Equation (1), (2), and (4), and sends PCONFd to the provisioner.
Then, the provisioner sends its random number (PRp) to the Mesh
device. Once the Mesh device receives PRp, it computes the
provisioner’s confirmation value (PCONFp’) with Equation (3)
and checks whether PCONFp’ is equal to PCONFp. If they are
equal, the Mesh device sends its random number (PRd) to the
provisioner. Once the provisioner receives PRd, it calculates the
Mesh device’s confirmation value (PCONFd’) with Equation (4)
and checks whether PCONFd’ is equal to PCONFd. If they are
equal, Step ¸ is complete. Otherwise, the provisioner aborts the
connection.

When the attacker is present, the provisioner computes PCONFp
and sends it as previously described.As illustrated in Step 3 Figure 4,
the attacker can record PCONFp and replay it to the provisioner.
After that, the provisioner sends PRp, and the attacker also records

11

PRp and replays it to the provisioner. In this case, the PRd is
equal to PRp, and PCONFd is equal to PCONFp. Therefore,
the confirmation check on the provisioner passes (Step 3 (5)).
In Step 4, the provisioner first derives the session key and

session nonce. After that, the provisioner sends the encrypted
(using the session key and session nonce) secret keys. Since all the
values used for the session key and session nonce derivation are
known to the attacker, she can derive the session key and session
nonce. Therefore, the attacker can decrypt the message to obtain
the network key. The detailed attack trace provided by ProVerif is
shown in Listing 7 in the Appendix. This attack is also applicable
to the Input OOB and Static OOB authentication methods when
the OOB public key exchange is not available.
When the OOB public key exchange is available, the attacker

can still pass the confirmation check on the provisioner in Step 3
using the approach mentioned previously. However, the attacker
cannot calculate the correct ECDH secret key since she is not
able to replace the Mesh device’s public key (PKd) with the
attacker’s (PKa) in Step 2. Therefore, the attacker is not able
to derive the session key and nonce. Consequently, the attacker
cannot decrypt the message and obtain the secret key, as shown
in Table III (#1-4). In Step 3, since the Mesh device receives the
provisioner’s confirmation value first and then sends its own, the
record-and-replay does not work for the Mesh device. Accordingly,
the Mesh device can correctly authenticate the provisioner
preventing the attacker from getting the message (p_complete)
from the Mesh device, as Table III (#5-7) indicates.
Impact. We evaluate the impact of the BlueMAN attack by ana-
lyzing 25Mesh stack implementations from different vendors (e.g.,
Qualcomm and Nordic Semiconductor) on different platforms (e.g.,
iOS, Android, WatchOS, and Bluetooth SoCs). For the stacks that
we can run and perform provisioning on, we dynamically test them.
Specifically, we run three stacks (i.e., IOS nRF Mesh Library [28],
STSW-BNRG-Mesh-iOS [29], and meshctl in BlueZ [30]) as
the provisioner and perform the provisioning with our modified
Mesh device implementation. The modified Mesh device does not
calculate the confirmation value. Instead, it records the confirmation
value from the provisioner and replays to the provisioner. It does
the same for the random number. The provisioner is affected by the
BlueMAN attack if the provisioning finishes successfully.
For the stacks that we do not have a physical device to run, we

either analyze their source code (if available) or analyze the binary
libraries (e.g., Bluetooth SoC libraries). Some stacks (e.g., #3 and
#7 in Table VIII) are runnable but cannot successfully perform
the provisioning even without the attack. We also analyze either
the source code or the binary libraries for those cases. Our analysis
shows that out of the 25 stacks, we found 20 of them are vulnerable
to the BlueMAN attack. Table VIII in the Appendix shows the
details of all the analyzed stacks.
Feasibility. As Figure 4 shows (Step 1 and Step 2), BlueMAN
requires the attacker to act as MitM to forward messages from the
provisioner/device to the device/provisioner. Therefore, the most
critical step to launch the attack is to make the provisioner connect
to the malicious device (Attacker in Figure 4) instead of the target
Mesh device in Step 1.

Different from other MitM attacks (e.g., BThack [7]), BlueMAN
does not need selective jamming, which makes it more feasible,

thanks to the mechanism through which the provisioner discovers
the Mesh device. Since Mesh uses BLE as the underlying physical
transportation, it uses the same mechanism as BLE to let the
provisioner discover the Mesh device. That is, the provisioner scans
for the broadcasting messages from the Mesh device to discover it.
Then, to establish a connection, the provisioner sends a connection
request to the Mesh device right after receiving the broadcasting
message. To make the provisioner connect to the malicious device,
the attacker can spoof the broadcasting message from the target
Mesh device and broadcast at a much higher frequency than the
target Mesh device, so that the provisioner has a higher chance to
receive the broadcasting message from the malicious device and
to connect to it.
Possible fixes. We present two possible fixes to defend against
the BlueMAN attack. Since the attacker relying on recording and
replaying the confirmation value and random number from the
provisioner to pass the check, one straightforward and easy-to-
deploy solution is that the provisioner checks whether the received
confirmation value (or the random number) from theMesh device is
equal to its own confirmation value (or random number). If they are
equal, the provisioner aborts the provisioning. During our analysis
of the Mesh stacks, we have noticed that the Gecko_mesh v3.1 [31],
ZephyrBluetoothMesh [32], andNimBLE [33] adopt this approach,
and thus not affected by BlueMAN.
The other solution requires a minor change of Equation (4)

when calculating the Mesh device’s confirmation value. The
BlueMAN attack can also be prevented by changing Equation (4)
to Equation (5). In this case, the record-and-replay works only
if Rn is equal to PRp. Considering they are 128-bit random
numbers, we assume they are always different.

PCONFd=AES−CMACPCKey(Rn||PRd) (5)
We also formally verify these two possible fixes and prove that

both of the fixes can defend against the BlueMAN attack. All
properties in Table III hold when either of the fixes is implemented
in theMesh provisioning protocol, except the ones in Row 8. In fact,
Row 8 corresponds to the case in which no OOB authentication
is performed on both sides. In this case, since no authentication
is performed, MitM attacks are always possible.
Responsible disclosure. We responsibly disclosed our findings
to Bluetooth SIG, and they acknowledged that we independently
discovered this vulnerability with another team [14], [34]. A CVE
number (CVE-2020-26560 [13]) is assigned to this vulnerability.
We also reported our findings to the affected vendors in Table VIII.
Tuya, Qualcomm, and Nordic Semiconductor have confirmed our
findings. As of the time writing the paper, we have not received
responses from other affected vendors.

B. Cross Stack Illegal Access Attack

Assumption. The central and peripheral devices are BC/BLE dual-
stack devices while communicating only via BLE. For example,
a peripheral BLE app may run on a smartphone or a laptop to
communicate with other central smartphones or laptops. The central
and peripheral devices were paired via the Secure Connections Pair-
ing [9, p.277] of BLE. The peripheral device is semi-compromised
(see Section IV-A). The attacker aims to establish a BC connection
with the victim central device and access its BC services.

12

Procedure. The Bluetooth core specification [9, p.280 and 1401]
allows the link key (LK) of BC to be derived from the long-term key
(LTK) of BLE, if the devices are paired through Secure Connections
Pairing. Even though only the BLE connection is in use, the central
and peripheral devices may still derive the LK of BC from the LTK.
Due to the symmetric nature of BC connections (both central

and peripheral devices can initiate the connection), the attacker can
initiate a BC connection from the semi-compromised peripheral
device to the central device. If both devices derive the LK fromLTK,
the attacker can use the LK on the peripheral device to pass the BC
authentication on the central device. Meanwhile, on modern smart-
phones and laptops, some BC services are enabled by default. For
example, when only BLE is in use, the smartphone or laptop is also
ready for communicating via BCwith a headset for audio streaming
or a keyboard for receiving keystrokes. As a result, the attacker can
illegally access such enabled BC services on the central device.
Impact. We evaluate CSIA on 6 devices shown in Table VII
in Appendix B. Specifically, we set up a BLE peripheral app on
a Linux laptop (BC/BLE dual stack). Then, we use each of the
tested devices as the central device connecting to the peripheral,
during which BLE pairing is performed. Meanwhile, we also have
a malicious app, which does not have root permissions (hence, it
cannot access the LTK or LK), running on the Linux laptop as the
semi-compromised device. The malicious app then tries to initiate
connections via BC to the tested devices after the BLE pairing.
Once connected, the malicious app tries to access the BC services
on the tested devices, such as HID profile [35]. We consider the
tested device affected byCSIA, if themalicious access to the service
is successful.
Table VII in Appendix B shows the results of our evaluation.

Among the six devices we test, five of them are affected by CSIA,
and only Device #2 is not affected. After further investigation,
we find that Device #2 is not affected due to an implementation
bug [36], which leads to an incorrect LK derivation (the derived
LK is reversed) and thus accidentally thwarts CSIA.
Possible fixes. The root cause of the CSIA attack stems from
the trade-off between security and usability. Introducing the key
derivation between BC and BLE allows users to pair only once
when BC/BLE dual-stack devices communicate with each other.
However, the key derivation fails to consider the scenario where
only one type of connection is used between the dual-stack devices.
Naturally, disabling the key derivation can prevent the CSIA attack,
but the user needs to pair twice through BC and BLE when both
connections are used. Besides, applying a fine-grained access
control policy of theBC/BLE stack can also prevent theCSIA attack.
For example, the central device can record the needed connection
type of the peripheral device during pairing, and only allow that
type of connection in the data transmission.
Responsible disclosure. We responsibly disclose this weakness to
Bluetooth SIG, who acknowledged our findings in a security notice
about CVE-2020-15802 [15], [37]. This notice, however, mentions
that Bluetooth SIG does not consider this issue as a vulnerability. It
states that the key derivation feature causing this issue is working as
“intended”.We believe that this claim stems from the fact that CSIA
requires a semi-compromised device, and Bluetooth SIG does not
consider this scenario in their threat model [9, p.271].
Nevertheless, we claim that the semi-compromised scenario

is important in the real world, especially when involving mobile
devices. In fact, mobile OSs are designed assuming that apps
could potentially be malicious, and they implement mechanisms
to sandbox apps’ execution [38]. Under this design principle, CSIA
is indeed a security issue since it allows a malicious app to access
Bluetooth services that is otherwise not supposed to access.
It is worth noting that attacks requiring semi-compromised

devices have been proposed in recent years, including the device
mis-binding [10], BadBluetooth [8], and co-located app [11] attacks.
Similar to CSIA, given their threat model, these attacks did not re-
ceive a specific CVE fromBluetooth SIG. Nevertheless, researchers
have demonstrated their impact in several real-world scenarios.

VII. LIMITATIONS AND FUTURE WORK

Simplified Diffie-Hellman modeling. In our model, we adopt the
standard modeling of the DH key exchange in ProVerif. Although
DH key exchange has been verified by previous work [5], we
acknowledge that such verification does not directly apply to our
model. For this reason, due to the limitation of the standard DH
modeling in ProVerif, our model cannot capture some properties in
DH key exchange, such as associativity, and thus may miss some
attacks [5] against it.
Unlimited sessions for key-sharing protocols. Our current model
does not support concurrent execution with unlimited sessions for
the key-sharing phase protocols. This limitation does not allow
us to model scenarios in which one device pairs with multiple
devices concurrently. For this reason, our model could miss attacks
involving such concurrent pairing. As future work, wewould extend
our model to support unlimited sessions for the key-sharing phase
protocols.
Legacy protocols. Some of the legacy Bluetooth protocols, such
as the legacy BLE pairing and the legacy BC authentication, have
been known to be broken for a long time, and the industry has been
encouraged to replace them with their successor protocols. Since
these legacy protocols are well studied [18], [39], we did not model
and verify them. For the sake of completeness, in the future, we
could easily extend our model to cover them.
Semi-compromised device in key sharing phase. Our current
model does not consider a device compromised during the key-
sharing phase. As future work, we will also consider the attack
model of a semi-compromised device in the key sharing phase
and explore the security implications introduced by the different
capabilities of the attacker on the semi-compromised device (e.g.,
displaying a number to the user or inputting a number on the UI).
Other security-related protocols in Mesh. For Bluetooth Mesh,
our current model only covers provisioning and encryption. Other
security-related protocols, such as the key refresh procedure, are not
included. Modeling these protocols and incorporating them with
the current Mesh model will be our future work.

VIII. DISCUSSION

Why using ProVerif. First, in this paper, we focus on verifying
the security properties, such as authenticity and confidentiality, in
the cryptographic protocols in Bluetooth instead of other types of
properties (e.g., liveness, reliability, and safety). For this reason,
verification tools designed for verifying security properties, such
as ProVerif, fit our needs.

13

Considering the scalability issue of computational models, we
decided to build a symbolic model. As such, a symbolic verification
tool is more suitable than a computational verification tool (e.g.,
CryptoVerif [40]) for our purpose.
Finally, among symbolic verification tools, ProVerif and

Tamarin [41] are both well-documented and widely-used general-
purpose verification tools. Each has its pros and cons, and we
believe both are appropriate for our purpose. We choose ProVerif
considering both its modeling features and our familiarity with
this tool. Though ProVerif has some disadvantages (discussed in
Section VII), it meets our overall goals for this paper.
Completeness of the verified properties. Given the security goals
(prevention of eavesdropping and MitM attacks) of the SSP, Mesh
provisioning, and encryption in the specification, we believe our
security properties (i.e., confidentiality, authenticity, and strong
secrecy) are complete under our attack model (see Section IV-A)
for the protocols modeled. However, these properties may not be
complete under a different attack model. For example, our security
properties may be insufficient in a computational model, when
brute-force attacks (e.g., KNOB [19]) are considered.
CSIA and BLURtooth. CSIA and BLURtooth [42] are caused
by the same underlying issue and therefore share similarities. In
fact, the underlying issue is the Cross Transport Key Derivation
(CTKD) feature between BLE and BC. For this reason, both attacks
require pairing via one stack (e.g., BLE) and launch attacks through
another stack (e.g., BC) by abusing CTKD. However, the way of
exploiting CTKD is different in these two attacks.

Specifically, in BLURtooth, an attacker can impersonate the vic-
tim peripheral and start a new pairing with the paired victim central
through one stack (e.g., BLE). By doing so, the attacker forces the
victim central to generate a new secret key for the victim peripheral.
Due to CTKD, a new key for the victim peripheral of another stack
(e.g., BC) will also be generated. This new key can overwrite the
original key of this stack. In this way, by exploiting a vulnerability
in the specification (affecting Bluetooth versions up to 5.1), the
attacker can use a key with low entropy to overwrite a key with high
entropy, or use an unauthenticated key to overwrite an authenticated
key. A similar attack procedure also applies to the victim peripheral.
Unlike BLURtooth, CSIA exploits an existing pairing and the

CTKD feature directly without requiring new pairings. In CSIA, we
assume that the victim device is pairedwith a semi-compromised de-
vice. In this case, even though the app on the victim device uses only
one stack (e.g., BLE) to communicate with the semi-compromised
device, both the victim and the semi-compromised device generate
the key of another stack (e.g., BC) due to CTKD. As such, the
attacker can use this key to access the services on the victim device
through the stack that is not used in benign communications. For ex-
ample, a laptop may communicate with a semi-compromised phone
via only BLE. With CSIA, the malicious app running on the phone
can inject keystrokes to the laptop using theHID profile through BC.

As previously discussed, BLURtooth assumes that the victim de-
vice accepts new pairings, while CSIA exploits an existing pairing,
thus it does not require a new pairing. Because of the new pairing
requirement, BLURtooth cannot be launched in the scenario where
a phone running amalicious app (semi-compromised) is pairedwith
a laptop and does not accept new pairings, while CSIA can. On the
other hand,when the victimdevice does accept newpairings,BLUR-

tooth is more powerful than CSIA. In this scenario, BLURtooth can
launch persistent MitM attacks against both central and peripheral
victim devices, while CSIA is effective against only one device.

IX. RELATED WORK

Bluetooth attacks requiring a compromised device. Naveed
et al. [10] and Xu et al. [8] discover attacks enabling the attacker
to illegally access a BC device through a compromised device.
The co-located app attacks [11] also require a compromised
device to maliciously access a BLE device. These attacks allow
malicious access within the same Bluetooth stack, either BC or
BLE. The CSIA attack we presented, however, enables the attacker
to maliciously access devices across the BC and BLE stacks, as
shown in Table IV.
Bluetooth attacks not requiring a compromised device. Bar-
nickel et al. [43], Biham et al. [23], Sun et al. [44], and Tschirschnitz
et al. [7] propose MitM attacks against the SSP in BC and BLE. Lu
et al. [45], [46] and Antonioli et al. [18], [19] propose attacks that
can break the encryption of BC. BLESA [6] targets BLE devices
and allows the attacker to send spoofed data to a BLE device. All
the mentioned works do not explore the security of BluetoothMesh,
which we found to be affected by the BlueMAN attack.
Formal analysis of other protocols. Researchers have also
performed symbolic formal verification of other protocols, such
as the TLS and Signal [47]. Bhargavan et al. formally verify TLS
1.0 [48] and 1.3 [49] using ProVerif. Kobeissi et al. [50] also use
ProVerif to reason about the Signal protocol and discover new
weaknesses. Girol et al. [51] conduct a comprehensive formal
analysis of the Noise framework [52] using Tamarin. Their analysis
uncovers previously unknown subtle differences between protocols
and identifies the ones that should not be used. Three pieces of
work [49]–[51] assume the compromised device attack model.
However, in their attack model, the attacker can obtain the secret
keys (e.g., private key) when the device is compromised, which
is not the case in our attack model. Consequently, the way they
model compromised devices does not apply to the model of a semi-
compromised device.

X. CONCLUSION

In this paper, we present a formal model of Bluetooth security-
critical protocols. Our analysis adopts a modular design and a new
approach to model a compromised device. The design of the model
enables the first comprehensive security analysis of all the different
ways the analyzed protocols can be used by different devices.
Besides, to the best of our knowledge, our model is the first able
to reason about Bluetooth Mesh. Using this model, we verify 418
security properties and detect 82 security violations corresponding
to a new vulnerability, a new security issue, and five known attacks.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and shepherd for their valu-
able comments and suggestions. This work was supported in part
by the Office of Naval Research (ONR) under Grant N00014-18-1-
2674.Anyopinions, findings, and conclusions in this paper are those
of the authors and do not necessarily reflect the views of the ONR.

14

REFERENCES

[1] Bluetooth Special Interest Group, “2019 Bluetooth Market Update,” https:
//www.bluetooth.com/bluetooth-resources/2019-bluetooth-market-update/,
2019, accessed: August 1, 2019.

[2] R. Chang and V. Shmatikov, “Formal Analysis of Authentication in Bluetooth
Device Pairing,” Proceedings of the LICS/ICALP Workshop on Foundations
of Computer Security and Automated Reasoning for Security Protocol
Analysis (FCS-ARSPA), 2007.

[3] K. Arai and T. Kaneko, “Formal Verification of Improved Numeric
Comparison Protocol for Secure Simple Pairing in Bluetooth Using ProVerif,”
in Proceedings of the International Conference on Security and Management
(SAM), 2014.

[4] M. Sethi, A. Peltonen, and T. Aura, “Misbinding attacks on secure device
pairing and bootstrapping,” in Proceedings of the ACM Asia Conference on
Computer and Communications Security (AsiaCCS), 2019.

[5] C. Cremers and D. Jackson, “Prime, Order Please! revisiting Small Subgroup
and Invalid CurveAttacks on Protocols UsingDiffie-Hellman,” inProceedings
of the IEEE Computer Security Foundations Symposium (CSF), 2019.

[6] J.Wu,Y.Nan, V.Kumar, D. J. Tian, A. Bianchi,M. Payer, andD.Xu, “BLESA:
Spoofing Attacks against Reconnections in Bluetooth Low Energy,” in Pro-
ceedings of the USENIX Workshop on Offensive Technologies (WOOT), 2020.

[7] M. von Tschirschnitz, L. Peuckert, F. Franzen, and J. Grossklags, “Method
Confusion Attack on Bluetooth Pairing,” in Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2021.

[8] F. Xu, W. Diao, Z. Li, J. Chen, and K. Zhang, “BadBluetooth: Breaking An-
droid Security Mechanisms via Malicious Bluetooth Peripherals,” in Proceed-
ings of the Network and Distributed System Security Symposium (NDSS), 2019.

[9] Bluetooth Special Interest Group, “Bluetooth Core Specifications 5.2,” 2019.
[10] M. Naveed, X.-y. Zhou, S. Demetriou, X. Wang, and C. A. Gunter, “Inside

Job: Understanding andMitigating the Threat of External Device Mis-Binding
on Android,” in Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2014.

[11] P. Sivakumaran and J. Blasco, “A Study of the Feasibility of Co-located
App Attacks against BLE and a Large-Scale Analysis of the Current
Application-Layer Security Landscape,” in Proceedings of the USENIX
Security Symposium (USENIX Security), 2019.

[12] B. Blanchet, “Modeling and Verifying Security Protocols with the Applied
Pi Calculus and ProVerif,” Foundations and Trends in Privacy and Security,
vol. 1, 2016.

[13] CVE, “CVE-2020-26560,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
2020-26560, 2020, accessed: April 1, 2020.

[14] Bluetooth Special Interest Group, “Bluetooth SIG Statement Regarding
the ‘Impersonation Attack in Bluetooth Mesh Provisioning’ Vulnerability,”
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-
security/impersonation-mesh/, 2021, accessed: August 1, 2021.

[15] ——, “Bluetooth SIG Statement Regarding the Exploiting Cross-Transport
Key Derivation in Bluetooth Classic and Bluetooth Low Energy (BLURtooth)
and the Security implications of key conversion between BR/EDR and BLE
Vulnerabilities,” https://www.bluetooth.com/learn-about-bluetooth/bluetooth-
technology/bluetooth-security/blurtooth/, 2020, accessed: November 1, 2020.

[16] “Model Implementation and Attack Trace Explanation,” https:
//github.com/purseclab/btmodel_proverif.

[17] Bluetooth Special Interest Group, “Mesh Profile Specification 1.0.1,” https:
//www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457092,
2019, accessed: June 10, 2020.

[18] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “BIAS: Bluetooth
Impersonation AttackS,” in Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2020.

[19] ——, “The KNOB is Broken: Exploiting Low Entropy in the Encryption Key
Negotiation Of Bluetooth BR/EDR,” in Proceedings of the USENIX Security
Symposium (USENIX Security), 2019.

[20] ——, “Key Negotiation Downgrade Attacks on Bluetooth and Bluetooth Low
Energy,” ACM Transactions on Privacy and Security, vol. 23, no. 3, 2020.

[21] D. Dolev and A. Yao, “On the Security of Public Key Protocols,” IEEE
Transactions on information theory, vol. 29, no. 2, 1983.

[22] T.-C. Yeh, J.-R. Peng, S.-S. Wang, and J.-P. Hsu, “Securing Bluetooth
Communications,” IJ Network Security, vol. 14, no. 4, 2012.

[23] E. Biham and L. Neumann, “Breaking the Bluetooth Pairing–The Fixed
Coordinate Invalid Curve Attack,” in Proceedings of the International
Conference on Selected Areas in Cryptography (SAC), 2019.

[24] N. Roy, S. Shen, H. Hassanieh, and R. R. Choudhury, “Inaudible Voice Com-
mands: The Long-Range Attack and Defense,” in Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI), 2018.

[25] N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, and F. Qian, “Dangerous Skills:
Understanding and Mitigating Security Risks of Voice-Controlled Third-Party
Functions on Virtual Personal Assistant Systems,” in Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2019.

[26] S. Ciobâca and V. Cortier, “Protocol Composition for Arbitrary Primitives,”
in Proceedings of the IEEE Computer Security Foundations Symposium
(CSF), 2010.

[27] B. Blanchet, “Automatic Proof of Strong Secrecy for Security Protocols,” in
Proceedings of the IEEE Symposium on Security and Privacy (S&P), 2004.

[28] Nordic Semiconductor ASA, “nRF Mesh,” https://apps.apple.com/us/app/
nrf-mesh/id1380726771}?platform=iphone, 2020, accessed: March 10, 2021.

[29] STMICROELECTRONICS INC, “ST BLE Mesh,” https://apps.apple.com/
us/app/st-ble-mesh/id1348645067, 2020, accessed: March 10, 2021.

[30] BlueZ contributors, “BlueZ,” http://www.bluez.org/, 2019, accessed: August
1, 2019.

[31] Silicon Labs, “Bluetooth mesh SDK 2.0.0.0 GA,” https://www.silabs.com/
documents/public/release-notes/bt-mesh-software-release-notes-2000.pdf,
2020, accessed: March 10, 2021.

[32] Zephyr Project Community, “Zephyr Bluetooth,” https://github.com/
zephyrproject-rtos/zephyr/tree/master/subsys/bluetooth/mesh, 2020, accessed:
March 10, 2021.

[33] Apache, “Apache NimBLE,” https://github.com/apache/mynewt-nimble,
2020, accessed: March 10, 2021.

[34] T. Claverie and J. L. Esteves, “BlueMirror: Reflections on Bluetooth Pairing
and Provisioning Protocols,” in 2021 IEEE Security and Privacy Workshops
(SPW), 2021.

[35] Bluetooth Special Interest Group, “Human Interface Device Profile,” https:
//www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=309012,
2020, accessed: August 1, 2020.

[36] Google, “Save reversed BR/EDR link key derived from
LE LTK,” https://android.googlesource.com/platform/system/
bt/+/9f5d3fadbcd2447dd30a9d1df44030ad0d565b85%5E1.
.9f5d3fadbcd2447dd30a9d1df44030ad0d565b85/, 2020, accessed: July 26,
2021.

[37] CERT Coordination Center, “CVE-2020-15802,” https://www.kb.cert.org/
vuls/id/589825, 2020, accessed: November 1, 2020.

[38] R. Mayrhofer, J. V. Stoep, C. Brubaker, and N. Kralevich, “The Android
Platform Security Model,” ACM Transactions on Privacy and Security,
vol. 24, no. 3, 2021.

[39] M. Ryan, “Bluetooth:With LowEnergy Comes Low Security,” inProceedings
of the USENIX Workshop on Offensive Technologies (WOOT), 2013.

[40] B. Blanchet, “A Computationally Sound Mechanized Prover for Security
Protocols,” in Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2006.

[41] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The TAMARIN Prover for
the Symbolic Analysis of Security Protocols,” in Computer Aided Verification
(CAV), 2013.

[42] D. Antonioli, N. O. Tippenhauer, K. Rasmussen, and M. Payer, “BLURtooth:
Exploiting Cross-Transport Key Derivation in Bluetooth Classic and Bluetooth
Low Energy,” arXiv, 2020.

[43] J. Barnickel, J. Wang, and U. Meyer, “Implementing an Attack on Bluetooth
2.1+ Secure Simple Pairing in Passkey Entry Mode,” in Proceedings of the
IEEE International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), 2012.

[44] D.-Z. Sun and X.-H. Li, “Vulnerability and Enhancement on Bluetooth
Pairing and Link Key Generation Scheme for Security Modes 2 and 3 ,” in
International Conference on Information and Communications Security, 2016.

[45] Y. Lu and S. Vaudenay, “Faster Correlation Attack on Bluetooth Keystream
Generator E0,” in Proceedings of the International Cryptology Conference
(CRYPTO), 2004.

[46] Y. Lu, W. Meier, and S. Vaudenay, “The Conditional Correlation Attack: A
Practical Attack on Bluetooth Encryption,” in Proceedings of the International
Cryptology Conference (CRYPTO), 2005.

[47] M. Marlinspike, “Signal on the outside, Signal on the inside,”
https://signal.org/blog/signal-inside-and-out/, 2016, accessed: July 26, 2021.

[48] K. Bhargavan, C. Fournet, R. Corin, and E. Zălinescu, “Verified Cryptographic
Implementations for TLS,” ACM Transactions on Information and System
Security, vol. 15, no. 1, 2012.

[49] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified Models and Reference
Implementations for the TLS 1.3 Standard Candidate,” in Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2017.

[50] N. Kobeissi, K. Bhargavan, and B. Blanchet, “Automated Verification for
Secure Messaging Protocols and Their Implementations: A Symbolic and
Computational Approach,” in Proceedings of the IEEE European Symposium
on Security and Privacy (EuroS&P), 2017.

15

https://www.bluetooth.com/bluetooth-resources/2019-bluetooth-market-update/
https://www.bluetooth.com/bluetooth-resources/2019-bluetooth-market-update/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-26560
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-26560
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/impersonation-mesh/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/impersonation-mesh/
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/bluetooth-security/blurtooth/
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/bluetooth-security/blurtooth/
https://github.com/purseclab/btmodel_proverif
https://github.com/purseclab/btmodel_proverif
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457092
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457092
https://apps.apple.com/us/app/nrf-mesh/id1380726771#?platform=iphone
https://apps.apple.com/us/app/nrf-mesh/id1380726771#?platform=iphone
https://apps.apple.com/us/app/st-ble-mesh/id1348645067
https://apps.apple.com/us/app/st-ble-mesh/id1348645067
http://www.bluez.org/
https://www.silabs.com/documents/public/release-notes/bt-mesh-software-release-notes-2000.pdf
https://www.silabs.com/documents/public/release-notes/bt-mesh-software-release-notes-2000.pdf
https://github.com/zephyrproject-rtos/zephyr/tree/master/subsys/bluetooth/mesh
https://github.com/zephyrproject-rtos/zephyr/tree/master/subsys/bluetooth/mesh
https://github.com/apache/mynewt-nimble
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=309012
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=309012
https://android.googlesource.com/platform/system/bt/+/9f5d3fadbcd2447dd30a9d1df44030ad0d565b85%5E1..9f5d3fadbcd2447dd30a9d1df44030ad0d565b85/
https://android.googlesource.com/platform/system/bt/+/9f5d3fadbcd2447dd30a9d1df44030ad0d565b85%5E1..9f5d3fadbcd2447dd30a9d1df44030ad0d565b85/
https://android.googlesource.com/platform/system/bt/+/9f5d3fadbcd2447dd30a9d1df44030ad0d565b85%5E1..9f5d3fadbcd2447dd30a9d1df44030ad0d565b85/
https://www.kb.cert.org/vuls/id/589825
https://www.kb.cert.org/vuls/id/589825
https://signal.org/blog/signal-inside-and-out/

[51] G. Girol, L. Hirschi, R. Sasse, D. Jackson, C. Cremers, and D. Basin, “A
Spectral Analysis of Noise: A Comprehensive, Automated, Formal Analysis
of Diffie-Hellman Protocols,” in Proceedings of the USENIX Security
Symposium (USENIX Security), 2020.

[52] T. Perrin, “The Noise Protocol Framework,” https://noiseprotocol.org/noise.
html, 2021, accessed: August 10, 2021.

APPENDIX

A. Implementations of the Model in ProVerif
Listing 2 shows the implementation of authenticity assertions in

SSP. Listing 3 lists the implementation of confidentiality assertions
in Mesh provisioning. Listing 4 shows the implementation of the
central device modules and the user module (NC mode) of SSP.
Listing 5 presents the simplified implementation of the peripheral
modules and the key sharing module (pairing via BLE) in data
transmission.

B. Evaluation of BlueMAN and CSIA

TABLE VII: Result of the CSIA attack evaluation on different
devices.

Device Operating System BT Version Vul.
1 Pixel 3 Android 9.0 5.0 Yes
2 Pixel XL Android 10.0 4.2 No
3 iPhone SE (2nd gen) iOS 14.6 5.0 Yes

4 iPad Pro (11-inch,
2nd gen) iPadOS 14.6 5.0 Yes

5 ThinkPad X1 Yoga
(3rd gen)

Windows 11
(build: 22000.71) 4.2 Yes

6 Dell Latitude 5480 Manjaro (kernel:
5.12) 4.2 Yes

Table VIII shows the detailed result of the BlueMAN attack
against different Mesh stack implementations. Table VII shows
the detailed result of the CSIA attack against different devices.

C. Attack Trace Generated by ProVerif
All the attack traces generated by ProVerif when detecting the

violations and their corresponding detailed explanations can be
found in our code repository [16].
Listing 6 shows the attack trace provided by ProVerif when

detecting the A2 violation in Row #9 of Table II.
Listing 7 illustrates the attack trace provided by ProVerif when

detecting the C1 violation in Row #5 of Table III.

1 event send_central(dhkey). event recv_central(dhkey).
2 event send_peripheral(dhkey).
3 event recv_peripheral(dhkey).
4 //Central step 3
5 let step3c() = (...
6 event send_central(DHKm);
7 out(ch, Ea); in(ch, Eb: bitstring);
8 if Eb = f3(DHKm, Nb, Na, ra, iocap_B, addr_B, addr_A)

then event recv_central(DHKm); ...).
9 //Peripheral step 3
10 let step3p() = (...
11 in(ch, Ea: bitstring);
12 if Ea = f3(DHKs, Na, Nb, rb, iocap_A, addr_A, addr_B)

then event recv_peripheral(DHKs);
13 event send_peripheral(DHKs); out(ch, Eb); ...).
14 //Authenticity query. Peripheral authenticates central.
15 query dhk: dhkey; event(recv_peripheral(dhk)) ==> event(

send_central(dhk)).
16 //Central authenticates peripheral.
17 query dhk: dhkey; event(recv_central(dhk)) ==> event(

send_peripheral(dhk)).

Listing 2:Authenticity assertion implementation of SSP in ProVerif.

1 free keys: bitstring [private].
2 free p_complete: bitstring [private].
3 //Provisioner step 4
4 let send_data_prov() = (...
5 //Derive session key and session nonce
6 let sk = k1(DHKp, s1(concat(s1(concat(PI, PCap, PS,

PKp, PKd)), PRp, PRd)), prsk) in
7 let sn = k1(DHKp, s1(concat(s1(concat(PI, PCap, PS,

PKp, PKd)), PRp, PRd)), prsn) in
8 out(ch, AES_CCM(keys, sk, sn)); in(ch, r: bitstring);
9 ...).
10 //Mesh device step 4
11 let recv_data_dev() = (...
12 //Derive session key and session nonce
13 let sk = k1(DHKd, s1(concat(s1(concat(PI, PCap, PS,

PKp, PKd)), PRp, PRd)), prsk) in
14 let sn = k1(DHKd, s1(concat(s1(concat(PI, PCap, PS,

PKp, PKd)), PRp, PRd)), prsn) in
15 in(ch, r: bitstring); ...
16 out(ch, AES_CCM(p_complete, sk, sn)); ...).
17 //Confidentiality query.
18 query attacker(keys). query attacker(p_complete).
19 noninterf keys.//Strong secrecy query.

Listing 3: Confidentiality assertion implementation of Mesh
provisioning in ProVerif.

16

https://noiseprotocol.org/noise.html
https://noiseprotocol.org/noise.html

1 //Type definition
2 type random_num.
3 type public_key.
4 type private_key.
5 type dhkey.
6 type bt_addr.
7 //Constant values
8 const zero: random_num.
9 const btlk: bitstring.
10 //Interface between steps
11 table p1c(bt_addr, public_key, public_key, dhkey).
12 table p2c(bt_addr, random_num, random_num, random_num,

random_num, dhkey).
13 table p3c(bt_addr, random_num, random_num, dhkey).
14 //Secure channel between User and central device
15 free central_user_ch: channel [private].
16 //Insecure channel between central and peripheral
17 free ch: channel.
18 //Central step 1
19 let step1c(pri_A: private_key) = (
20 let PKa = get_pub_key(pri_A) in
21 //(1) and (2): Send PKa and receive PKb.
22 out(ch, PKa); in(ch, PKb: public_key);
23 //(3): Calculate ECDH secret key
24 let DHKm = p256(PKb, pri_A) in
25 //Send data to Step 2
26 insert p1c(addr_B, PKa, PKb, DHKm)).
27 //Central step 2 NC mode
28 let step2cnc() = (
29 //Get data from Step 1
30 get p1c(=addr_B, PKa, PKb, DHKm) in
31 //(1): generate random number Na, and set ra, rb.
32 new Na: random_num; let ra = zero in
33 let rb = zero in
34 //(2), (3), (4): receive Cb, send Na, and receive Nb
35 in(ch, Cb: bitstring); out(ch, Na);
36 in(ch, Nb: random_num);
37 //(5): check Cb
38 if Cb = f1(PKb, PKa, Nb, zero) then
39 //(6): display Va to user.
40 out(central_user_ch, g(PKa, PKb, Na, Nb));
41 //(7): user confirms pairing
42 in(central_user_ch, confirm: confirmation);
43 if confirm = yes_confirm then
44 //Send data to Step 3
45 insert p2c(addr_B, Na, Nb, ra, rb, DHKm)).
46 //Central step 3
47 let step3c() = (
48 //Get data from Step 2
49 get p2c(=addr_B, Na, Nb, ra, rb, DHKm) in
50 //(1): Calculate Ea
51 let Ea = f3(DHKm, Na, Nb, rb, iocap_A, addr_A, addr_B

) in
52 //(2): Send Ea, receive Eb
53 out(ch, Ea); in(ch, Eb: bitstring);
54 //(3): Check Eb
55 if Eb = f3(DHKm, Nb, Na, ra, iocap_B, addr_B, addr_A)

then
56 //Send data to Step 4
57 insert p3a(addr_B, Na, Nb, DHKm)).
58 //Central step 4
59 let step4c() = (
60 //Get data from Step 3
61 get p3a(=addr_B, Na, Nb, DHKm) in
62 //(1): Calculate shared secret key
63 let lk_key = f2(DHKm, Na, Nb, btlk, addr_A, addr_B)

in
64 insert key_table_A(addr_B, lk_key)).
65 //User action in NC
66 let usernc() = (
67 //(6) in Step 2
68 in(central_user_ch, va: random_num);
69 in(peripheral_user_ch, vb: random_num);
70 //(7) in Step 2
71 if va = vb then
72 out(central_user_ch, yes);
73 out(peripheral_user_ch, yes)).

Listing 4: Implementation of the central device modules and the
user module (NC mode) of SSP.

1 //Interface between stack layer and application layer
2 free BCappP: channel [private].
3 free BLEappP: channel [private].
4 free MeshappP: channel [private].
5 //Interface for compromised peripheral device
6 free BCappPC: channel. free BLEappPC: channel.
7 free MeshappPC: channel.
8 //Secure channel for SSP key sharing
9 table bc_key_s(bt_addr, key).
10 table le_key_s(bt_addr, key).
11 //BC stack
12 let BCP() = (//Get link key
13 get bc_key_s(=addr_A, ltk) in ...
14 //Receive data from central, decrypt and send to BC app
15 in(ch, d: bitstring); let req = sdec(d, sk, sn) in
16 out(BCappP, req); ...).
17 //BLE stack
18 let BLEP() = (//Get long-term key (ltk)
19 get le_key_s(=addr_A, ltk) in ...
20 //Receive

data from central, decrypt and send to BLE app
21 in(ch, d: bitstring); let req = sdec(d, sk, sn) in
22 out(BLEappP, req); ...).
23 //Mesh stack
24 let MeshP() = (
25 //Receive

data from central, decrypt and send to Mesh app
26 in(ch, d: bitstring); let req = sdec(d, sk, sn) in
27 out(MeshappP, req); ...).
28 //Peripheral BC app
29 let BCappp() = (
30 //Receive BC request and send BC response
31 in(BCappP, req: bitstring); out(BCappP, BC_rsp)).
32 //Peripheral BLE app
33 let BLEappp() = (
34 //Receive BLE request and send BLE response
35 in(BLEappP, req: bitstring); out(BLEappP, BLE_rsp)).
36 //Peripheral Mesh app
37 let Meshappp() = (
38 //Receive Mesh request and send Mesh response
39 in(MeshappP, r: bitstring); out(MeshappP, Mesh_rsp)).
40 //Compromised BC stack
41 let BCPC() = (
42 in(ch, d: bitstring); let req = sdec(d, sk, sn) in
43 ((out(BCappP, req); ...) |
44 //Sends/receive the data to/from the

open channel to model the compromised BC stack
45 (out(BCappPC, req); in(BLEappPC, rsp: bitstring)));
46 //Compromised BLE stack
47 let BLEPC() = (...
48 in(ch, d: bitstring); let req = sdec(d, sk, sn) in
49 ((out(BLEappP, req); ...) |
50 //Sends/receive the data to/from the

open channel to model the compromised BLE stack
51 (out(BLEappPC, req); ...));
52 //Compromised Mesh stack
53 let MeshPC() = (
54 in(ch, d: bitstring); let req = sdec(d, sk, sn) in
55 ((out(MeshappP, req); ...) |
56 //Sends/receive the data to/from the

open channel to model the compromised Mesh stack
57 (out(MeshappPC, req); ...));
58 //Key sharing, pairing via BLE
59 let PairBLE() = (
60 insert le_key_m(addr_B, ltk);
61 insert le_key_s(addr_A, ltk);
62 //Derive peripheral BC link key from ltk
63 insert bc_key_m(addr_B, h6(h7(SALT, ltk), lebr));
64 insert bc_key_s(addr_A, h6(h7(SALT, ltk), lebr))).
65 ...
66 //BLE connection only
67 BCP|BLEP|MeshP|BLEappp|PairBLE
68 //Both BC and BLE connection, pairing via BLE
69 BCP|BLEP|MeshP|BCappp|BLEappp|PairBLE
70 //Compromised peripheral with only BLE connection
71 BCPC|BLEPC|MeshPC|BLEappp|PairBLE

Listing 5: Simplified implementation of the peripheral modules
and the key sharing module (pairing via BLE) in data transmission.

17

TABLE VIII: Results of the BlueMAN attack against different Mesh stack implementations.
Vendor Stack Implementation Platform Analysis Vulnerable
1

Nordic Semiconductor
nRF5 SDK for Mesh nRF52840 etc. Bluetooth SoC Source code Yes

2 IOS nRF Mesh Library iOS Dynamic Yes
3 Android nRF Mesh Library Android Binary Yes
4 ESPRESSIF ESP BLE MESH ESP32 and ESP32-S Bluetooth SoC Source code Yes
5

STMicroelectronics
STSW-BNRG-Mesh STM32 Nucleo etc. Bluetooth SoC Binary Yes

6 STSW-BNRG-Mesh-iOS iOS Dynamic Yes
7 STSW-BNRG-Mesh-Android Android Binary Yes
8

Cypress

CYW-MESH 1.0 CYW20706 Bluetooth SoC Binary Yes
9 CYW-MESH 1.0 CYW20719 Bluetooth SoC Binary Yes
10 CYW-MESH 1.0 CYW20735 Bluetooth SoC Binary Yes
11 CYW-MESH 1.0 iOS Binary Yes
12 CYW-MESH 1.0 Android Binary Yes
13 CYW-MESH 1.0 Windows Binary Yes
14 CYW-MESH 1.0 WatchOS Binary Yes
15 Qualcomm Qca4020.Or.3.0 QCA4020 Bluetooth SoC (freertos) Binary Yes
16 Qca4020.Or.3.0 QCA4020 Bluetooth SoC (threadx) Binary Yes
17 Linux Foundation BlueZ Linux Source code Yes
18 BlueZ (meshctl tool) Linux Dynamic Yes
19 BlueKitchen GmbH BlueKitchen Embedded system Source code Yes
20 Tuya Tuya IoT App SDK Android Binary Yes
21

Silicon Labs
Gecko_mesh v3.1 EFR32BG22 Series 2 Bluetooth SoC Binary No

22 Gecko_mesh v3.1 iOS Binary No
23 Gecko_mesh v3.1 Android Binary No
24 Linux Foundation Zephyr OS Mesh Zephyr OS Source code No
25 Apache Foundation NimBLE Apache Mynewt OS Source code No

1 new exp_C: exponent creating exp_C_1 at {1}
2 new exp_P: exponent creating exp_P_1 at {2}
3 out(ch, ~M) with ~M = p256(gen,exp_C_1) at {6}
4 in(ch, a) at {7}
5 insert p1c(addr_B,p256(gen,exp_C_1),a,p256(a,exp_C_1)) at {9}
6 in(ch, gen) at {11}
7 out(ch, ~M_1) with ~M_1 = p256(gen,exp_P_1) at {12}
8 insert p1p(addr_A,gen,p256(gen,exp_P_1),p256(gen,exp_P_1)) at {14}
9 get p1c(addr_B,p256(gen,exp_C_1),a,p256(a,exp_C_1)) at {28}
10 new na: random_num creating na_8 at {15}
11 in(ch, HMAC_SHA256(a_1,concat(concat(a,~M),zero)))

with HMAC_SHA256(a_1,concat(concat(a,~M),zero)) = HMAC_SHA256(a_1,concat(concat(a,p256(gen,exp_C_1)),zero)) at {18}
12 out(ch, ~M_2) with ~M_2 = na_8 at {19}
13 in(ch, a_1) at {20}
14 get p1p(addr_A,gen,p256(gen,exp_P_1),p256(gen,exp_P_1)) at {72}
15 out(central_user_data_out, SHA256(concat(concat(concat(p256(gen,exp_C_1),a),na_8),a_1))) at {24} received at {145}
16 out(central_user_ui, yes_confirm) at {146} received at {25}
17 insert p2c(addr_B,na_8,a_1,zero,zero,p256(a,exp_C_1)) at {27}
18 out(peripheral_user_data_in, SHA256(concat(concat(concat(p256(gen,exp_C_1),a),na_8),a_1))) at {147} received at {61}
19 new nb_3: random_num creating nb_8 at {62}
20 in(ch, HMAC_SHA256(a_2,concat(concat(gen,~M_1),SHA256(concat(concat(concat(~M,a),~M_2)

,a_1))))) with HMAC_SHA256(a_2,concat(concat(gen,~M_1),SHA256(concat(concat(concat(~M,a),~M_2),a_1)))) = HMAC_SHA256
(a_2,concat(concat(gen,p256(gen,exp_P_1)),SHA256(concat(concat(concat(p256(gen,exp_C_1),a),na_8),a_1)))) at {66}

21 out(ch, ~M_3) with ~M_3 = HMAC_SHA256
(nb_8,concat(concat(p256(gen,exp_P_1),gen),SHA256(concat(concat(concat(p256(gen,exp_C_1),a),na_8),a_1)))) at {67}

22 in(ch, a_2) at {68}
23 out(ch, ~M_4) with ~M_4 = nb_8 at {70}
24 insert p2p(addr_A,a_2,nb_8,SHA256(concat(concat(concat(p256

(gen,exp_C_1),a),na_8),a_1)),SHA256(concat(concat(concat(p256(gen,exp_C_1),a),na_8),a_1)),p256(gen,exp_P_1)) at {71}
25 get p2p(addr_A,a_2,nb_8,SHA256(concat(concat(concat(p256(

gen,exp_C_1),a),na_8),a_1)),SHA256(concat(concat(concat(p256(gen,exp_C_1),a),na_8),a_1)),p256(gen,exp_P_1)) at {100}
26 in(ch, HMAC_SHA256(~M_1,concat(concat(concat(concat(concat(a_2,~M_4),SHA256(concat(concat(concat(~M,a),~M_2),a_1))

),iocap_A),addr_A),addr_B))) with HMAC_SHA256(~M_1,concat(concat(concat(concat(concat(a_2,~M_4),SHA256(concat(concat
(concat(~M,a),~M_2),a_1))),iocap_A),addr_A),addr_B)) = HMAC_SHA256(p256(gen,exp_P_1),concat(concat(concat(concat
(concat(a_2,nb_8),SHA256(concat(concat(concat(p256(gen,exp_C_1),a),na_8),a_1))),iocap_A),addr_A),addr_B)) at {91}

27 event recv_peripheral(p256(gen,exp_P_1)) at {96} (goal)
28 The event recv_peripheral(p256(gen,exp_P_1)) is executed at {96}.
29 A trace has been found.
30 RESULT event(recv_peripheral(dhk)) ==> event(send_central(dhk)) is false.
31 --
32 Verification summary:
33 Query event(recv_peripheral(dhk)) ==> event(send_central(dhk)) is false.
34 --

Listing 6: Attack trace of the BThack attack (CVE-2020-10134) against the peripheral device.

18

1 new exp_P: exponent creating exp_P_1 at {1}
2 new exp_D: exponent creating exp_D_1 at {2}
3 out(ch, ~M) with ~M = PI at {5}
4 in(ch, a) at {6}
5 insert pi_table_prov(addr_dev,PI) at {7}
6 insert pcap_table_prov(addr_dev,a) at {8}
7 in(ch, a_1) at {9}
8 out(ch, ~M_1) with ~M_1 = PCap at {10}
9 insert pi_table_dev(addr_prov,a_1) at {11}
10 insert pcap_table_dev(addr_prov,PCap) at {12}
11 get pcap_table_prov(addr_dev,a) at {21}
12 out(ch, ~M_2) with ~M_2 = PS at {13}
13 out(ch, ~M_3) with ~M_3 = p256(gen,exp_P_1) at {15}
14 in(ch, gen) at {16}
15 insert pubkey_table_prov(addr_prov,p256(gen,exp_P_1)) at {18}
16 insert pubkey_table_prov(addr_dev,gen) at {19}
17 insert dhkey_table_prov(addr_prov,p256(gen,exp_P_1)) at {20}
18 get pi_table_dev(addr_prov,a_1) at {30}
19 in(ch, a_2) at {22}
20 in(ch, a_3) at {23}
21 out(ch, ~M_4) with ~M_4 = p256(gen,exp_D_1) at {25}
22 insert pubkey_table_dev(addr_prov,a_3) at {27}
23 insert pubkey_table_dev(addr_dev,p256(gen,exp_D_1)) at {28}
24 insert dhkey_table_dev(addr_dev,p256(a_3,exp_D_1)) at {29}
25 get pubkey_table_prov(addr_prov,p256(gen,exp_P_1)) at {57}
26 get pubkey_table_prov(addr_dev,gen) at {56}
27 get dhkey_table_prov(addr_prov,p256(gen,exp_P_1)) at {55}
28 new rand_prov: random_num creating rand_prov_2 at {31}
29 get pubkey_table_dev(addr_prov,a_3) at {87}
30 get pubkey_table_dev(addr_dev,p256(gen,exp_D_1)) at {86}
31 get dhkey_table_dev(addr_dev,p256(a_3,exp_D_1)) at {85}
32 new rand_dev_1: random_num creating rand_dev_2 at {58}
33 new auth_val_1: random_num creating auth_val_3 at {59}
34 out(dev_user_data_out, auth_val_3) at {60} received at {98}
35 out(prov_user_data_in, auth_val_3) at {99} received at {32}
36 out(ch, ~M_5) with ~M_5 = AES_CMAC(AES_CMAC(AES_CMAC(AES_CMAC(ZERO,concat(concat(

concat(concat(PI,PCap),PS),p256(gen,exp_P_1)),gen)),p256(gen,exp_P_1)),prck),concat(rand_prov_2,auth_val_3)) at {40}
37 in(ch, ~M_5) with ~M_5 = AES_CMAC(AES_CMAC(AES_CMAC(AES_CMAC(ZERO,concat(concat(

concat(concat(PI,PCap),PS),p256(gen,exp_P_1)),gen)),p256(gen,exp_P_1)),prck),concat(rand_prov_2,auth_val_3)) at {41}
38 event send_prov(p256(gen,exp_P_1)) at {42}
39 out(ch, ~M_6) with ~M_6 = rand_prov_2 at {43}
40 in(ch, ~M_6) with ~M_6 = rand_prov_2 at {44}
41 event recv_prov(p256(gen,exp_P_1)) at {46}
42 insert key_table_prov(addr_dev,AES_CMAC(AES_CMAC(AES_CMAC(ZERO,concat(concat(AES_CMAC(ZERO,concat(concat

(concat(concat(PI,PCap),PS),p256(gen,exp_P_1)),gen)),rand_prov_2),rand_prov_2)),p256(gen,exp_P_1)),prsk)) at {51}
43 insert nonce_table_prov(addr_dev,AES_CMAC(AES_CMAC(AES_CMAC(ZERO,concat(concat(AES_CMAC(ZERO,concat(concat

(concat(concat(PI,PCap),PS),p256(gen,exp_P_1)),gen)),rand_prov_2),rand_prov_2)),p256(gen,exp_P_1)),prsn)) at {54}
44 get key_table_prov(addr_dev,AES_CMAC(AES_CMAC(AES_CMAC(ZERO,concat(concat(AES_CMAC(ZERO,concat(concat

(concat(concat(PI,PCap),PS),p256(gen,exp_P_1)),gen)),rand_prov_2),rand_prov_2)),p256(gen,exp_P_1)),prsk)) at {92}
45 get nonce_table_prov(addr_dev,AES_CMAC(AES_CMAC(AES_CMAC(ZERO,concat(concat(AES_CMAC(ZERO,concat(concat

(concat(concat(PI,PCap),PS),p256(gen,exp_P_1)),gen)),rand_prov_2),rand_prov_2)),p256(gen,exp_P_1)),prsn)) at {91}
46 out(ch, ~M_7) with ~M_7 = AES_CCM(keys,AES_CMAC(AES_CMAC(AES_CMAC

(ZERO,concat(concat(AES_CMAC(ZERO,concat(concat(concat(concat(PI,PCap),PS),p256(gen,exp_P_1)),gen)),rand_prov_2
),rand_prov_2)),p256(gen,exp_P_1)),prsk),AES_CMAC(AES_CMAC(AES_CMAC(ZERO,concat(concat(AES_CMAC(ZERO,concat(concat
(concat(concat(PI,PCap),PS),p256(gen,exp_P_1)),gen)),rand_prov_2),rand_prov_2)),p256(gen,exp_P_1)),prsn)) at {88}

47 The attacker has the message sdec(~M_7,AES_CMAC(AES_CMAC(AES_CMAC(ZERO,concat(concat(AES_CMAC(ZERO
,concat(concat(concat(concat(~M,~M_1),~M_2),~M_3),gen)),~M_6),~M_6)),~M_3),prsk),AES_CMAC(AES_CMAC(AES_CMAC(ZERO,
concat(concat(AES_CMAC(ZERO,concat(concat(concat(concat(~M,~M_1),~M_2),~M_3),gen)),~M_6),~M_6)),~M_3),prsn)) = keys.

48 A trace has been found.
49 RESULT not attacker(keys[]) is false.
50 --
51 Verification summary:
52 Query not attacker(keys[]) is false.
53 --

Listing 7: Attack trace of the BlueMAN attack (CVE-2020-26560) when the OOB public key exchange is not available and the Output
OOB authentication method is used.

19

	Introduction
	Background
	Key Sharing
	Data Transmission

	Motivation
	A Comprehensive Bluetooth Formal Model
	Threat Model
	Modeling Challenges and Solutions
	Model Design and Implementation
	Modeling Secure Simple Pairing
	Modeling Mesh Provisioning
	Modeling Data Transmission

	Verified Security Properties and Findings
	Secure Simple Pairing
	Mesh Provisioning
	Data Transmission
	Key Sharing and Data Transmission

	Case Study
	Bluetooth Mesh Authentication Neutralization Attack
	Cross Stack Illegal Access Attack

	Limitations and Future Work
	Discussion
	Related Work
	Conclusion
	References
	Appendix
	Implementations of the Model in ProVerif
	Evaluation of BlueMAN and CSIA
	Attack Trace Generated by ProVerif

