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Abstract
Virtualization introduces a significant amount of overhead
for I/O intensive applications running inside virtual ma-
chines (VMs). Such overhead is caused by two main sources:
(1) device virtualization and (2) VM scheduling. Device
virtualization causes significant CPU overhead as I/O data
need to be moved across several protection boundaries. VM
scheduling introduces delays to the overall I/O processing
path due to the wait time of VMs’ virtual CPUs in the run
queue. We observe that such overhead particularly affects
many applications involving piped I/O data movements, such
as web servers, streaming servers, big data analytics, and
storage, because the data has to be transferred first into the
application from the source I/O device and then back to the
sink I/O device, incurring the virtualization overhead twice.
In this paper, we propose vPipe, a programmable framework
to mitigate this problem for a wide range of applications
running in virtualized clouds. vPipe enables direct “piping”
of application I/O data from source to sink devices, either
files or TCP sockets, at virtual machine monitor (VMM)
level. By doing so, vPipe can avoid both device virtualiza-
tion overhead and VM scheduling delays, resulting in im-
proved I/O throughput and application performance as well
as significant CPU savings.
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1. Introduction
Increasingly enterprises are moving their applications hosted
in traditional infrastructures to private cloud environments
or public cloud platforms such as Amazon EC2. A key tech-
nology that drives cloud computing is virtualization. In ad-
dition to enabling multi-tenancy in cloud environments, vir-
tualizing hosts in the cloud environment has made hardware
resource management increasingly flexible, resulting in sig-
nificant savings in operational costs.

Many applications hosted in the cloud are I/O intensive:
Ever increasing usage of distributed data processing frame-
works (e.g., Hadoop) contributes to a significant share of I/O
intensive workload in the cloud. Organizations and compa-
nies use public cloud infrastructures to host their multi-tier
web services. Their data or contents are stored either in tradi-
tional databases (e.g., MySQL) or in NoSQL databases (e.g.,
MongoDB, CouchDB). In addition, many online services
in the cloud (e.g., cloud-based storage) store user-generated
contents either in databases or file systems. Although these
applications are diverse in their semantics, many of them
share one common characteristic: they involve moving data
from one I/O device to another. For example, a web server
may move data from disk to network when serving client re-
quests; a storage server may move data from network to disk
when uploading user data; a web proxy may move data from
one network socket to another when dispatching incoming
traffic; and a local file backup agent may copy data from one
disk to another. The performance of such “I/O data piping”
may affect the overall performance of the corresponding ap-
plications and, in some cases, become their bottleneck.

The performance of I/O data piping becomes more crit-
ical in a virtualized environment. A known consequence
of virtualization is its negative impact on the I/O perfor-
mance of applications running in the virtual machines (VMs)
[6, 9, 12, 19, 21, 25, 27]. Such performance penalty on I/O
processing stems from two main sources: (1) VM consoli-
dation [9, 19, 27], and (2) device virtualization [6, 12, 21].
Recent efforts [9, 19] have shown that by offloading protocol
processing functionality to the VMM layer it is possible to
reduce the negative impact of VM consolidation on TCP per-
formance and improve TCP throughput for VMs. However,
these approaches still incur device virtualization overhead as
they copy data to the VMs. A plethora of projects have been
focusing on mitigating the performance penalty imposed by



the device virtualization layer [20, 22, 23]. These optimiza-
tions aim at reducing CPU cycles on the I/O data path and are
mostly oblivious to VM scheduling latency. It is possible that
a combination of these approaches could achieve better per-
formance. Yet none of these methods can completely elim-
inate both device virtualization overhead and performance
penalty incurred by VM consolidation.

We mainly focus on cloud applications that involve sig-
nificant inter-device data movement, either partially or com-
pletely, in their workflows. More specifically, we target
an application’s movement of data from one device to an-
other – without performing transformation on the data. Such
data movement is common in many applications such as
file servers, distributed file systems (e.g., HDFS), interme-
diate data stores of large data analytics applications (e.g.,
Hadoop), web servers serving static files, file backup ser-
vices, load balancing servers, and data sharing services.
These applications typically read data from one device (us-
ing the read() system call or one of its variants) and write to
the same or another device (using the write() system call or
one of its variants). Most of the time, the application does
not need to touch the data and hence there is no fundamen-
tal need to bring the data into its memory address space.
But due to the current separation between OS and applica-
tions, the data will have to be copied to the application’s
address space inside the VM, crossing multiple protection
domain boundaries (VMM-VM and VM kernel space-VM
user space). Clearly, such “piped” data movement will in-
cur significant virtualization overhead from the two sources
mentioned above.

In this paper, we propose to alleviate this overhead by of-
floading the entire piped I/O operation to the VMM layer.
By doing so, we would be able to avoid (1) VM schedul-
ing delays – because the operation will be performed in the
VMM (or the driver domain) which gets scheduled more of-
ten; and (2) device virtualization overhead such as data copy-
ing, page table and grant table modifications, and switching
CPU among different protection domains – because the data
now reside outside the VM.

Offloading piped I/O processing to the VMM layer is,
however, not straightforward. Since most of the semantic
knowledge about the data resides in the VM context, for the
VMM to perform the offloaded operation, we need to obtain
such knowledge from the VM layer and convert it to a form
that the VMM can interpret. As an example, even though
the data blocks belonging to a file in the VM reside in the
physical disk and can be read by the VMM layer without
involving the VM, to map the file to physical disk blocks that
the VMM can understand, we need knowledge about the file
system running inside the VM. A similar justification can be
made for the TCP packets arriving at the network interface
card (NIC).

To realize the idea of offloading piped I/O operations to
the VMM layer, we develop a system called vPipe, where

data from a source device can be “piped” to a destination
device with minimal involvement of the VM’s kernel and the
application running inside the VM. vPipe installs a module
in the guest kernel – with a programming interface – so that
it would be able to obtain the required semantic information
from the VM without transferring the actual data to the
VM. Once the semantic information or mapping is obtained
from the VM, the VMM component of vPipe will perform
the actual data transfer between the source and destination
devices.

To summarize, our contributions in this paper are:

1. We propose a new programming interface for a wide
range of cloud applications with piped I/O, which allows
those applications to offload the piped data movement
operation to the VMM layer in the same host.

2. We develop the vPipe system, which performs the I/O
shortcutting at the VMM level via components in the
VM’s kernel and in the VMM. The in-VM component
collects semantic information about the data source and
data sink, while the VMM component performs the ac-
tual data movement.

3. We present evaluation results from a vPipe prototype
implemented on Linux running on the Xen hypervisor.
Our microbenchmark results show that vPipe achieves
throughout improvements for all types of supported
source-to-destination combinations. Results from Apache
HDFS, web server systems, and video streaming servers
also show significant application-level performance im-
provements with vPipe.

2. Motivation
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Figure 1. I/O data flow in the web server example.

Let us focus on a concrete example where a web server
hosted in a VM is sending a static file located in the disk
to a client. In this scenario, the web server process receives
an HTTP request from the client via a TCP connection. The
web server parses this request and locates the file requested
by the client. If the file is a legitimate one, the web server
process sends an HTTP header and then engages in a loop
where the file content is read into a buffer in the process’



address space and then written to the socket corresponding
to the client’s TCP connection. The flow of I/O data in this
example is shown in Figure 1. To perform this data transfer,
the web server process and the OS running in the VM only
need to examine some meta-data of the file – such as the
file’s length, type, and permissions – to verify its validity
and to construct the HTTP header. Yet content of the entire
file is copied all the way to the web server process’ memory.

Such a data flow model has two main inefficiencies in
virtualized clouds: (1) When data from disk cross multiple
protection boundaries (i.e., VMM-VM boundary and kernel-
user boundary) to reach the process and then head back to the
NIC, a significant amount of CPU overhead is incurred. Al-
though there exist optimizations (such as splice()/sendfile()
in Linux) to avoid kernel-user boundary crossing overhead,
much of the overhead is caused by the data’s crossing the
VMM-VM boundary, which is also known as the device
virtualization overhead. (2) When the VM running the web
server is sharing CPUs with other VMs in the host (i.e., VM
consolidation), this VM may not always be scheduled, re-
sulting in delays in processing events posted by the VMM
regarding the availability of data and completion of I/O op-
erations hence causing degraded I/O performance.

Device Virtualization Overhead In a virtualized system,
either the VMM or a privileged domain, called driver do-
main, uses its native device drivers to access I/O devices di-
rectly, and performs I/O operations on behalf of other guest
VMs. The guest VMs use virtual I/O devices controlled by
paravirtualized drivers to ask the VMM for device access.
VMs that need to read from or write to a device have to fol-
low a number of steps involving data copying, page sharing
(which requires page table and grant table modifications),
virtual interrupt processing, and protection domain switch-
ing (VMM to VM mode) in order to make the VMM access
the device on behalf of the VM. As noted by many exist-
ing efforts [16, 20, 23], this I/O model causes significant
performance penalty for I/O-intensive workloads in VMs.
VMM-bypassing I/O devices such as SR-IOV-enabled NICs
can eliminate this overhead by directly assigning devices
to VMs. However such devices inhibit the interposition of
the VMM on I/O paths to perform QoS and security tasks
[8, 15]. Hence paravirtualized I/O is still widely used in vir-
tualized clouds.
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Figure 2. VM scheduling delay affecting I/O event process-
ing.
VM Scheduling Latency While device virtualization
causes high CPU overhead for I/O processing and results

in I/O performance degradation, research in [9, 19, 26, 27]
suggests that the main cause of latency in I/O event process-
ing under virtualization is VM scheduling, not device virtu-
alization. In an OS directly running on a physical machine,
pending I/O events get processed almost instantaneously be-
cause I/O processing holds higher priority in most modern
OSes. However, for a VM sharing CPU cores with other
VMs, I/O processing may be significantly delayed because
this VM may not be scheduled when its I/O event (e.g., net-
work packet arrival) occurs. An example in Figure 2 shows
a device sending an event signaling the availability of I/O
data for VM1, when VM1 is sharing a CPU with two other
VMs (VM2 and VM3). The VMM layer will first process the
event and then place the event in a shared bus connecting to
VM1. However, at this moment VM1 is in the CPU runqueue
waiting for its turn for the CPU. Once VM1 gets scheduled,
the event can be consumed and a response will be sent to the
device. As shown in the figure, the VM scheduling delay is
a major factor in the overall I/O processing latency. Since
each VM scheduling slice is typically in the order of tens of
milliseconds, the VM will experience equally high latency
for I/O event processing, which would otherwise be in the
range of sub-milliseconds.
2.1 Key Observation
Based on the above examples and analysis, we make a crit-
ical observation: If there were an API via which the appli-
cation could request the VM’s kernel, which in turn would
instruct the VMM, to transfer data directly from disk to NIC
on behalf of the application, both of the problems with I/O
processing discussed earlier could be avoided. First, it would
avoid device virtualization overhead because the data move-
ment operation happens inside the VMM layer and hence
data copying, page sharing, virtual interrupts processing, and
protection domain switching would be unnecessary. Second,
it would avoid delays caused by VM scheduling because the
VMM component performing the data movement is sched-
uled more often than the guest VMs to perform interrupt
processing and other management tasks. In fact, an earlier,
primitive version of vPipe, which could only perform file-
to-socket transfers proved to be effective in improving I/O
throughput while reducing CPU resource consumed [10].

3. Design
vPipe essentially offloads the actual data transfer segment of
the data movement operation – originally performed by the
application in a VM – to the VMM. The application instructs
the VM’s kernel to construct a “pipe” between designated
source and destination devices. The VM’s kernel gathers
necessary meta-data about the source and the destination
which are needed by the VMM (or the driver domain) to
interpret the data on disk as well as data coming from or
going towards the NIC. The driver domain, which has access
to the physical devices and the drivers controlling them, can
then construct a pipe between them using the meta-data. For



API Function Input Parameters Return Value Description

vpipe create() in fd, vPipe descriptor Creates a vPipe descriptor instance for a given
out fd source and a destination descriptors

vpipe socket to file() vPipe descriptor, Bytes written to out fd Perform a vPipe operation with a socket
file offset, length as the source and a file as the destination

vpipe socket to socket() vPipe descriptor, Bytes written to out fd Perform a vPipe operation with a socket as the
length source and another socket as the destination

vpipe file to socket() vPipe descriptor, Bytes written to out fd Perform a vPipe operation with a file as the
file offset, length source and a socket as the destination

vpipe file to file()
vPipe descriptor,

Bytes written to out fd
Perform a vPipe operation with a file as the

in file offset, length, source and another file as the destination
out file offset

vpipe destroy() vPipe descriptor 0 on success, failure Deregisters the vPipe descriptor and deallocates
code otherwise memory associated with it

Table 1. vPipe API.

applications that insert new data into the data stream, such as
a web server sending dynamic content along with static files,
there needs to be sufficient flexibility in vPipe to let the VM
assume control of the two ends of the pipe when required.
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Figure 3. vPipe system design.

We concretize the above conceptual design with two main
components of vPipe as shown in Figure 3: (1) a vPipe VM
component that resides in the VM’s kernel space, whose re-
sponsibility is to interact with the application, collect meta-
data regarding the source and destination, and call the driver
domain to carry out the requested piped I/O; and (2) a vPipe
VMM/driver domain component which accesses the physi-
cal devices and performs the actual data movement opera-
tion on behalf of the VM. The vPipe VM component inter-
acts with applications by providing a special device and a
set of library calls which wrap the access to this device to
provide easy access to the vPipe interface. The vPipe VM
component and VMM/driver domain component communi-
cate with each other via a standard inter-domain communi-
cation channel used by paravirtualized device drivers. We
will discuss each of these components and their interfaces in
the remainder of the section.
3.1 vPipe API
First we outline the vPipe API for cloud application de-
velopers. The vPipe API is a set of functions provided in
a user-level library (libvpipe) which hides the complexity
of interacting with the vPipe VM component from appli-
cations. This library provides six main functions shown
in Table 1 that correspond to each type of piped I/O op-
eration. An application can associate a handle for vPipe

operations by calling the vpipe create() function with the
input file descriptor and the output file descriptor. By do-
ing this ahead of time, the application can save time for
socket or file descriptor lookup by the vPipe VM mod-
ule, especially for processes that perform vPipe operations
on the same set of file descriptors periodically (e.g.,, a
proxy server supporting persistent connections). The set of
vpipe source to destination() calls instruct the VM compo-
nent to perform the four types of supported vPipe operations.
Currently these functions are blocking calls even if the cor-
responding file descriptors are working under non-blocking
mode. Implementing non-blocking functionality is left for
future work, although conceptually it is quite similar to the
blocking call. Finally, the vpipe destroy() function deregis-
ters the vPipe descriptor and deallocates any memory as-
sociated with the descriptor. In our current implementation
we require the application to explicitly call vpipe destroy(),
as we do not have a timeout mechanism to detect appli-
cations which are not responding. However, destroying the
application (hence the process) would trigger destroying the
vPipe handles registered to that process. We have another
set of similar vpipe source to destination() functions which
do not require a handle – they will create a handle on the
fly and destroy it once the vPipe operation is finished. We
realize that this API is somewhat similar to Linux sendfile()
API (from Linux 2.6.33 onward) and adapting libvpipe to be
compatible with sendfile() API is left as future work.

We also develop a Java user API of vPipe to be used with
applications such as Apache HDFS. This Java API is a wrap-
per on top of libvpipe, developed using Java native interface
(JNI). This library locates the socket and file descriptors as-
sociated with Java Socket and FileInputStream / FileOutput-
Stream objects and calls the corresponding libvpipe function
to perform the offloaded operation.

3.2 vPipe VM Component
The vPipe VM component resides in the VM’s kernel con-
text and acts as the “glue” between the application which
requests the vPipe operation (via libvpipe) and the driver
domain component which carries out the operation. It also
performs the essential task of communicating with the VM’s
I/O subsystem to locate the meta-data about the source and
destination of an offloaded operation. In the current design



of vPipe, we focus on files on disk and TCP sockets. De-
spite the design details below, we point out that the vPipe
VM component is modular and lightweight, involving just
one loadable module plus 200 lines of modified kernel code,
which we believe is acceptable in practice, given the signifi-
cant performance gains achieved by vPipe.

Offloading File I/O In most file systems, files are repre-
sented by a set of descriptors (inodes) which contain infor-
mation about the file such as size, permissions, block device
the file is associated with, pointer to the descriptor describ-
ing the file system information and a set of identifiers point-
ing to the physical blocks which contain the file’s content.
Even though an access to the file requires accessing most
of the information contained in these inodes, accessing raw
data can be done by just reading/writing the data blocks in
the physical device, which can be performed by the driver
domain even though it does not have access to the inode in-
formation located in the VM’s kernel. (It is possible however
to access the VM’s kernel memory using VM introspection
techniques [11] – but the overhead of such techniques is usu-
ally very high for throughput/latency-sensitive tasks.)

File read: When a file read operation is requested at one
end of the vPipe data movement pipe, the VM module com-
municates with the VM’s file system requesting physical
block identifiers of the corresponding file. In our Linux-
based implementation, this is done by invoking the bmap()
function of the file object. Most modern file systems use
block sizes around 4KB. Given that cloud applications such
as Hadoop often involve file size of GBs or larger, we ex-
pect the size of this identifier data structure to be large. For-
tunately, most file systems store files in a few consecutive
ranges of blocks, known as file extents. Hence by locating
the first block and the range size we can access the entire
range without requiring the identifiers of individual blocks.
Once all the extents are retrieved from the VM’s file system,
the vPipe VM module can pass this information along with
the block device identifier to the driver domain for reading
the file blocks.

File write: Writing a file requires handling a few more
details. In particular, if the write operation is an append
operation (writing to a new file can be viewed as creating an
empty file and then appending to it), the VM’s file system
requires allocating new empty data blocks and send their
identifiers to the vPipe VM module. This allocation involves
operations such as locating free disk blocks, modifying file
system-specific data structures, and performing journaling
and other consistency measures, which are specific to each
file system type. Hence, higher-level file system APIs do not
provide methods to create such empty data blocks. vPipe
modifies the lower-level file system layer as well as the
high-level generic file system layer as shown in Figure 3.
Porting vPipe to a specific file system directly depends on
how difficult it is to implement this functionality of that file
system. Specifically, we require to add methods to allocate

empty disk blocks without the data associated with those
blocks, to perform necessary housekeeping required by the
specific file system such as adding/removing orphan nodes,
and starting and committing journal transactions. Since
vPipe is unable to know how much space is needed when
allocating the empty blocks in advance, we currently let the
application decide the number of blocks to allocate at once.
(In our experience, larger batch size leads to lower CPU
utilization.)

For file overwrite operations, the vPipe VM module has
to flush dirty pages associated with the file and mark them
as invalid, so that the VM’s file system will not overwrite
the blocks written by vPipe’s driver domain component later
while flushing the disk cache. Once the necessary block
identifiers are created with the help of the file system, the
vPipe VM module can pass these identifiers to the driver
domain which will perform the actual file write operation.

An optimization to the file reading operation is to use the
disk cache at the VM level when possible. Reading blocks
from the disk cache is much faster than reading from the disk
drive. Hence, even with virtualization overhead, it is better
to use these cached blocks if there exist a sizable range of
consecutive blocks. However, if the number of cached blocks
is small and they are not the first blocks to be transferred,
we would have to first perform a vPipe operation to transfer
data up to the cached data blocks, send the cached blocks
from the VM, and finally perform another vPipe operation to
transfer the rest. Communicating with the driver domain and
transferring control to it multiple times introduces overhead
and hence would defeat the savings obtained by the usage
of disk cache. The same reasoning applies even when the
number of cached blocks are high, but scattered in the range
to be transferred. In our current design we use the disk
cache only if the continuous cached page range exceeds
max{1MB,10%× f ile size}. Reading contents from the disk
cache is also required in cases where the content of the disk
cache is marked dirty. In both read and write operations,
we mark the file inode as read/write locked correspondingly
(e.g.,, by performing down on i alloc sem field of the inode)
to prevent race conditions.

Offloading TCP Sockets If either end of the offloaded
piped I/O operation is an established TCP socket, vPipe will
offload the entire TCP processing functionality to the driver
domain by establishing a shadow socket in the driver do-
main using the driver domain’s TCP stack. This approach
is somewhat different from the approach to offloading disk
file access, in which we perform file system-specific tasks
at the VM layer and restrict the driver domain to just read
and write raw physical blocks. A less drastic solution along
that line would be letting the guest VM fabricate placeholder
TCP packets ahead of time that are then filled with data in
the driver domain. However, that would not work here as
TCP packets coming from or going to the NIC have meta-
data associated with them (e.g., sequence numbers and win-



dow sizes) and proper handling of a TCP connection requires
some processing of the meta-data before sending or receiv-
ing data. Even with this partial offloading of TCP process-
ing, important functions such as congestion control have to
be performed by the driver domain anyway, otherwise the
benefit of offloading would be completely lost. So we de-
cide to handover the entire TCP socket to the driver domain
during the vPipe operation and then pass it back to the VM
along with the updated information once the vPipe operation
is over. An application performing “piping” operations and
sending generated data in between can invoke a sequence of
{vPipe, send()} operations.

In order to offload a TCP socket as one end of a vPipe
operation, the application first needs to have a valid TCP
socket by establishing the connection via either connect() or
accept(). When getting this socket file descriptor from the
application, the vPipe VM module, with the help of VFS
and the VM’s TCP stack, can convert this descriptor to a
socket structure with the necessary information to establish
the shadow socket in the driver domain. Such information
includes the source and destination IP addresses, source and
destination ports, last sent and received sequence numbers,
and window size. We also collect the congestion control in-
formation from the VM’s TCP stack, such as the conges-
tion window, ssthreshold (slow start threshold) and the cur-
rent mode of the connection (either slow start or congestion
avoidance), so that we can continue with the same conges-
tion information at the driver domain instead of beginning
from slow start to build up the connection. However, before
collecting this information from the acquired socket struc-
ture, we have to make sure that all the packets sent by the
VM before the vPipe operation are acknowledged by the
other end. This is because if there was a loss among those
packets, we would not be able to recover the loss once the
socket was offloaded to the driver domain – with the socket
now residing in the driver domain while the data to be re-
transmitted is in the VM. So we perform a busy wait on the
socket until all the sent data packets are acknowledged.

There is another subtle issue when an offloaded TCP
socket is the source end of the pipe. In this case, as soon as
the TCP connection is established by the application and just
before establishing the vPipe offload operation, the other end
of the connection might start sending data while the VM’s
TCP socket is still active. This would make the offloading
complex if the other end keeps sending data to the VM,
while the shadow socket is being created. To prevent this
from happening, when a TCP socket is passed as the input
of the pipe, we will install a packet filter rule at the IP layer
of the VM to drop packets coming from that connection.
(Once the shadow socket is established, the sender’s TCP
retransmission mechanism will resend those packets). Then
we check the VM’s TCP buffers to see if there are any
received data from the other end, starting when the vPipe
operation is invoked by the application and ending when the

vPipe VM module installs the packet-dropping rule. If there
are any data segments in the buffer, we will move them first
to the destination of the pipe and adjust parameters such as
the length of the operation, starting block of the file (if the
destination is a file) and so on.

3.3 vPipe VMM/Driver Domain Component
The vPipe VMM/driver domain component (or driver do-
main component) is responsible for carrying out vPipe op-
erations offloaded by guest VMs in the host. The compo-
nent interacts with the TCP stack of the driver domain and
with the virtual disk driver backend which exposes VM disk
images to guest VMs. At system initialization, the driver
domain component enumerates all the active virtual disks
and initializes a device descriptor for each of them. This al-
lows the driver domain component to interact with these vir-
tual disks immediately for vPipe operations. It also creates
a hook to the VM management subsystem to notify the ad-
dition or removal of virtual disks when VMs are created or
destroyed. We allocate a pool of pages as the buffers associ-
ated with each of these descriptors to perform vPipe opera-
tions – we use a statically allocated pool of pages so that the
page allocation time is minimal when a vPipe operation is
offloaded to the driver domain component.

The vPipe operations are encapsulated in vPipe descrip-
tors. A thread from the VM-specific thread pool (Figure 3)
is assigned to carry out each vPipe operation. The thread is
responsible for carrying out one vPipe operation at a given
time – we adopt this model instead of an event-driven model
for simplicity.

The driver domain component receives offloading re-
quests from the vPipe VM component via an inter-domain
communication channel, which is similar to those used in
implementing paravirtual device drivers (e.g.,, Xen’s ring
buffer mechanism). This channel uses a ring buffer to hold
the descriptors for shared pages which describe the vPipe
operation with information such as the type of operation
(i.e., socket to socket, socket to file, file to socket, or file
to file), the meta-data about the source and the destination,
and the length of the operation (in bytes). A virtual interrupt
mechanism (such as Xen’s inter-domain events) is used to
convey the availability of a new vPipe operation in the ring
buffer from the VM, or the completion of an operation from
the driver domain.

File I/O When the driver domain component receives an of-
floading request with a file as one end of the pipe, it first ver-
ifies the validity of the request by checking whether the sup-
plied block identifier range falls within the VM’s virtual disk
image. The requests passing this check are assigned a set of
pages from the page buffer to carry out the vPipe operation.
If the file is the source end of the pipe, disk read requests
are created with the block identifiers and memory pages and
submitted to the disk driver in batches. The batch size is de-
termined by the queue length of the virtual disk driver. When



the read requests complete, the write function of the pipe de-
scriptor is called along with the associated pages. If the file is
the destination of a pipe, the write function receives a set of
pages filled with data to be written. These pages are used to
create a set of disk write requests along with the disk block
identifiers received from the vPipe VM component and sub-
mitted to the virtual disk driver in batches. Both read and
write operations are carried out in a loop until the supplied
length of the vPipe operation is exhausted.

TCP Sockets The driver domain component uses the driver
domain’s TCP stack to establish “shadow sockets”, which
are replicas of the original sockets in the VM contexts.
During the vPipe operation, the original socket at the VM
level is disabled so that the user process will not be able to
use it to send or receive data.

There are three high-level steps to create a shadow socket:
First, a socket structure is created by the driver domain com-
ponent in the driver domain’s TCP stack using the standard
socket kernel interface. This socket however, is not a com-
plete socket structure since we have not connected it to a peer
using either connect() or accept() functions. It is merely a
template socket created in the driver domain’s kernel space.

Second, the driver domain component associates the
meta-data received from the VM with this empty socket
structure. Since the kernel socket interface at the driver do-
main does not have APIs to populate sockets directly with
information such as source and destination IP addresses,
source and destination ports, and window information, we
slightly modify the driver domain’s TCP stack, which allows
us to directly manipulate the sockets and supply relevant in-
formation when a shadow socket is created.

Finally, forwarding entries are added to the driver do-
main’s IP routing subsystem and to the bridging subsystem
so that the packets destined to an offloaded socket are routed
to the driver domain’s TCP stack rather than to the VM.
Marking the shadow socket as ESTABLISHED at the end of
these three steps allows the shadow socket to be fully func-
tional. The driver domain component, depending on whether
the socket is the source or destination of a pipe, can perform
recv() or send() operations on this socket.

3.4 Sharing the Driver Domain
We must ensure that the vPipe worker threads working for
different VMs (Figure 3) are sharing the driver domain’s
resources fairly, as the VM’s I/O workloads are now carried
out by the driver domain. Specifically, we should “charge”
the work done by these threads to the VMs requesting vPipe
operations. Lack of such accounting and control will lead to
unfairness in carrying out vPipe operations and may allow
some VMs to gain unfair advantage in the shared system.
The native process scheduler in the driver domain alone
cannot handle this task because it is not aware of the user-set
priorities of VMs which vPipe has to honor.

We address this challenge by using a simple credit-based
scheme. Each per-VM thread pool of the vPipe driver do-
main component is allocated a certain amount of credits
based on the priority (weight) of the corresponding VM.
These credits are consumed by the threads as they perform
I/O operations, based on the number of bytes transferred.
When the threads run out of credits, they wait for a func-
tion that runs periodically to add more credits to them. The
running frequency of that function is tunable to make fine
grained adjustments for fairness. In situations where a work
conserving property is desirable, we assign a very low pri-
ority to the threads that have exhausted their credits, until
the credits are replenished. The total amount of credits di-
vided among the thread pools is calculated by running a cal-
ibration task during vPipe’s initialization. This calibration
process takes into account the maximum I/O capacity of the
virtualized host. One limitation of this scheme is that, it can-
not perform accounting for the VMs’ regular I/O operations.
We believe that, for these I/O operations, the existing I/O
scheduler at the driver domain is sufficient.

4. Implementation
We have implemented a prototype of vPipe with Xen 4.1 as
the VMM and Linux 3.2 as the kernel of the VMs and the
driver domain. The vPipe VM component is implemented as
a loadable Linux kernel module plus minor changes to the
kernel. The module uses Linux VFS functions to manipulate
file descriptors and to locate kernel socket data structures
when a process makes vPipe calls using file and socket
descriptors. Since most of the VFS functions, data structures,
and kernel socket structures are exposed to kernel modules,
we do not have to make any changes to guest kernels for
implementing pipes involving file read and socket read/write
operations.

For file write operations, we slightly modify both the
ext3 file system and the generic VFS layer. Two functions
are added to the ext3 inode operations. The first function,
ext3 vpipe dio start(), allows the creation of new block
identifiers for append operations without any data pages.
It also takes care of creating an ext3 journal transaction
and adding the file’s inode to the list of orphan nodes so
the file system could be rolled back to a previous state in
case of an abandoned write operation. The second function,
ext3 vpipe dio end(), which gets called once the actual data
write is done by the driver domain component, performs
clean up operations on the temporary state created by the
write operation, such as committing the journal transaction,
extending the file size (in case of a successful write), trun-
cating the extra data blocks (if the driver domain returns an
error or returns with less number of blocks than allocated),
syncing inode to the disk, and removing the inode from the
orphan list. However, our current implementation of these
functions does not support data journaling mode of ext3.
The changes made in the generic file system (VFS) layer



involve adding pointers to the file’s address space operations
structure so that the above functions can be called from the
VFS layer and adding functionality to flush and invalidate
pages which have dirty content in case of a file overwrite.

Similar to the vPipe VM component, the vPipe driver do-
main component is also implemented as a loadable Linux
kernel module. We make changes to the driver domain ker-
nel – this time for creating offloaded sockets. Our modifica-
tions include changes to the Linux generic sockets layer
(sock create shadow()) – to create shadow sockets with
meta-data supplied by the VM; to the inet stream layer
(inet stream shadow socket()) – to perform IP-specific ini-
tialization for the shadow socket; to the TCP v4 subsystem
(tcp v4 shadow socket()) – to perform TCP-specific initial-
ization for the shadow socket such as setting sequence num-
bers and congestion information, initializing buffers etc.; to
the IP routing layer (ip rt add shadow flow()); and to the
Ethernet bridging subsystem (br input add shadow flow())
– to forward packets destined to an offloaded socket to the
driver domain’s TCP stack. The vPipe driver domain mod-
ule interacts with the Linux block I/O subsystem using the
bio *() API. Each vPipe operation is carried out by a Linux
kernel thread (kthread) picked from the per-VM thread pool.

The application interface of the vPipe VM module is a
special device in the VM’s device directory (/dev/vpipe). A
user-level process may call ioctl() on this special device to
interact with the vPipe VM module. However, as discussed
in Section 3.1, we wrap this interface with a set of C function
calls and Java methods for application programming conve-
nience.

5. Evaluation
This section presents our evaluation of vPipe using both
microbenchmarks and cloud applications.
Evaluation Setup Our testbed consists of multiple servers,
each with a 3GHz Intel Xeon quad-core CPU and 16GB
of memory. These servers run Xen 4.1.2 as the VMM and
Linux 3.2 as the OS for all guest VMs and the driver domain.
To make sure that the driver domain gets enough CPU time
to serve I/O, we pin the driver domain to one physical core,
following the recommended setup for Xen-based servers.
We also pin the guest VMs to another physical core to create
VM scheduling effects. We use lookbusy [3] to generate
deterministic CPU workloads.

5.1 Microbenchmark Performance

File Send Throughput We use a simple program that reads
from a file on the disk and writes to the socket connected to
a client running in another host. The application uses two
modes to transfer the file to the client: (1) via sendfile() sys-
tem call and (2) via vpipe file to socket() library function.

Figure 4(a) shows the throughput improvements achieved
by vPipe transferring a 512MB file when the VM running
the application is co-located with 0, 1, 2, and 3 other VMs.

When only the application VM is running on the core, both
sendfile() and vPipe modes can reach the full available band-
width of the 1Gbps link. As the number of VMs sharing
the core increases, throughput drops for the sendfile() mode.
However, since vPipe offloads the processing of the entire
I/O operation to the driver domain, the throughput remains
the same regardless of the number of co-located VMs.

Figure 5(a) shows the results when we vary the file size
being transferred while the application VM is sharing the
CPU with two other busy VMs. The improvements are
quite stable over the file sizes from 64MB to 1GB, with
the throughput under the sendfile() mode slightly improved
for the larger file sizes.

File Receive Throughput For this experiment, we use a
simple application that receives a file sent from a client run-
ning in a different host and writes it to the disk. The file
is opened with O SYNC flag and hence the writes are di-
rectly flushed to the disk, avoiding any effects of Linux disk
buffer cache. Figure 4(b) shows the throughput improve-
ments achieved by vPipe when the number of VMs sharing
the core with the application VM varies from 0 to 3, while
a 512MB file is transferred from the client to the application
VM. The results in Figure 5(b) show that the throughput im-
provements are stable over various file sizes (from 64MB to
1GB), when the application VM is sharing the CPU with two
other VMs.

Connecting Two Sockets This experiment emulates a
proxy server which performs connection forwarding. In this
experiment, we have an application consisting of three com-
ponents – a server component which accepts a connection
from a client and writes a file from the disk to the connec-
tion, a client which connects to a server and receives the file,
and a proxy which forwards the connection from the client
to the server. We run both the server and client components
on physical machines while running the proxy in a VM,
which uses (1) read-write mode and (2) vPipe to perform
the connection forwarding. Figure 4(c) shows the through-
put improvements achieved by vPipe, when the number of
co-located VMs varies from 0 to 3, while a 512MB file is
transferred from the server to the client via the proxy.

Figure 5(c) shows the results of the experiment when
we vary the file size while the proxy VM is sharing the
CPU with two other busy VMs. The results show that the
improvements are independent of the file size and mainly
depend on the number of VMs sharing the same CPU core.

File Copying Throughput We modify the Linux copy (cp)
utility to use vPipe for this experiment. We also create two
disk images for the VM so that we can emulate an applica-
tion copying a file from one disk to another during a backup
operation. Figure 4(d) shows the throughput improvements
achieved by vPipe when copying a 512MB file, with the
number of co-located VMs varying from 0 to 3. In this case,
even though vPipe shows improvements over the vanilla Xen
configuration, the improvements are not as significant as in
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Figure 4. Throughput improvement with different number of guest VMs per core.
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Figure 5. Throughput improvement with varying data size.

the earlier three experiments. The main reason is that, dur-
ing the file copy operation, a high volume of read and write
requests are issued to the same physical disk, making the
physical disk itself the bottleneck on the data path.

Figure 5(d) shows the throughput improvements when
the file size varies from 64MB to 1GB, with two other co-
located VMs. The results show improvements similar to the
earlier experiments, and the trend shows that the gains are
independent of the file size.

CPU Savings Figure 6(a) shows the average CPU utiliza-
tion when performing (1) a file to socket operation and (2) a
socket to socket operation for 1GB of data. As expected, the
VM’s CPU utilization under the read-write mode is higher
since it requires copying data across all layers. vPipe incurs
almost no CPU cost at the VM level because there is no work
to be done in the VM context once the operation is offloaded
to the driver domain.
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Figure 6. CPU utilization.
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Figure 7. I/O intensive VMs sharing the driver domain.

vPipe saves CPU cycles at the driver domain as well.
Figure 6(b) shows the breakdown of CPU utilization of the
driver domain kernel threads involved in I/O processing for
the VM. In “file to socket” mode, the loop thread, which is
responsible for reading blocks from the VM image (block
device emulation), is similar in both the vPipe and vanilla
cases. The slight difference is due to the following: When
the VM performs read-write/sendfile, the amount of disk
requests issued per one VM-to-dom0 switch is small, hence
leading to many small disk requests. However, vPipe batches
as many requests as the disk allows to cause less overhead
while performing disk requests.

The netback thread, which is responsible for emulating
the network device for the VM takes up about 20% utiliza-
tion for the read-write mode. The blkback thread, which em-
ulates the disk for the VM, takes about 7-9% utilization in
both modes. These device emulation threads are not a factor
in vPipe since the data do not cross the VMM-VM boundary.
In “socket to socket” transfer mode there are two netback
threads involved in the vanilla case to carry out data transfer
for the two virtual NICs. We see that these backend drivers
use even more CPU than the vPipe components in the driver
domain. Backend drivers use data copying between dom0
and the VM and they use an interdomain event channel to
signal. Both of these operations are CPU costly. Also with
vPipe we perform much more data batching compared to the
read-write mode.

Sharing the Driver Domain We now evaluate our credit-
based scheme for sharing the driver domain fairly among
multiple VMs requesting vPipe I/O operations. In this exper-
iment, we have three VMs performing file-to-socket vPipe
operations on the same physical machine. The weight ratio
among VM1, VM2 and VM3 is set to 1:1:2. We start with
VM1 sending a file on disk to a client using vPipe. After 5
seconds, VM2 starts sending another file on disk to another
client. After another 5 seconds, VM3 starts sending a file to
a third client using vPipe.

Figure 7 shows the throughput (1-second average) achieved
by each of the three operations. Initially VM1 gets about
117MBps (close to the wire speed of the 1Gbps network)
with no other VM to compete with. When VM2 starts the
vPipe operation at the 5th second, both throughputs settle at
about 58MBps because of their 1:1 weight ratio. When VM3
starts its vPipe operation, it gets about 58MBps while VM1
and VM2 get about 29MBps each, consistenting with the
1:1:2 weight ratio. At the 21st second, VM3 finishes its I/O
operation and the throughputs of VM1 and VM2 go back up
to 58MBps each.

5.2 Application Performance

Web Server System with a Load Balancer In this ex-
periment, we create a load balanced web server system
consisting of two backend web severs running Lighttpd
[2] and a load balancing server running Pound load bal-
ancer [5] in front of them. Pound distributes the requests
to the backend web servers using a round robin algorithm
while the Lighttpd servers serve various sized files located
in the disk. We modify the Lighttpd web server to use the
vpipe file to socket() function instead of sendfile() when
serving static files. We also modify the Pound load balancer
to use the vpipe socket to socket() function instead of the
send()-receive() pair when forwarding connections between
the backend servers and the clients.

We populate both web servers with exactly the same set of
static files. We use httperf to generate repeated requests for
files of size 1MB, 10MB, 100MB, and 1GB to stress test the
web server system. Figure 8 shows the results of our experi-
ment under four configurations. The “Xen” scenario involves
the vanilla Xen running with no optimization. In “vPipe-LB”
scenario, we install vPipe only on the host running the load
balancer. In the “vPipe-web” case we enable vPipe on hosts
running the two web servers, but not on the host running the
load balancer. Finally, in “vPipe-both” configuration, we en-
able vPipe on all the hosts.

As shown in Figure 8, all vPipe-* configurations outper-
form the Xen configuration for all file sizes. The vPipe-both
configuration gives the best throughput improvement (up
to 2.9 ×) as it uses file-to-socket pipe to improve the web
servers’ throughput and the socket-to-socket pipe to improve
the load balancer’s throughput. vPipe-LB configuration out-
performs vPipe-web, because the load balancer is the bottle-
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Figure 8. Throughput improvements for web server system.

neck of the system hence optimizing the load balancer better
improves the overall system’s throughput.
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Figure 9. HDFS throughput improvements by vPipe.

Apache HDFS In this experiment, we apply vPipe to the
widely used cloud file system HDFS. We measure the read
performance of the HDFS server as it is more common in
HDFS’ write-once-read-many model.

HDFS stores data in different datanodes to provide high
fault tolerance and throughput. When one client reads a file,
the HDFS server reads the actual data from the correspond-
ing datanodes and send them to the client via socket. This
pattern matches vPipe’s file-to-socket mode, so we use the
vPipe file to socket API in the HDFS datanode using our
vPipe Java library. More specifically, we modify HDFS’
sendChunks() function to use the vPipe API.

The read/write unit of each datanode is an HDFS packet.
We vary the packet size from 2MB to 16MB and measure
the read throughput for each size. For simplicity, we only
run one HDFS datanode and one client. The HDFS client
and server are running on two VMs located in two different
physical hosts. Each VM shares one core with 2 other VMs
which only generate 35% CPU load. In our experiment, the
client reads 1GB of data from the HDFS datanode each
time. The results are shown in Figure 9(a). When the packet
size is larger than 2MB, vPipe effectively improves the read
throughput (up to 42%). For the smaller packet size (i.e.
2MB), the overhead of offloading the operation offsets the
performance gain from vPipe. Figure 9(b) shows the HDFS
read throughput when we add 30% CPU load to the datanode
itself (e.g., running a mapper/reducer in the datanode).

Video Streaming We modify GNUMP3d [1], an open
source streaming server for MP3s, OGG vorbis files, movies,
and other media formats, to use vPipe when serving video
files. We run GNUMP3d in a VM hosted by a server along
with 2 or 3 other core-sharing VMs. We use real video
files (size exceeding 500MB) of MPEG-4 format in our
experiments.

First we evaluate the number of simultaneous clients that
can be supported by GNUMP3d while running with the de-
fault Xen configuration and with vPipe. We use MPlayer
[4] in command line mode running in 3 other physical ma-
chines, with video and audio output directed to the null de-
vice. We measure the number of simultaneous MPlayer in-
stances which can be supported by GNUMP3d without caus-
ing interruption in playback (i.e., “buffer empty” events).
Columns 2 and 4 of Table 2 show the results when the VM
running GNUMP3d shares the same core with 2 and 3 other
VMs, respectively.

Next, we evaluate the throughput improvement of GNUMP3d
by vPipe by measuring the time to buffer a complete movie
of 750MB. Columns 3 and 5 show the time to buffer
the movie file by a media player, when the VM running
GNUMP3d shares a core with 2 and 3 other busy VMs,
respectively.

3 CPU sharing VMs 4 CPU sharing VMs
Max. no. Buffer Max. no. Buffer
of clients time (s) of clients time (s)

Xen 910 11.7 780 13.6
vPipe 1303 8.1 1216 8.3

% Improvement 43.1 (31.6) 55.8 (38.9)/(Reduction)

Table 2. Performance improvement for GNUMP3d.
Compared with default Xen configuration, GNUMP3d

with vPipe achieves 43% and 56% improvements for the
number of simultaneous clients for the 3-VM and 4-VM
configurations, respectively. From the client’s perspective,
GNUMP3d with vPipe achieves 32% and 39% reduction of
movie buffering time for an individual client.
6. Discussion
Offloading Code with vPipe Operations Our application
case studies above have demonstrated vPipe’s applicability.
However, vPipe can be further enhanced to support data
processing on the piped data I/O path. For example, a proxy
server may encode/decode data coming from the backend
before sending them to the clients. Such encoding/decoding
function could be executed by the driver domain as part of
the vPipe operation, reducing a significant amount of data
crossing the VMM-VM boundary. Challenges in offloading
such a data processing function include the recreation of
proper execution context for its execution in the VMM (as
if it were executed in the VM), as well as the isolation of its
impact from the rest of the VMM (for security). We leave
this as our future work.
Interplay with Modern Hardware Modern hardware
techniques such as SR-IOV can eliminate most of the de-



vice virtualization overhead by directly transferring data
to the VM’s memory without crossing the driver domain.
However, the VM will still be subject to VM scheduling de-
lays and hence there is still room for vPipe to optimize data
movement performance. The new challenge is that these de-
vices bypass the driver domain and hence it would be diffi-
cult to route packets towards the shadow socket once a vPipe
operation has been initiated. We envision the capability of
programming the hardware to forward packets from a match-
ing connection to the driver domain – but such capability is
not yet supported. [16] also discusses the disadvantages of
such direct access devices when driver domain interposition
is necessary to perform functions such as firewalling and
rate limiting.

7. Related Work
Reducing Device Virtualization Overhead There exist
many previous efforts that focus on reducing the overhead
associated with device virtualization along the data path of
I/O processing. In [20] Menon et al. propose several opti-
mizations such as scatter/gather I/O, checksum offload and
TCP segmentation offload (TSO) to improve TCP perfor-
mance in Xen VMs. In [23] they propose packet coalescing
to reduce the overhead of TCP per-packet processing cost in
VMs and hence improve TCP receive performance. [22] pro-
poses performing part of the network device’s functionality
at the hypervisor level to reduce CPU overhead incurred by
network packet processing.

Similarly, Gordon et al. propose exit-less interrupt de-
livery mechanisms to alleviate interrupt handling overhead
[12, 16] in virtualized systems, where I/O events are passed
to the VM without exiting to the hypervisor. Ahmed et al.
propose virtual interrupt coalescing for virtual SCSI con-
trollers [7] based on the number of in-flight commands to the
disk controller. Virt-FS [17] presents a para-virtualized file
system as an alternative to NFS or CIFS which allows shar-
ing the driver domain’s (or host’s) file system with VMs for
minimal overhead. While these techniques have been proved
quite effective in reducing the virtualization overhead, they
cannot fundamentally eliminate it. Instead, vPipe aims at
avoiding the overhead by performing piped I/O at the VMM
layer.
Reducing VM Scheduling Latency Since VM schedul-
ing delay can significantly affect a VM’s I/O processing
throughput as well as application-perceived latency in VM
consolidation environments, many previous projects have fo-
cused on minimizing VM scheduling delay for I/O-intensive
applications. vSlicer [27] categorizes VMs into latency-
sensitive VMs and non-latency-sensitive VMs and sched-
ules the latency-sensitive VMs more frequently for shorter
period of time in each scheduling period, thereby reduc-
ing the application-perceived latency. vTurbo [26] offloads
VMs’ I/O processing to a dedicated core with very small
time slices, so that the scheduling delay for virtual CPUs

in this core is extremely small. The work in [18] exploits
the homogeneous nature of VMs running MapReduce tasks
and proposes grouping these VMs and sorting the runqueue
based on such grouping. It also involves batching I/O re-
quests to reduce context switches between the VM and
VMM. Govindan et al. propose [14] preferential schedul-
ing of communication-oriented applications over their CPU-
intensive counterparts to reduce network receive latency
and anticipatory scheduling to reduce network transmit la-
tency. The primary focus of all these efforts is to reduce the
scheduling delay of I/O-intensive VMs and thereby to either
reduce the latency or increase the throughput of I/O process-
ing. However, they cannot reduce the overhead introduced
by device virtualization.

Offloading Functionality to VMM Offloading I/O oper-
ations for performance improvement is a well studied ap-
proach. In [13] the authors discuss the idea of offloading
common middleware functionality to the hypervisor layer to
reduce guest/hypervisor switches. In contrast, vPipe intro-
duces shortcutting at the I/O level and is hence applicable
to a broader range of cloud applications. In [24] the authors
propose offloading the TCP/IP stack to a separate core. vS-
noop [19] and vFlood [9] mitigate the impact of VMs’ CPU
access latency on TCP by offloading acknowledgement gen-
eration and congestion control to the driver domain, respec-
tively. They however focus only on improving TCP through-
put but not on improving the performance of more general
I/O.

8. Conclusion
We have presented vPipe, a system that offloads piped data
I/O operations of a VM to the VMM layer for more ef-
ficient data movement and consequently better application
performance. We observe that traditional virtualized systems
would first move the data in a piped I/O operation to the ap-
plication’s memory space and then back to the VMM layer,
incurring I/O overhead arising from virtual device emulation
and CPU scheduling latency among VMs. vPipe mitigates
such performance penalty by shortcutting piped I/O opera-
tions at the VMM layer. Our evaluation of a vPipe prototype
shows that vPipe can improve the throughput of file-to-file,
file-to-socket, socket-to-file, socket-to-socket data move-
ments, which are common in cloud applications. Our ap-
plication case studies demonstrate vPipe’s applicability and
effectiveness.
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