
Opportunistic Flooding to Improve TCP Transmit
Performance in Virtualized Clouds

Sahan Gamage, Ardalan Kangarlou, Ramana Rao Kompella, Dongyan Xu

Department of Computer Science
Purdue University

West Lafayette, Indiana 47907, USA
{sgamage,ardalan,kompella,dxu}@cs.purdue.edu

ABSTRACT

Virtualization is a key technology that powers cloud com-
puting platforms such as Amazon EC2. Virtual machine
(VM) consolidation, where multiple VMs share a physical
host, has seen rapid adoption in practice with increasingly
large number of VMs per machine and per CPU core. Our
investigations, however, suggest that the increasing degree
of VM consolidation has serious negative effects on the VMs’
TCP transport performance. As multiple VMs share a given
CPU, the scheduling latencies, which can be in the order of
tens of milliseconds, substantially increase the typically sub-
millisecond round-trip times (RTTs) for TCP connections
in a datacenter, causing significant degradation in through-
put. In this paper, we propose a light-weight solution called
vFlood that (a) allows a TCP sender VM to opportunis-
tically flood the driver domain in the same host, and (b)
offloads the VM’s TCP congestion control function to the
driver domain in order to mask the effects of VM consolida-
tion. Our evaluation of a vFlood prototype on Xen suggests
that vFlood substantially improves TCP transmit through-
put with minimal per-packet CPU overhead. Further, our
application-level evaluation using Apache Olio, a web 2.0
cloud application, indicates a 33% improvement in the num-
ber of operations per second.

Categories and Subject Descriptors

D.4.4 [Operating Systems]: Communications Management—
Network communication

General Terms

Design, Performance, Measurement

Keywords

Virtualization, Cloud Computing, TCP, Datacenters

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOCC’11, October 27–28, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0976-9/11/10 ...$10.00.

1. INTRODUCTION
Recent advances in cloud computing [12] and datacen-

ter technologies have significantly changed the computing
landscape. Enterprises and individual users are increasingly
migrating their applications to public or private cloud infras-
tructures (e.g., Amazon EC2, GoGrid, and Eucalyptus [38])
due to their inherent economic and management benefits.
The key technology that powers cloud computing is vir-
tualization. By breaking away from the traditional model
of hosting applications in physical machines, virtualization
enables the “slicing” of each physical machine in a cloud
infrastructure into multiple virtual machines (VMs), each
individually hosting a server, service instance, or applica-
tion component. This practice, commonly known as VM
consolidation (or server consolidation), allows dynamic mul-
tiplexing of physical resources and results in higher resource
utilization and scalability of the cloud infrastructure.

The practice of VM consolidation exploits the availability
of modern commodity multi-core and multi-processor sys-
tems that facilitate easy allocation of resources (e.g., mem-
ory and CPU) across multiple VMs. Recent trends indicate
a rapid increase in VM density—in a recent survey, about
25% of the enterprises in North America indicate that they
already deploy 11-25 VMs per server, and another 12% in-
dicate as high as 25 VMs per server [8]. We believe that
technological advances such as techniques for the sharing of
CPU [22, 45] and memory [23, 36] among VMs will only
catalyze this trend further, leading to even higher degrees of
VM consolidation in the future.

Meanwhile, many cloud applications tend to be commu-
nication intensive. The reason lies in the wide adoption of
distributed computing techniques such as MapReduce [18]
for large-scale data processing and analysis. In addition,
many scalable online services (e.g., e-commerce, Web 2.0)
hosted in the cloud are often organized as multi-tier services
with server load balancers redirecting clients to web fron-
tend servers, which in turn interact with backend servers
(e.g., database, authentication servers). These applications
involve communication across multiple VMs in the datacen-
ter, and thus the application-level performance is directly
dependent on the network performance between the VMs.

Unfortunately, our recent investigations [28] suggest that
the two trends above are directly at odds with each other.
Specifically, we observe that sharing of CPU by multiple
VMs negatively impacts the VMs’ TCP transport perfor-
mance, which in turn affects the overall performance of many
cloud applications. In particular, with multiple VMs sharing

the same CPU, the latency experienced by each VM to ob-
tain its CPU time slices increases. Furthermore, such CPU
access latency (tens/hundreds of milliseconds) can be or-
ders of magnitude higher than the typical (sub-millisecond)
round-trip time (RTT) between physical machines within
a datacenter. Consequently, the CPU access latency domi-
nates the RTT between two VMs, significantly slowing down
the progress of TCP connections between them.

Due to the closed loop nature of TCP, VM CPU sharing
can negatively impact both the transmit and receive paths
of a TCP connection. On the receive path, a data packet
may arrive at the physical host from a remote sender in
less than a millisecond; but the packet needs to wait for
the receiving VM to be scheduled to process it and generate
an acknowledgment (ACK). In our prior work [28], we have
proposed a solution called vSnoop, in which we place a small
module within the driver domain that essentially generates
an ACK for an in-order data packet on behalf of the receiving
VM under safe conditions, thus causing the TCP sender
to ramp up faster than otherwise. We demonstrated that
this approach can effectively improve the performance of
network-oriented applications.

In this paper, we focus on the transmit path that has not
been addressed in our prior work. On the sender side, be-
cause of CPU scheduling latency, the sender VM can get de-
layed in processing the TCP ACKs coming from the remote
receiver, which causes its congestion window (and hence the
sending rate) to grow slowly over time. At first glance, it
may appear that this problem is quite similar to that on
the receive path, and hence, we could devise a solution sim-
ilar to vSnoop. However, notice that for the receive path,
vSnoop could easily fabricate the ACKs in the driver do-
main since they are generated in response to data packets
that already contain all the information necessary (mainly,
sequence number) for generating the ACKs. Unfortunately,
the same cannot be done on the transmit path since the
driver domain cannot fabricate new data packets on behalf
of the VM and only the VM can undertake this task. Thus,
a straightforward extension of vSnoop will not work on the
transmit path.

Of course, the principle of getting help from the driver
domain is still logical even on the transmit path. However,
given we cannot change the fundamental fact that only the
VM can generate the data packets, the only other recourse
then is to create a situation that encourages the VM to
generate a lot of data packets and transmit them quickly.
Achieving this is not easy though, since the VM itself will
generally adhere to the standard TCP congestion control
semantics such as slow start and congestion avoidance, and
hence, cannot send too many data packets at the beginning.
This behavior will continue even if the receiver advertises
a large enough window, since a normal TCP sender is pro-
grammed to behave nicely to flows sharing the network path.

To address this problem, we propose a solution called
vFlood, in which we make a small modification to the send-
ing VM’s TCP stack that essentially “offloads” congestion
control functionality to the driver domain. Specifically, we
install a small kernel module that replaces the TCP con-
gestion control functionality in the VM with one that just
“floods” the driver domain with a lot of packets that are sub-
sequently buffered in the driver domain. The driver domain
handles congestion control on behalf of the VM, thus ensur-

ing the compliance of TCP semantics as far as the network
is concerned.

There are two other challenges that still remain. First,
buffer in the driver domain is a finite resource that needs
to be managed across different VMs and connections in a
fair fashion. Thus, no one connection should be able to
completely occupy all the buffer space, which would prevent
other connections from taking advantage of vFlood. Sec-
ond, there has to be a flow control mechanism between the
VM and the driver domain that would prevent the VM from
continuously flooding the driver domain. This is especially
important for connections that have low bottleneck network
capacity. To solve the first problem, we propose to use a sim-
ple buffer allocation policy that ensures some free space to
be always available for a new connection. We solve the sec-
ond problem with the help of a simple backchannel through
which the driver domain can easily communicate with the
VM about when to stop/resume the flooding.

We have developed a prototype of vFlood in Xen [13]. Our
implementation of vFlood required only about 1500 lines of
code, out of which 40% was reused from Xen/Linux code
base. Using this prototype, we performed extensive evalua-
tion at both TCP flow and application levels. For the flow-
level experiments, vFlood achieves about 5× higher median
TCP throughput for 100 KB flows compared to the vanilla
Xen. Our application-level evaluation with the Apache Olio
[2, 42] Web 2.0 benchmark shows that vFlood improves its
performance by 33% over the default Xen.

While we have so far discussed the receive and trans-
mit independently, in general, a given VM may have some
TCP connections that are transmit-intensive, some receive-
intensive, and some which involve both simultaneously. Thus,
in a real system, we need an integrated version of vFlood and
vSnoop. A curious question here is how an integrated ver-
sion compares with vFlood or vSnoop alone, i.e., whether
the resulting benefits are cumulative or not. We have also
implemented an integrated version of vSnoop and vFlood in
our prototype system, and our evaluation (with vSnoop only,
vFlood only, and vSnoop+vFlood configurations) shows that
they do indeed yield orthogonal, non-counteracting perfor-
mance improvements, with the integrated system improving
the performance of the Apache Olio benchmark by almost
60% compared to about 33% by vFlood alone and 26% by
vSnoop alone.

2. vFlood MOTIVATION
We motivate the problem and the need for vFlood using

an example shown in Figure 1. We first focus on the“vanilla”
case shown in the figure on the left. In this scenario, we con-
sider three VMs labeled VM1-VM3 sharing a CPU. Assume
a TCP sender in VM1 is transmitting packets to a remote
TCP receiver not in the same physical host. In this case,
according to the standard TCP semantics, the TCP sender
will start conservatively with one (or a few depending on the
TCP implementation) packet at the beginning of the con-
nection. In many VMMs (e.g., Xen), a data packet passes
via a buffer that is shared between the VM and the driver
domain (e.g., the ring buffer in Xen). Once the driver do-
main is scheduled, it will transmit the packet on the wire
towards the TCP receiver.

Since each CPU scheduling slice is typically in the order
of milliseconds (e.g., 30ms in Xen), and network RTTs in
a datacenter are typically sub-millisecond, the ACK packet

Figure 1: Illustration of TCP connection progress with vanilla VMM and with vFlood-enabled VMM.

may arrive quite quickly but may not find VM1 running at
that instance. Consequently the packet will be buffered by
the driver domain. Later when VM1 gets scheduled, this
packet will be consumed. Unfortunately, as shown in the
figure, this delay could be as high as 60ms if both VM2 and
VM3 use up the entire slice of 30ms (as in Xen). Once the
ACK packet arrives at VM1, VM1 will increase its conges-
tion window according to the TCP slow start semantics and
will send two new packets. Assuming network RTT is 1ms,
the ACKs for these two packets may arrive 1ms later from
the network, but they may have to get buffered until VM1
gets scheduled to process them further.

As a result of this additional scheduling latency, the progress
of the TCP connection is severely hampered. Had there been
no virtualization, the TCP sender would have doubled the
congestion window every 1ms during the slow start phase
thus ramping up quickly to the available bandwidth. Under
the VM consolidation scenario with 3 VMs and CPU slice
of 30ms, we can see that in the worst case the TCP sender
doubles congestion window potentially every 60ms. Extend-
ing this argument to the TCP congestion avoidance phase,
we can find that every 1ms (true network RTT), TCP will
grow its congestion window by 1 MSS, whereas the same
may happen every 60ms due to the additional latency of
CPU scheduling among the VMs. The slow ramp up of the
connection will negatively affect the overall TCP through-
put, especially for small flows which spend most of their
lifetime in TCP slow start. Recent studies on datacenter
network characteristics [27, 14] indicate that the majority
of flows in datacenters are small flows, suggesting that the
impact of CPU sharing on TCP throughput is particularly
acute in virtualized datacenters.

2.1 Possible Approaches
We now discuss some possible approaches to address this

problem. We group them into three categories depending on
the layer at which the approach resides.

TCP At the TCP layer, one possible approach is to turn
off TCP slow start completely, and start with a reasonably
high value for the congestion window. While it may mit-
igate the problem to some extent, this approach will lead

to a congestion collapse in the network as each connection,
irrespective of the congestion state in the network, will start
flooding a large number of packets. This is especially un-
desirable in datacenter networks that often employ switches
with shallow buffers for cost reasons [11]. For this reason,
we choose not to disable TCP slow start. More generally,
it takes decades to perfect protocols such as TCP, and a
cursory fix to TCP such as shutting off slow start may re-
sult in undesirable and even unpredictable consequences. Of
course, it may be interesting to conduct a more careful in-
vestigation to see if we can make changes at the TCP layer
to address this problem.

VM Scheduler At the VMM layer, one option could be
to modify the scheduler to immediately schedule the VM
for which an ACK packet arrives, so that it can quickly re-
spond to the ACKs by sending more data. Unfortunately,
this option is prone to severe context switch overheads as the
scheduler needs to keep swapping the VMs in response to the
packets on the wire, making it practically infeasible. A vari-
ation of this idea is to make the scheduler communication-
aware and prioritize network intensive VMs when making
scheduling decisions. This approach does not incur afore-
mentioned overhead of additional context switching. In-
deed, Govindan et al. have proposed modifications to Xen’s
Simple Earliest-Deadline First (SEDF) CPU scheduler to
make it more communication-aware by preferential schedul-
ing of receiver VMs and anticipatory scheduling of sender
VMs to improve the performance of network-intensive work-
loads [19]. While their scheduling mechanism achieves high
performance for VMs with network-intensive workload, the
improvement may come at the expense of VMs running
latency-sensitive applications with little network traffic [39].
We do however believe that a communication-aware VM
scheduler will create more favorable conditions for vFlood;
we will investigate such an integration in our future work.

Hardware (TOEs) One other possible approach adopted
by modern TCP offload engines (TOEs) offered by different
vendors (e.g., [1, 3]) is to implement TCP in the network
interface cards directly. While TOEs are actually designed
for a different purpose, to reduce the CPU overhead involved
in TCP processing, they do mitigate our problem to some

extent. However, TOEs come with several limitations such
as requiring to modify the existing applications in order to
achieve improved performance [41], lacking flexibility in pro-
tocol processing (such as pluggable congestion control, net-
filter and QoS features available in Linux), and being poten-
tially prone to bugs that cannot be fixed easily [37]. Inter-
estingly, popular virtualization platforms, such as VMware
ESX and Xen, still do not fully support offloading complete
TCP processing to hardware [21, 9]. Linux also does not
natively support full TCP stack offload due to various rea-
sons such as RFC compliance, hardware-specific limitations,
and inability to apply security patches by the community
(due to the closed source nature of TOE firmware) [7]. An
alternative approach, motivated by the presence of many
cores in the modern processors, is TCP onloading [40, 41],
where TCP processing is dedicated to one of the cores. Since
onloading requires extensive modifications to a guest VM’s
TCP stack, it is also not widely adopted.

2.2 Key Intuition behind vFlood
Based on the above discussion, we opt for a solution that

(1) does not change the TCP protocol itself, (2) does not
require hardware-level changes such as TOEs, and (3) does
not modify the VMM-level scheduler. Our approach relies
on the key observation that some components of a virtual-
ized host get scheduled more frequently than the VMs. For
instance, the driver domain in Xen (also the VMkernel in
VMware ESX, the parent partition in Microsoft Hyper-V,
etc.) is scheduled very frequently in order to perform I/O
processing and other management tasks on behalf of all the
VMs that are running on the host. Although not shown
in Figure 1 for clarity, the gaps between VM slices are es-
sentially taken by the driver domain. (In Xen, the driver
domain can get scheduled every 10ms – even though the
scheduling slice time may be 30ms – so that it can process
any pending I/O from the VMs.) This observation suggests
the following idea: If the driver domain, upon the arrival of
an ACK packet from the TCP receiver, can push the next
data segment(s) on behalf of the sending VM, the connec-
tion will make much faster progress and be largely decou-
pled from the scheduling/execution of the VM. vFlood is
proposed exactly to realize this idea.

Moreover, since the driver domain itself cannot gener-
ate data on behalf of the sending VM, the data generated
by some application in the VM must first be pushed to
the driver domain. (We show one convenient approach to
achieve this in Section 3.) The resulting progress of the
TCP connection is shown on the right side of Figure 1: The
driver domain, on behalf of the VM, can emulate the same
TCP slow start and congestion avoidance semantics in re-
sponse to ACKs that are arriving from the TCP receiver,
achieving faster TCP connection progress and higher TCP
throughput, which approaches the throughput achieved by a
non-virtualized (but otherwise the same) TCP sender. The
figure also shows that the interactions between the driver
domain and the TCP receiver are compliant with the TCP
standards.

3. vFlood DESIGN
vFlood essentially offloads the TCP congestion control

functionality from the sender VM to the driver domain of
the same host. Under vFlood, the sender VM is allowed to
opportunistically flood data packets at a high rate to the

Figure 2: vFlood architecture

driver domain during its CPU time slice, while the driver
domain will perform congestion control on behalf of the VM
to ensure TCP congestion control semantics are followed
across the network. To realize congestion control offload-
ing, vFlood needs to accomplish three main tasks:

(1) Enable the VM adopt an aggressive congestion control
strategy during slow start and congestion avoidance
phases of a TCP flow;

(2) Implement a standards-compliant congestion control
strategy in the driver domain on behalf of the vFlood-
enabled VMs;

(3) Manage buffer space for the flooded data in the driver
domain so that tasks (1) and (2) are performed in a
coordinated way.

vFlood accomplishes the above tasks using three main
modules as shown in Figure 2: (1) a vFlood VM module that
resides within the VM and its main responsibility to shut off
the default congestion control in the VM and flood the driver
domain as fast as allowed; (2) a congestion control module
in the driver domain that performs TCP congestion control
on behalf of the VM; and (3) a buffer management module
in the driver domain that controls the flooding of packets so
that the buffer space for flooded packets is used fairly across
all connections and VMs. We will discuss each of these mod-
ules in detail for the remainder of this section. We note that
the generic design of these modules demonstrates vFlood’s
applicability to a wide class of virtualization platforms (e.g.,
Xen, VMware ESX, and Hyper-V). We defer the discussion
of platform-specific implementation details to Section 4.

3.1 vFlood VMModule
The vFlood VM module resides in the VM and its main

responsibility is to opportunistically flood the driver domain
with TCP packets when the VM is scheduled. For packet
flooding, vFlood modifies the standard congestion control
behavior of the VM so that transmissions are done in a more
aggressive fashion as long as such a strategy does not ex-
haust driver domain and network resources. This task can
be conveniently implemented by installing a kernel module
within the VM that effectively replaces the VM’s conges-
tion control function with a customized one that sets the
congestion window to a high value (e.g., cong winvm=512

segments) whenever desired (detailed conditions in Section
3.2). We note that, for most operating systems, such re-
placement is quite straightforward as the TCP congestion
control functionality is usually implemented as a pluggable
module so that an operating system can easily be config-
ured with different congestion control implementations (e.g.,
Reno, Vegas [15], CUBIC [24], FastTCP [26]). In our Linux-
based implementation, vFlood leverages the same interface
as other popularly-used congestion control implementations
in Linux to interact with the kernel. Note that only the con-
gestion window management functions, such as growing and
shrinking window in response to ACKs and packet losses,
are replaced and offloaded to the driver domain; whereas
the VM’s TCP stack still implements all other functionali-
ties required for reliable transmission such as timeout and
retransmission.

As discussed earlier, such a minimal change to VMs is un-
avoidable for vFlood to realize opportunistic flooding and
congestion control offloading. However, we deem such a de-
sign quite reasonable in virtualized cloud platforms where
the guest kernel of a VM can be customized for better per-
formance, security, and manageability. In paravirtualized
VMMs such as Xen, the guest kernel is already patched for
optimized interactions with the underlying VMMs; so intu-
itively, one can think of our approach as paravirtualizing the
TCP stack to some extent. Our approach is also somewhat
similar to the VMware tools [10], in which a set of system
tools are installed in a VM to improve the VM’s perfor-
mance.

Note that our approach requires no modifications either
to the applications or to the TCP protocol itself – all we
require is installing a small kernel module in the guest OS
that essentially dumbs down the congestion control portion
of TCP, and a module within the driver domain for conges-
tion control offloading. Thus, our approach is not as radical
as TOEs or implementing a new variant of TCP.

3.2 Congestion Control Module
The vFlood congestion control module in the driver do-

main mainly performs the offloaded TCP congestion control
function. Upon arrival of ACKs from a TCP receiver, the
congestion control module will transmit packets that have
already been flooded from the sender VM. However, unlike
the artificial congestion window set in the VM (cong winvm),
the congestion window maintained by the driver domain
(cong windrv) grows and shrinks according to TCP standards
and appears to the network and the receiver as the actual
value used for the end-to-end connection. With this design,
one can see that the presence of vFlood does not lead to any
violation of end-to-end TCP semantics and would yield an
approach that is at most as aggressive as a TCP sender from
the driver domain (or from a non-virtualized sender).

vFlood relies on the assumption that the driver domain
has sufficient memory and computation resources to buffer
packets flooded by the VMs and to perform congestion con-
trol functions on behalf of them. Given that TCP processing
overheads are typically dominated by the checksum compu-
tation and segmentation, and that these tasks are increas-
ingly delegated to hardware in modern NICs, we believe that
this assumption is quite reasonable. However, vFlood still
has to carefully manage the finite amount of buffer space
for flooded data among multiple connections. (We discuss
this issue in Section 3.3.) In addition, vFlood’s design re-

Figure 3: vFlood state machine

quires an additional communication channel (referred to as
vFlood channel) between the congestion control module in
the driver domain and the vFlood VM module. This chan-
nel is used by the driver domain to set cong winvm (Section
3.3), which effectively throttles the VM’s transmission rate
based on available buffer space. Meanwhile, the VM mod-
ule uses the channel to signal the congestion control module
when to go offline/online.

vFlood State Machine vFlood effectively de-synchronizes
the TCP sender and receiver that are usually tightly cou-
pled (and hence, susceptible to VM scheduling latencies)
with the help of a state machine (Figure 3). For each flow,
vFlood maintains a small amount of state so that it can en-
able or disable congestion control offloading depending on
the state. In addition to the standard congestion control
state maintained, notably congestion window and slow start
threshold, vFlood’s congestion control module keeps track
of a few other variables: (1) the highest sequence number
acknowledged by the receiver, and the number of times a
packet with this sequence number has been acknowledged
(for counting duplicate ACKs), (2) the count of unacknowl-
edged, transmitted packets, (3) the advertised receive win-
dow of the receiver, (4) the window scaling factor, and (5)
buffer usage of a flow. These values collectively determine
when the congestion control module should actively engage
in congestion control on behalf of the sender VM, and when
it should go offline and let the VM re-take the congestion
control responsibility. The driver domain initializes the per-
flow state upon receiving a SYN or SYN-ACK packet and
sets the flow’s state to ACTIVE.

Online Mode While a flow is in the ACTIVE state,
vFlood buffers all packets coming from the VM (subject to
the buffer-management policy described in Section 3.3) and
performs congestion control and packet transmission. The
flow remains in the ACTIVE state until the flow experiences
one of the two conditions: First, the network bottleneck ca-
pacity of the flow may decrease, in which case, the flow may
start to exceed its share of the buffer usage (i.e., the per-flow
buffer occupancy threshold defined in Section 3.3) leading to
buffer space overflow. In this case, the vFlood VM module
cannot continue to assume a large window size and pump
more packets to the driver domain. Second, depending on
the severity of the network congestion, one or more packets
may be dropped. In this case, the TCP receiver will continue
to send duplicate acknowledgements for each of the subse-
quent packets received after the dropped packet. In case of

three dup-ACKs, standard TCP senders would trigger a fast
retransmit and cut the congestion window by half, and in
case of a timeout, they would trigger a retransmission but
will cut the congestion window to 1MSS and switch to slow
start.

Buffer space overflow is easy to detect in the driver do-
main. Once the congestion control module becomes aware
of such an overflow, it will go offline by setting the state
to NO BUFFER and signaling the vFlood VM module to
switch to standard TCP congestion control. While detecting
triple duplicate ACKs can also be done easily based on the
state maintained, it is unfortunately not easy to detect time-
outs since it requires timers and RTT estimators. Addition-
ally, to perform retransmissions, all unacknowledged packets
need to be buffered. To keep vFlood’s design lightweight,
we resort to the sender VM’s TCP stack for handling these
pathological situations: Once the VM’s TCP stack detects
a timeout, it will notify the vFlood VM module, which will
in turn notify the congestion control module in the driver
domain via vFlood channel. The congestion control mod-
ule will then go offline (PACKET LOSS state) and transfer
congestion control back to the sending VM.

Offline Mode When vFlood goes offline (i.e., when it
switches to NO BUFFER or PACKET LOSS state), the
congestion control module in the driver domain operates in
a pass-through mode, where it does not transmit any new
packets and instead lets the sending VM do that. However,
notice that the sender VM’s congestion control has been re-
placed by the vFlood VM module that sets a larger conges-
tion window than the driver domain. To solve this problem,
once congestion control responsibility is transferred back
to the sender VM, it will stop using the more aggressive
congestion window. Instead, the vFlood VM module will
function like the original TCP stack without vFlood. To
achieve this effect, vFlood basically employs a shadow vari-
able cong winvm

′ that, similar to cong windrv, grows and
shrinks according to TCP semantics. This variable is in
addition to cong winvm that is used when vFlood is online
(i.e., in ACTIVE state). Note that cong winvm

′ may not be
exactly the same as cong windrv at any given instance due
to the slight lag in TCP processing, but are going to be
roughly similar since the driver domain and the VM see the
same sequence of events.

Maintaining the extra shadow variable above does not
cause much overhead as it only entails growing cong winvm

′

by 1 MSS for every ACK during slow start and by 1 MSS for
each RTT during congestion avoidance. Therefore, when the
driver domain module goes offline, the vFlood VM module
can seamlessly take over. In some sense, the vFlood VM
module still retains the full-fledged TCP congestion con-
trol mechanism; however, when conditions are right, it will
switch back to the flooding (online) mode and offload con-
gestion control back to the driver domain. Upon receiving a
notification from the sender VM that the lost packets have
been recovered or upon detecting available buffer space, the
vFlood driver domain module will become online again and
resume its congestion control duty.

Adjusting Receive Window One issue that we have
not discussed so far is the value of the advertised receive
window sent in the ACKs. Given that a TCP connection’s
send window is the minimum of its congestion window and
the receiver advertised window, we also have to modify the
receiver advertised window in order to make the VM TCP

stack flood packets to the driver domain. One solution is
to rewrite ACK packets’ receive window field at the driver
domain module while vFlood is online, so that the small
receiver advertised window does not inhibit flooding. How-
ever, rewriting receive window invalidates a packet’s TCP
checksum, so vFlood either has to recalculate the checksum
or require checksum validation at the physical NIC. This so-
lution might also lead to retransmission of more packets than
expected by the receiver in a situation where the VM detects
packet losses and retransmits based on the inflated value
written by the driver domain. Hence, similar to the conges-
tion window maintenance, vFlood’s VM module maintains
two variables. One variable corresponds to the actual re-
ceiver advertised window as read from incoming ACKs and
is used when vFlood is offline (i.e., vFlood enters PACKET
LOSS or NO BUFFER state). The other variable corre-
sponds to the buffer size in the driver domain and is used
when vFlood is online (i.e., in ACTIVE state).

Choice of Congestion Control Algorithm Another
issue concerns the exact congestion control algorithm used
in the driver domain out of many possible variants. In order
to ensure maximum flexibility in a cloud environment, we
assume the driver domain implements almost all the stan-
dard algorithms that any stock Linux or Windows kernel
implements (e.g., Reno, NewReno, Vegas, CUBIC). Also we
have modularized the design of the congestion control mod-
ule in the driver domain such that plugging-in a new TCP
congestion control algorithm is fairly easy. That way, an
appropriate congestion control algorithm can be configured
easily when vFlood is enabled as an option. We can even
run different congestion control algorithms simultaneously
depending on what the VMs desire thus ensuring functional
equivalence between the online and offline modes of vFlood.

3.3 Buffer Management Module
Finally, vFlood uses the buffer management module to

regulate the buffer usage across different flows, both within
and across VMs. The need for this module stems from the
fact that, in the ACTIVE state, the sender VM acts as the
producer and the network becomes the consumer of packets
for a given flow (according to TCP semantics). If the con-
sumer process (network) becomes too slow, it would lead to
exhaustion of buffer resources in the driver domain. This
problem becomes more acute when there are multiple guest
VMs, each with multiple active TCP flows, contending for
the same buffer space. Note that this problem does not
arise in our receive-path solution vSnoop [28]. More specif-
ically, on the receiver side, the buffer space is limited by
the amount of space in the shared ring buffer (in Xen), or
whatever other mechanism a given VMM uses to transfer
between the VMM and the receiver VM (whether vSnoop is
used or not). However, in vFlood, without care, one slow
flow (perhaps with a bottleneck in the network) can occupy
all the buffer space thus denying the benefits of congestion
control offloading to other flows—the scenario we wish to
avoid.

In vFlood, we provide two levels of isolation. First, in
order to guarantee complete isolation for flows belonging
to different VMs, vFlood assigns to each VM its own ded-
icated buffer space (e.g., a 4MB buffer) that is not shared
with other VMs. This is similar in spirit to the approach
many VMMs (e.g., Xen) take to provision ring buffers for
network transfers between the driver domain and the VMs.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1(0.1) 2(60) 3(60)

N
u
m

b
er

 o
f

P
ac

k
et

s

Flow ID (RTT)

Figure 4: Unfairness in buffer occupancy when no
buffer management policy is in place

As a result, no one VM can greedily occupy all the available
buffer at the expense of other VMs. Second, we provide
a mechanism to manage buffer usage across flows that be-
long to the same VM. Note that it does not make sense to
strictly partition the buffer across flows since the number of
active flows may be large and not all flows benefit equally
from vFlood. In particular, we note that high RTT con-
nections and low bottleneck bandwidth connections benefit
less from vFlood, and also consume more buffer space since
the discrepancy between the rates at which the sender VM
produces and network drains is the most for such flows.

To understand how RTTs affect the buffer usage, we con-
duct a simple experiment where a VM sends a 2MB file to
three different receivers simultaneously. The first flow has
0.1ms RTT while the other two flows have 60ms RTT. We
ensure that all three flows have similar bottleneck capacity.
Figure 4 shows the buffer occupancy of the vFlood per-VM
buffer space for all three flows. As illustrated, flows 2 and 3
occupy a larger share of the buffer space compared to flow
1. The larger buffer occupancy stems from the fact that
cong windrv grows more slowly for the high-RTT flows. As a
result, it takes longer to transmit buffered packets for flows 2
and 3. These high RTT connections will prevent a low RTT
high bandwidth connection from taking better advantage of
vFlood by occupying more available buffer space.

Buffer Allocation Algorithm Interestingly, the high-
level problem faced by vFlood buffer management module
is conceptually similar to the problem of buffer allocation
confounded by network routers, where different flows com-
pete for the same set of buffer resources. While many ideas
have been proposed in that context, a simple yet elegant
scheme that we can borrow is due to Choudhary and Hahne
[17], where the amount of available free space serves as a dy-
namic threshold for each flow. Specifically, in this scheme,
the buffer usage threshold Ti for flow i is defined as

Ti = αi · (B −Q(t)) (1)

where B is the total buffer size, Q(t) is the total buffer usage
at time t, and αi is a constant which can be set according to
the priority of flows. Thus, if only a single flow is present, it
can occupy up to one half of the total buffer space (assuming
αi = 1). As soon as a new flow arrives, both flows can oc-
cupy only 1/3rd of the total buffer space, with the remaining
1/3 reserved for future flows. The main advantage of this
scheme lies in the fact that some amount of buffer is always
reserved for future flows, while the threshold dynamically
adapts based on the number of active flows.

In vFlood’s buffer management module, we implement a

similar scheme that determines how many more segments
the driver domain can receive for flow i (pkt ini

VM) from the
VM module as:

pkt ini
VM = cong wini

drv − pkt out idrv
︸ ︷︷ ︸

θi

+Ti −Qi(t)
︸ ︷︷ ︸

φi

(2)

where cong win i
drv is the congestion window for flow i at the

driver domain, pkt out idrv is the number of transmitted, un-
acknowledged packets for flow i as maintained by the driver
domain, Ti is the buffer threshold as defined by Equation 1,
and Qi(t) is the buffer usage of flow i at time t. In Equation
2, the term θi refers to the number of segments that can be
sent immediately, without any buffering, while the term φi

refers to available buffer space for flow i. Consequently, the
congestion window for flow i at the VM module is defined
as:

cong wini
VM = pkt ini

VM + pkt out iVM (3)

where pkt out iVM is the number of transmitted, unacknowl-
edged packets for flow i as maintained by the VM module
while vFlood is online. To implement a fair buffering policy
among all VM flows, it suffices to pick the same value for αi

(Equation 1) for all flows. With this policy, flow 1 in Figure
4 would have more buffer space and would benefit more from
the presence of vFlood.

Prioritized Buffering Policy In general, however, not
all flows benefit equally from the buffer allocation. We can
broadly categorize flows into four classes depending on their
RTT (high/low) and bottleneck capacity (high/low). Flows
with high RTT or low bottleneck capacity will occupy sig-
nificant buffer space. However, the benefit of allocating
buffer for these type of flows is relatively minimal as: (1)
For high RTT flows, the VM CPU scheduling-induced ex-
tra latency is not dominant with respect to the already high
network RTTs. (2) For low bottleneck capacity flows, push-
ing the congestion control to the driver domain is not likely
to improve TCP throughput anyway. Therefore, flows with
low RTT and high bottleneck capacity would mainly benefit
from vFlood. Fortunately, much of the traffic in datacenters
fall into this category.

Given this classification, we devise a prioritized buffering
policy where vFlood favors low-RTT flows by picking larger
values for αi for them. While we can do similar prioritization
for high-bandwidth flows, it is not practical due to two rea-
sons. First, detecting bottleneck bandwidth is harder to do
in the driver domain and requires keeping additional state.
One could implement rate estimation as in TCP Vegas [15],
but Vegas assumes rate increases by 1 MSS every other RTT
to ensure stable rate calculation which is different from Reno
semantics. Further, it requires additional timing variables
making it, although not completely impossible, a bit more
tedious to perform. A bigger problem, however, is that the
rate estimation during slow start – arguably the stage where
vFlood benefits the most – is unreliable since the window
size has not stabilized yet. Thus, we advocate classifying
flows mainly based on their RTTs without considering their
bottleneck capacities.

We note that in typical cloud environments, due to over-
provisioning of datacenter networks (to provide full bisec-
tion bandwidth within a datacenter), intra-data center ca-
pacities are much higher compared to the lower-bandwidth
cross-datacenter links. Further, intra-datacenter RTTs are
typically much lower than across data centers; thus, high

Figure 5: vFlood implementation on Xen

(low) bandwidths are positively correlated with low (high)
RTTs. Thus, focusing on RTT-based prioritization alone
works reasonably well in our settings. In our evaluations,
we consider 1.0ms as a reasonable threshold to distinguish
high and low RTTs.

4. vFlood IMPLEMENTATION
We have implemented a prototype of vFlood with par-

avirtualized Xen 3.3 as VMM and Linux 2.6.18 as the guest
OS kernel. One of our main implementation goals is to min-
imize the code base of vFlood and maximize the reuse of
existing Xen and Linux code. In fact, out of approximately
1500 lines of vFlood code (according to cloc tool [4]), 40% is
directly reused from existing Xen/Linux code. The reused
code includes part of Linux’s Reno congestion control im-
plementation and flow hashing functionality; and Xen’s I/O
ring buffer management.

As shown in Figure 5, Xen adopts a split driver model for
paravirtualized devices. Each virtual device (e.g., a virtual
network or block device) has a front-end interface in the VM
and a back-end interface in the driver domain (dom0). The
communication between the two interfaces takes place via
the following modules: (1) a ring buffer that holds descrip-
tors of I/O activities in one direction (i.e., from front-end to
back-end or vice versa), (2) a shared page referenced by ring
buffer that holds the exchanged data (e.g.. a network packet,
disk block, etc.), and (3) an event channel that serves like
an interrupt mechanism between the two ends.

When a VM transmits a packet, the packet gets placed on
the shared page between the VM and dom0 and an event (a
paravirtual IRQ) is sent to dom0. Upon receiving the event
from the VM, dom0 constructs a socket buffer (sk buff) ker-
nel structure for the packet and passes it to the Linux bridge
module en route to the network interface card (NIC). Sim-
ilar type of activities takes place on the receive path but in
the reverse order, where an sk buff structure arrives at the
bridge from the NIC, the bridge identifies the destination
VM and passes it to the corresponding back-end interface.
Finally the back-end interface delivers the packet to the VM
via the front-end interface. We next describe the implemen-
tation of different modules of vFlood outlined in Section 3.

vFlood VM Module Replacing the default congestion
control module in the VM is the only modification we made
to the VM. As we briefly alluded to in Sections 3.1 and 3.2,
the vFlood VM module maintains two congestion windows
for each flow. cong winvm is used when vFlood is online for

flooding packets to the driver domain; while cong winvm
′ is

maintained according to the TCP Reno specification and
will be used when vFlood goes offline.

The vFlood VMmodule interacts with the guest OS kernel
through the same interface used by the standard congestion
control modules, hence it does not require any modifications
to the TCP/IP stack of the VM. Additionally, this mod-
ule interacts with the driver domain via the communication
channel vFlood channel, whose implementation will be de-
scribed shortly. Both the VM and driver domain modules
of vFlood maintain a control structure for each TCP flow to
store the per-flow state. Each control structure is accessed
by a hash function that takes as input the source/destination
IP addresses and port numbers of a given flow.

Congestion Control Module This driver domain mod-
ule of vFlood is implemented as two hook functions to the
Linux bridge module. vFlood tx intercepts all packets on
the transmit path and performs congestion control for VM
flows for which vFlood is online. More specifically, upon re-
ceiving a packet from the sender VM, vFlood tx transmits
the packet immediately if allowed by the Reno congestion
control algorithm (i.e., based on the congestion window, ad-
vertised receive window, and the number of transmitted,
unacknowledged packets); otherwise, it buffers the packet.
vFlood rx intercepts all packets on the receive path and per-
forms three main tasks. First, as ACKs arrive, vFlood rx
updates cong windrv per TCP Reno semantics. Second, if al-
lowed by the congestion control algorithm, it fetches packets
from the per-flow buffer and transmits more packets. Third,
it notifies the vFlood VM module via vFlood channel of the
available buffer allocation so that the vFlood VM module
can adjust its congestion window accordingly.

vFlood channel is implemented like a standard Xen device,
similar to the virtual network device described earlier. One
set of ring buffer and event channel is used for communica-
tion from a VM to dom0. Upon receiving an event on this
channel, the event-handler at the congestion control module
takes vFlood offline or online based on the command passed
from the vFlood VM module. The other set of ring buffer
and event channel is used for communication from dom0 to
the VM. Upon receiving an event on this channel, the event-
handler at the vFlood VMmodule adjusts cong winVM based
on the buffer threshold and allocation passed from dom0.
The only difference between vFlood channel and a typical
Xen device is that we use the ring buffer itself, not a sep-
arate shared page, for passing commands between the VM
and dom0.

Buffer Management Module The main task of the
buffer management module is to manage the per-VM buffer
space in dom0. This module maintains a FIFO queue of
sk buff structures for each flow. Additionally, it keeps track
of per-VM and per-flow buffer allocation and usage. As we
described earlier, this module interacts directly with vFlood’s
congestion control module in dom0.

5. EVALUATION
In this section, we present a detailed evaluation of vFlood

using our prototype implementation. Our evaluation is fo-
cused on answering the following key questions: (1) By how
much does vFlood improve TCP throughput? (2) How does
the TCP throughput gain translate into application-level im-
provements? (3) How much overhead does vFlood incur?

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100

C
D

F

Throughput (MB/s)

Vanilla Xen
Xen + vFlood

Figure 6: CDFs for 100 successive 100KB transfers
with and without vFlood

Before we answer these questions, we first describe the ex-
perimental setup.

Experimental Setup Each server runs Xen 3.3 as the
VMM, and Linux 2.6.18 as the operating system for the
VMs and driver domains. For the experiments described
in Section 5.1, we use a machine with dual-core 3GHz Intel
Xeon CPU, 3GB of RAM as the server, while the client is a
2.4GHz Intel Core 2 Quad CPU machine with 2GB of RAM.
For application-level experiments in Section 5.2, we use Dell
PowerEdge servers with a 3.06GHz Intel Xeon CPU and
4GB of RAM. All machines are connected via commodity
Gigabit NICs. In all experiments, we configure VMs with
512MB of memory and use TCP Reno implementation. In
order to keep the CPU utilization at determined levels in our
experiments, we use a load generator utility which can make
the CPU busy by performing simple CPU bound operations.
We selected 30ms as the duty cycle of this utility as it aligns
with the VM scheduling time slice of Xen.

5.1 TCP Throughput Evaluation
This section presents our evaluation of TCP throughput

improvement under a variety of scenarios. For experiments
in this section, we allocate a 2048-segment buffer for each
VM in the driver domain to support vFlood operations and
use a custom application that makes data transmissions of
different size (similar to Iperf [6]) over TCP sockets. For
the rest of this section, we compare TCP throughput of the
vFlood setup with the vanilla Xen/Linux setup.

Basic Comparison with Xen Due to small sizes of the
flows we are experimenting with and the VM scheduling ef-
fects, the throughput results are subject to high variation
during different runs of the experiment. Figure 6 shows the
CDF of TCP throughput for one hundred 100 KB transfers
from a VM to a non-virtualized machine with and without
vFlood. In this experiment, the sending VM is sharing a
single core with two other VMs with 60% CPU load (i.e. all
VMs show 60% CPU utilization). The results indicate the
high variability exists for both vanilla Xen and vFlood se-
tups; however, vFlood consistently outperforms the vanilla
Xen configuration. The median throughput achieved by
vFlood is almost 5× higher than that of the vanilla Xen. For
all the remaining experiments, we conduct 100 runs of each
experiment and compare the median throughputs across the
vFlood and vanilla Xen setups.

Number of VMs Per-Core In this experiment, we vary
the total number of VMs running on the same core as the

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

100K 250K 500K 1M

T
h

ro
u

g
h

p
u

t
Im

p
ro

v
em

en
t

Flow Size [Bytes]

Vanilla Xen
Xen+vFlood

(a) 2 non-idle VMs per core

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

100K 250K 500K 1M

T
h

ro
u

g
h

p
u

t
Im

p
ro

v
em

en
t

Flow Size [Bytes]

Vanilla Xen
Xen+vFlood

(b) 3 non-idle VMs per core

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

100K 250K 500K 1M

T
h

ro
u

g
h

p
u

t
Im

p
ro

v
em

en
t

Flow Size [Bytes]

Vanilla Xen
Xen+vFlood

(c) 4 non-idle VMs per core

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

100K 250K 500K 1M

T
h

ro
u

g
h

p
u

t
Im

p
ro

v
em

en
t

Flow Size [Bytes]

Vanilla Xen
Xen+vFlood

(d) 5 non-idle VMs per core

Figure 7: TCP throughput improvement with dif-
ferent number of VMs per core.

 0x

 0.2x

 0.4x

 0.6x

 0.8x

 1x

 1.2x

100K 250K 500K 1M

T
h

ro
u

g
h

p
u

t
Im

p
ro

v
em

en
t

Flow Size [Bytes]

Vanilla Xen
Xen+vFlood

Figure 8: TCP throughput improvement for the 1-
VM scenario

sender VM from 2 to 5 (including the sender VM) and fix the
CPU load of each VM to 60%. The normalized performance
gains of vFlood are shown in Figures 7(a), 7(b), 7(c) and
7(d), where 2, 3, 4 and 5 VMs share the same core. As
we can see, vFlood results in significant improvement for all
transfer sizes for different number of VMs per core.

While it is indeed expected that vFlood performs well
when there are a lot of VMs per core, one may guess that
there will be no benefits of vFlood when one VM is running.
However, as we can observe in Figure 8, even for the case
where only one VM is running, vFlood is able to perform
slightly better than vanilla Xen. We attribute this slight
improvement to the fact that even in the 1-VM scenario the
driver domain and the VM compete with each other to run
on the same CPU. Therefore, while the scheduling delay for
this scenario is not as high as the multi-VM scenarios, the
driver domain can still process incoming ACKs more quickly
and consequently can make faster transmissions compared
to the vanilla Xen scenario.

Large Transfers Similarly, we also expect the most gains
to be for short flows (which as we pointed out dominate data
center environments). To study the benefits of vFlood for
large transfers, we experimented with two sizes – 10MB and

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

100K 250K 500K 1M

T
h

ro
u

g
h

p
u

t
Im

p
ro

v
em

en
t

Flow Size [Bytes]

Vanilla Xen
Xen+vFlood

(a) 3 VMs, 40% load

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

100K 250K 500K 1M

T
h

ro
u

g
h

p
u

t
Im

p
ro

v
em

en
t

Flow Size [Bytes]

Vanilla Xen
Xen+vFlood

(b) 3 VMs, 60% load

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

100K 250K 500K 1M

T
h

ro
u

g
h

p
u

t
Im

p
ro

v
em

en
t

Flow Size [Bytes]

Vanilla Xen
Xen+vFlood

(c) 3 VMs, 80% load

Figure 10: Performance of vFlood with varying load. We fix the number of VMs per core to 3.

 0%

 10%

 20%

 30%

 40%

 50%

2 3 4 5

T
h
ro

u
g
h
p
u
t

Im
p
ro

v
em

en
t

VMs per core

10MB Flow
100MB Flow

Figure 9: vFlood throughput improvement for large
flows

100MB. Our results in Figure 9 shows that, even for large
transfers, vFlood improves TCP throughput by 19% to 41%.

Varying CPU Load To study the benefits of vFlood
across different CPU loads, we fix the number of VMs shar-
ing the same core to 3 and set CPU load of each VM to 40%,
60% and 80%. Figure 10 shows the normalized throughput
gain across these different loads, and shows vFlood outper-
forms the vanilla Xen setup significantly and consistently
across all configurations. We observe that improvements
are particularly high for 250KB transfers, with up to 12×
for the 3-VM 40% load scenario.

To investigate further the cause behind this special case,
we select one of the configurations (3 VMs sharing the same
core, each with 40% CPU load) and study TCP throughput
values when we vary the flow size all the way from 50KB
to 1GB. Figure 11 shows the results. Interestingly, this fig-
ure shows when transfer size is about 340KB we obtain the
maximum improvement. This phenomenon corresponds to
the number of slots in Xen’s ring buffers (240 slots), which
leads to a maximum transfer of about 240 segments (of size
1500 bytes) within one VM scheduling interval.

Scalability of vFlood Most of the experiments described
above consist of only one flow at a particular instance. In or-
der to verify that vFlood scale well with the number of flows,
we measured the throughput gains of vFlood when there
are 10 and 100 concurrent flows from the same VM (with 3
VMs sharing the same core running 40% load). Figure 12(a)
shows that as we scale up the number of flows, gains drop
marginally, but still vFlood is able to produce significant
throughput improvements compared to the vanilla Xen.

 0

 5

 10

 15

 20

 25

 30

5
0

K

1
0

0
K

2
0

0
K

3
4

0
K

5
0

0
K

8
0

0
K

1
M

1
.6

M

3
.2

M

6
.4

M
1

0
M

5
0

M

1
0

0
M

1
G

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Flow Size (Bytes)

Vanilla Xen
Xen + vFlood

Figure 11: vFlood improvement for different flow
sizes

Effectiveness of Buffer Management Policies In Sec-
tion 3.3, we discussed the importance of having a buffer
management policy, specially when high-RTT (low through-
put) and low-RTT (high throughput) flows share the same
per-VM buffer space. This section presents a comparison
of the three buffering policies presented earlier, namely no
policy, fair policy (i.e., with same αi) and prioritized policy
(with higher αi for low RTT connections). For these ex-
periments we run the sender VM and the low-RTT receiver
in the same local area network, while for high-RTT con-
nections we place the receiver on a remote PlanetLab node
(planetlab1.ucsd.edu). In our implementation, we designate
flows with RTT less than 1ms as low-RTT and other flows
as high-RTT. Additionally, we dedicate a per-VM buffer of
size 2048 segments for vFlood operations.

Figure 12(b) shows the median TCP throughput values
for different buffering policies when the sender VM repeat-
edly (for a 2-minute period) starts 20 concurrent flows to
local and remote receivers and transmits 500KB blocks of
data. Our evaluation compares throughput values for the
aforementioned policies under different flow mixes (i.e., dif-
ferent ratio of low-RTT to high-RTT flows). For low-RTT
flows, we see improvements by going from no policy to fair
policy and from fair policy to prioritized policy for all flow
mixes. The benefits for low-RTT flows are the highest for
the 30/70 mix where a naive policy would let the majority
(70%) high-RTT flows steal buffer space from the minority
(30%) low-RTT flows. We also note that different buffering

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

100K 250K 500K 1M

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t
Im

p
ro

v
em

en
t

Flow Size [Bytes]

1 Flow
10 Flows
100 Flows

(a) Concurrent flows

 0

 2

 4

 6

 8

 10

 12

30/70 50/50 70/30

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Flow Mix (Low RTT/High RTT Percentage)

NoPolicy−LowRTT
NoPolicy−HighRTT
Fair−LowRTT
Fair−HighRTT
Prioritized−LowRTT
Prioritized−HighRTT

(b) Buffer management policies

Figure 12: Subgraph (a) shows TCP throughput gains with concurrent flows. Subgraph (b) shows the
comparison between the three buffer management policies

Figure 13: vFlood Apache Olio test setup

policies do not make any difference to high-RTT flows as for
them network RTT dominates VM scheduling-induced RTT
(Section 3.3).

5.2 Apache Olio Benchmark
We use the Apache Olio benchmark [2, 42] to show the ef-

fectiveness of vFlood for typical cloud applications. Apache
Olio is a social-event calendar Web 2.0 application, where
users can create, RSVP, rate, and review events. We use
the PHP implementation for our experiments which includes
four components: (1) An Apache Web server which acts
as the request processor and web front-end, (2) A MySQL
server that stores user information and event details, (3) An
NFS server that stores user files and event specific data, and
(4) A Memcached server to cache rendered page fragments.

Figure 13 shows our testbed configuration. We use four
VMs on four distinct physical hosts to run each component
of the Olio system. We also run one other VM (with 30%
load) per physical server sharing the same core with Olio
VM to trigger VM scheduling. vFlood is deployed on all
physical servers so that the communication between each
component as well as the communication between clients and
the Apache web server can benefit from congestion control
offloading. We allocate a 4096-segment buffer in the driver
domain for each VM to support vFlood operations and use
Faban [5] as the client load generator. Faban is configured
to run for 6 minutes (30-second ramp up, 300-second steady
state, and 30-second ramp down) during which 200 client
threads generate different types of requests.

We evaluate the number of operations performed by Olio
for three different configurations: (1) Vanilla Xen, (2) Xen

Operation
Count Count Count Count

Vanilla Xen vFlood vSnoop vFlood +
vSnoop

HomePage 2544 3271 3416 4215
TagSearch 3290 4281 4020 5550
EventDetail 2363 3077 3135 3925
PersonDetail 219 331 312 410
AddPerson 53 96 71 123
AddEvent 156 245 178 257
Total 9512 12642 11940 15167
Rate(ops/sec) 31.7 42.1 39.8 50.5
Percentage

- 32.9% 25.5% 59.5%
Improvement

Table 1: Apache Olio benchmark results

with vFlood only, (3) Xen with vSnoop (Section 1) only,
and (4) Xen with vFlood and vSnoop (whose integration is
discussed in Section 6). Table 1 shows the total count of dif-
ferent operations performed by Olio. When vFlood alone is
deployed in the system, we see total throughput rising from
31.7 ops/sec in the vanilla Xen configuration to 42.1 ops/sec
(a 32.9% improvement). When vSnoop is deployed we see a
25.5% increase in total throughput. When both vFlood and
vSnoop are deployed, TCP throughput improves on both
receive and transmit paths and we see throughput rising to
50.5 ops/sec (a 59.5% improvement). Our results indicate
that the effects of vFlood and vSnoop complement each other
and the performance gains they achieve are cumulative.

5.3 vFlood Overhead

vFlood Routine CPU Cycles CPU %
vFlood tx() 65 0.62
vFlood rx() 370 3.05
vFlood hash lookup() 78 0.73
vFlood update VM() 59 0.56
vFlood process threshold() 57 0.92

Table 2: vFlood per-packet CPU usage

In order to understand the runtime overhead of vFlood,
we use Xenoprof [33] to profile vFlood’s overhead at both
the VM and driver domain. We specifically use Xenoprof to
measure CPU cycles consumed by different vFlood routines.
Also we instrument main vFlood routines to record the num-
ber of packets they process. Table 2 shows per-packet CPU
cycles consumed by different vFlood routines and their per-
centage of CPU usage when Iperf transmits for a 20-second
period. From the table, we can see much of the overhead is

associated with vFlood rx() routine. This routine is respon-
sible for intercepting acknowledgements destined to VMs,
calculating congestion window, releasing buffered packets
and notifying VMs about their buffer usage. On the other
hand, the overhead caused by vFlood tx() is minimal because
this routine’s primary responsibility is to queue packets com-
ing from the VM. Our queuing mechanism (we reuse Linux
sk buff queuing mechanism skb queue tail()) also incurs neg-
ligible overhead. The function which is called by the driver
domain whenever it needs to update the buffering thresh-
old (vFlood update VM()) and the function which called by
the VM to process buffer threshold information sent by the
driver domain (vFlood process threshold()) also do not add
much overhead.

6. DISCUSSION

VM Migration Given that the vFlood VM module also
runs a fully functional standard congestion control algorithm
in the background, the VM state is very much self-contained
and can be migrated to other hosts. If we are to move a VM
from a vFlood-enabled host to one without vFlood support,
we only need to switch the vFlood VM module to the origi-
nal congestion control mode before the migration. Moving a
VM from a vFlood-enabled host to another vFlood-enabled
host requires some state initialization at the driver compo-
nent of the destination host for the existing flows. While
the state needed for initialization can be migrated from the
source host to the destination host, either by modifying the
VM migration protocol, or by leveraging the vFlood channel
to transfer the state from VM module to the driver domain,
we suspect that the benefits would be typically marginal
as most flows in datacenter environments are fairly short-
lived [27, 14]. Therefore, our current implementation sup-
ports live VM migration in a limited, yet effective fashion
by taking vFlood offline for those active flows established
before the migration.

Buffer Space Management Typically, if the number
of VMs is small, the buffer space in the driver domain may
not be an issue. In environments where the number of VMs
may be large (say, 30-40), buffer space may become an is-
sue. Thus, instead of making the buffer space increase pro-
portional to the number of VMs, we can potentially allocate
the per-VM vFlood buffer from the VM’s own memory. In
such a scheme, a VM can share one or multiple pages with
the driver domain for buffering purposes (e.g., through the
Grant Table facility in Xen) thus reducing vFlood’s depen-
dency on driver domain resources. Another advantage of
this scheme is that during VM migration, the buffered re-
gions can also be migrated with the VM as they are now
part of the VM’s address space.

vFlood and vSnoop Integration In section 5.2, we
presented some promising results using a preliminary in-
tegration of vSnoop and vFlood. We found that the in-
tegration effort is non-trivial as they both operate on the
same set of packets, and rely on some shared data struc-
tures for their operation. For example, an incoming ACK
packet with data payload can trigger acknowledgement from
vSnoop and a packet transmission from vFlood. Our pre-
liminary implementation is based on a pipelined architec-
ture where on the receive (transmit) path packets gets pro-
cessed by vSnoop (vFlood) first and then by vFlood (vS-
noop). This approach, however, does not implement features

such as ACK piggybacking—combining pro-active vSnoop’s
ACKs with vFlood’s data packets to reduce the number of
packet transmissions. We are currently working on a more
efficient solution based on an integrated state-machine that
would collapse the different actions that vSnoop and vFlood
would take, thus ensuring functional equivalence with a non-
virtualized TCP stack in terms of number of packets on the
wire.

Interplay with Emerging Hardware A few techniques
have been proposed to give VMs direct access to specialized
networking hardware (e.g., use of IOMMU-based SR-IOV
in Xen 4.0 and VMDirectPath in VMware vSphere). While
these techniques lower the network virtualization overhead
by bypassing the driver domain or the hypervisor, they still
do not address the significant increase in RTT due to VM
CPU scheduling. In such settings, we envision implement-
ing vFlood (except the vFlood VM module) combined with
vSnoop in the hardware itself, thus eliminating the VMM
overheads completely. We believe that the vFlood state ma-
chine described Section 3.2 should lend itself to a scalable
hardware implementation. We will pursue this vision in our
future work.

7. RELATED WORK
We have already discussed most of the work that is di-

rectly related to vFlood in Section 2.1. We now discuss other
related efforts that fall into the general area of performance
improvement for virtualized environments. We group them
into three categories: (1) reducing virtualization overheads
along the I/O path, (2) improving VMM I/O scheduling,
and (3) optimizing TCP for datacenters.

Reducing Virtualization Overheads There exists sub-
stantial research focusing on optimizations that reduce over-
heads induced by virtualization along the I/O path. For in-
stance, Menon et al. have proposed several optimizations
to improve device virtualization using techniques such as
packet coalescing, scatter/gather I/O, checksum offload, seg-
mentation offload, and offloading device driver functionality
to hypervisor [35, 32, 34]. vFlood is quite complementary to
these techniques. By addressing the interplay between VM
consolidation and network transport protocol, vFlood op-
erates one level higher than those optimization techniques.
XenSocket [46], XenLoop [44], Fido [16] and Xway [31] spe-
cialize in improving inter-VM communication when the VMs
are all on the same physical host; vFlood is more general
as it improves transport protocol performance regardless of
where the other end of a connection is located. IVC [25] is
another effort in this direction that targets high performance
computing platforms and applications.

Improving VMM I/O Scheduling I/O scheduling for
VMs has received significant attention. Some recent efforts
include mClock [20] and DVT [29, 30]. mClock provides
proportional-share fairness with limits and reservations to
schedule I/O requests from VMs. DVT proposes the differ-
ential virtual time concept to ensure that VMs experience
less variability in I/O service time. These solutions focus
on modifying the VMM I/O scheduler, whereas vFlood is
agnostic to the VMM’s CPU and I/O schedulers.

Optimizing TCP for Datacenters Alizadeh et al. show
that the traditional TCP falls short of handling flows re-
quiring small predictable latency and flows requiring large
sustained throughput due to TCP’s demand on the limited

buffer space available in datacenter network switches [11].
They propose DCTCP for datacenter networking, which lever-
ages ECN capability available in the switches. Vasudevan et
al. observe the “in-cast” problem where multiple hosts send
bursts of data to a barrier-synchronized client, thus causing
overflows in Ethernet switch buffers [43] and TCP perfor-
mance degradation. Their mechanism focuses on desynchro-
nizing retransmissions by adding randomness to the TCP
retransmission timer. Both of these approaches essentially
modify the TCP protocol to adapt to the new environments;
whereas for vFlood, we do not change TCP’s behavior but
merely re-architect it across the VM and driver domain to
improve TCP throughput.

8. CONCLUSION
The main motivation of this paper stems from our investi-

gations that reveal the negative impact of VM consolidation
on transport protocols such as TCP. In virtualized cloud en-
vironments, TCP packets may experience significantly high
RTTs despite sub-millisecond network latency, because of
the VM CPU scheduling latency that is in the orders of tens
of milliseconds. For many TCP connections, especially the
small flows, such dramatic increase in RTTs leads to slower
connection progress and lower throughput. To mitigate this
impact, we have presented a solution called vFlood that ef-
fectively masks the VM CPU scheduling-induced latencies
by offloading congestion control function from the sender
VM to the driver domain and letting the sender VM op-
portunistically flood the driver domain with data to send.
Our evaluation results indicate significant improvement in
both TCP flow-level and application-level performance. Our
experience with building a Xen-based prototype indicates
that vFlood requires relatively small amount of code changes
(about 1500 lines with 40% code reused from Xen/Linux),
and its design is potentially portable to other VMMs.

9. ACKNOWLEDGEMENTS
We thank Ajay Gulati, and the anonymous reviewers for

their insightful comments. This work was supported in part
by the US NSF under grants 0546173, 0720665, 1054788
and 1017898. Any opinions, findings, and conclusions or
recommendations in this paper are those of the authors and
do not necessarily reflect the views of the NSF.

10. REFERENCES

[1] Alacritech corporation. http://www.alacritech.com.

[2] Apache Olio.
http://http://incubator.apache.org/olio/.

[3] Chelsio communications. http://www.chelsio.com.

[4] CLOC. http://cloc.sourceforge.net.

[5] Faban. http://www.opensparc.net/sunsource/faban/
www/index.html.

[6] The Iperf Benchmark.
http://www.noc.ucf.edu/Tools/Iperf/.

[7] Linux Networking:TOE. http://www.linuxfoundation.
org/collaborate/workgroups/networking/toe.

[8] Server Virtualization Landscape. http:
//events.1105govinfo.com/events/vcg-summit-2010/
information/˜/media/GIG/GIG%20Events/2010%
20Enterprise%20Architecture/Presentations 0/
VCG10 3%201 Oltsik%20Bowker.ashx.

[9] VMware Knowledge Base article.
http://kb.vmware.com/kb/1006143.

[10] VMware Tools. http://kb.vmware.com/kb/340.

[11] Alizadeh, M., Greenberg, A., Maltz, D. A.,

Padhye, J., Patel, P., Prabhakar, B., Sengupta,

S., and Sridharan, M. Data center TCP (DCTCP).
In ACM SIGCOMM (2010).

[12] Armbrust, M., Fox, A., Griffith, R., Joseph,

A. D., Katz, R., Konwinski, A., Lee, G.,

Patterson, D. A., Rabkin, A., Stoica, I., and

Zaharia, M. Above the clouds: A Berkeley view of
cloud computing. Tech. Rep. UCB/EECS-2009-28, UC
Berkeley, 2009.

[13] Barham, P., Dragovic, B., Fraser, K., Hand, S.,

Harris, T., Ho, A., Neugebauer, R., Pratt, I.,

and Warfield, A. Xen and the art of virtualization.
In ACM SOSP (2003).

[14] Benson, T., Anand, A., Akella, A., and Zhang,

M. Understanding data center traffic characteristics.
In First ACM Workshop on Research on Enterprise
Networking (WREN ’09) (2009).

[15] Brakmo, L. S., and Peterson, L. L. TCP Vegas:
end to end congestion avoidance on a global Internet.
IEEE Journal on Selected Areas in Communications
13, 8 (1995).

[16] Burtsev, A., Srinivasan, K., Radhakrishnan, P.,

Bairavasundaram, L. N., Voruganti, K., and

Goodson, G. R. Fido: Fast inter-virtual-machine
communication for enterprise appliances. In USENIX
ATC (2009).

[17] Choudhury, A. K., and Hahne, E. L. Dynamic
queue length thresholds for shared-memory packet
switches. IEEE/ACM Transaction on Networking 6
(1998).

[18] Dean, J., and Ghemawat, S. MapReduce:
Simplified Data Processing on Large Clusters. In
USENIX OSDI (2004).

[19] Govindan, S., Nath, A. R., Das, A., Urgaonkar,

B., and Sivasubramaniam, A. Xen and Co.:
communication-aware CPU scheduling for consolidated
Xen-based hosting platforms. In ACM VEE (2007).

[20] Gulati, A., Merchant, A., and Varman, P.

mClock: Handling throughput variability for
hypervisor IO scheduling. In USENIX OSDI’10
(2010).

[21] Guo, D., Liao, G., and Bhuyan, L. Performance
characterization and cache-aware core scheduling in a
virtualized multi-core server under 10GbE. In IEEE
IISWC (2009).

[22] Gupta, D., Cherkasova, L., Gardner, R., and

Vahdat, A. Enforcing performance isolation across
virtual machines in Xen. In ACM/USENIX
Middleware (2006).

[23] Gupta, D., Lee, S., Vrable, M., Savage, S.,

Snoeren, A. C., Varghese, G., Voelker, G. M.,

and Vahdat, A. Difference engine: Harnessing
memory redundancy in virtual machines. In USENIX
OSDI (2008).

[24] Ha, S., Rhee, I., and Xu, L. CUBIC: A new
TCP-friendly high-speed TCP variant. ACM SIGOPS
Operating System Review 42, 5 (2008).

[25] Huang, W., Koop, M. J., Gao, Q., and Panda,

D. K. Virtual machine aware communication libraries
for high performance computing. In ACM/IEEE SC
(2007).

[26] Jin, C., Wei, D., and Low, S. FAST TCP:
Motivation, Architecture, Algorithms, Performance. In
IEEE INFOCOM (2004).

[27] Kandula, S., Sengupta, S., Greenberg, A.,

Patel, P., and Chaiken, R. The nature of data
center traffic: measurements & analysis. In
ACM/USENIX IMC ’09 (2009).

[28] Kangarlou, A., Gamage, S., Kompella, R. R.,

and Xu, D. vSnoop: Improving TCP throughput in
virtualized environments via acknowledgement offload.
In ACM/IEEE SC (2010).

[29] Kesavan, M., Gavrilovska, A., and Schwan, K.

Differential Virtual Time (DVT): Rethinking I/O
service differentiation for virtual machines. In ACM
SOCC (2010).

[30] Kesavan, M., Gavrilovska, A., and Schwan, K.

On disk scheduling in virtual machines. In Second
Workshop on I/O Virtualization (WIOV ’10) (2010).

[31] Kim, K., Kim, C., Jung, S.-I., Shin, H.-S., and

Kim, J.-S. Inter-domain socket communications
supporting high performance and full binary
compatibility on Xen. In ACM VEE (2008).

[32] Menon, A., Cox, A. L., and Zwaenepoel, W.

Optimizing network virtualization in Xen. In USENIX
ATC (2006).

[33] Menon, A., Santos, J. R., Turner, Y.,

Janakiraman, G. J., and Zwaenepoel, W.

Diagnosing performance overheads in the Xen virtual
machine environment. In ACM VEE (2005).

[34] Menon, A., Schubert, S., and Zwaenepoel, W.

TwinDrivers: semi-automatic derivation of fast and
safe hypervisor network drivers from guest OS drivers.
In ACM ASPLOS (2009).

[35] Menon, A., and Zwaenepoel, W. Optimizing TCP
receive performance. In USENIX ATC (2008).

[36] Milos, G., Murray, D. G., Hand, S., and

Fetterman, M. A. Satori: Enlightened page sharing.
In USENIX ATC (2009).

[37] Mogul, J. C. TCP offload is a dumb idea whose time
has come. In USENIX HOTOS IX (2003).

[38] Nurmi, D., Wolski, R., Grzegorczyk, C.,

Obertelli, G., Soman, S., Youseff, L., and

Zagorodnov, D. The Eucalyptus open-source
cloud-computing system. In IEEE/ACM CCGrid
(2009).

[39] Ongaro, D., Cox, A. L., and Rixner, S.

Scheduling I/O in virtual machine monitors. In ACM
VEE (2008).

[40] Regnier, G., Makineni, S., Illikkal, R., Iyer, R.,

Minturn, D., Huggahalli, R., Newell, D., Cline,

L., and Foong, A. TCP onloading for data center
servers. IEEE Computer 37 (2004).

[41] Shalev, L., Satran, J., Borovik, E., and

Ben-Yehuda, M. IsoStack: Highly efficient network
processing on dedicated cores. In USENIX ATC
(2010).

[42] Sobel, W., Subramanyam, S., Sucharitakul, A.,

Nguyen, J., Wong, H., Klepchukov, A., Patil,

S., Fox, O., and Patterson, D. Cloudstone:
Multi-platform, multi-language benchmark and
measurement tools for Web 2.0. In First Workshop on
Cloud Computing (CCA) (2008).

[43] Vasudevan, V., Phanishayee, A., Shah, H.,

Krevat, E., Andersen, D. G., Ganger, G. R.,

Gibson, G. A., and Mueller, B. Safe and effective
fine-grained TCP retransmissions for datacenter
communication. In ACM SIGCOMM (2009).

[44] Wang, J., Wright, K.-L., and Gopalan, K.

XenLoop: A transparent high performance inter-vm
network loopback. In ACM HPDC (2008).

[45] Wood, T., Shenoy, P., Venkataramani, A., and

Yousif, M. Black-box and gray-box strategies for
virtual machine migration. In USENIX NSDI (2007).

[46] Zhang, X., McIntosh, S., Rohatgi, P., and

Griffin, J. L. XenSocket: A high-throughput
interdomain transport for virtual machines. In
ACM/IFIP/USENIX Middleware (2007).

