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Abstract. Dynamic kernel memory has been a popular target of recent kernel
malware due to the difficulty of determining the status of volatile dynamic ker-
nel objects. Some existing approaches use kernel memory mapping to identify
dynamic kernel objects and check kernel integrity. The snapshot-based memory
maps generated by these approaches are based on the kernel memory which may
have been manipulated by kernel malware. In addition, because the snapshot only
reflects the memory status at a single time instance, its usage is limited in tempo-
ral kernel execution analysis. We introduce a new runtime kernel memory map-
ping scheme called allocation-driven mapping, which systematically identifies
dynamic kernel objects, including their types and lifetimes. The scheme works by
capturing kernel object allocation and deallocation events. Our system provides a
number of unique benefits to kernel malware analysis: (1) an un-tampered view
wherein the mapping of kernel data is unaffected by the manipulation of kernel
memory and (2) a temporal view of kernel objects to be used in temporal analysis
of kernel execution. We demonstrate the effectiveness of allocation-driven map-
ping in two usage scenarios. First, we build a hidden kernel object detector that
uses an un-tampered view to detect the data hiding attacks of 10 kernel rootkits
that directly manipulate kernel objects (DKOM). Second, we develop a temporal
malware behavior monitor that tracks and visualizes malware behavior triggered
by the manipulation of dynamic kernel objects. Allocation-driven mapping en-
ables a reliable analysis of such behavior by guiding the inspection only to the
events relevant to the attack.

Keywords: Kernel memory mapping, kernel malware analysis, virtualization.

1 Introduction

Dynamic kernel memory is where the majority of kernel data resides. Operating system
(OS) kernels frequently allocate and deallocate numerous dynamic objects of various
types. Due to the complexity of identifying such objects at runtime, dynamic kernel
memory is a source of many kernel security and reliability problems. For instance, an
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increasing amount of kernel malware targets dynamic kernel objects [4,10,18,23]; and
many kernel bugs are caused by dynamic memory errors [13,27,28].

Advanced kernel malware uses stealthy techniques such as directly manipulating
kernel data (i.e., DKOM [4]) or overwriting function pointers (i.e., KOH [10]) located
in dynamic kernel memory. This allows attacks such as process hiding and kernel-level
control flow hijacking. These anomalous kernel behaviors are difficult to analyze be-
cause they involve manipulating kernel objects that are dynamically allocated and deal-
located at runtime; unlike persistent kernel code or static kernel data that are easier to
locate, monitor, and protect.

To detect these attacks, some existing approaches use kernel memory mapping based
on the contents of runtime memory snapshots [1,5,16] or memory access traces [23,31].
These approaches commonly identify a kernel object by projecting the type and address
of a pointer onto the memory. However, such a technique may not always be accurate
– for example, when an object is type cast to a generic type or when an embedded list
structure is used as part of larger data types. In benign kernel execution, such inaccu-
racy can be corrected [5]; but it becomes a problem in malware analysis as the memory
contents may have been manipulated by kernel malware. For example, a DKOM attack
to hide a process may modify the next task and prev task pointers in the process
list. This causes the process to disappear from the OS view as well as from the kernel
memory map. To detect this attack, some existing approaches rely on data invariants
such as that the list used for process scheduling should match the process list. However,
not every data structure has an invariant. Additionally, the kernel memory map gener-
ated from a snapshot [1,5,16] reflects kernel memory status at a specific time instance.
Therefore, the map is of limited usage in analyzing the kernel execution. Some mapping
approaches are based on logging malware memory accesses [23,31] and thus provide
temporal information. However they only cover objects accessed by the malware code
and cannot properly handle certain attack patterns due to assumptions in its mapping
algorithm [21].

In this paper, we present a new kernel memory mapping scheme called allocation-
driven mapping that complements the existing approaches. Our scheme identifies dy-
namic kernel objects by capturing their allocations and does not rely on the runtime
content of kernel memory to construct the kernel object map. As such, the map is re-
sistant to attacks that manipulate the kernel memory. On top of our scheme, we build
a hidden kernel object detector that uses the un-tampered view of kernel memory to
detect DKOM data hiding attacks without requiring kernel object-specific invariants.
In addition, our scheme keeps track of each kernel object’s life time. This temporal
property is useful in the analysis of kernel/kernel malware execution. We also build a
temporal malware behavior monitor that systematically analyzes the impact of kernel
malware attacks via dynamic kernel memory using a kernel execution trace. We ad-
dress a challenge in the use of kernel memory mapping for temporal analysis of kernel
execution: A dynamic memory address may correspond to different kernel objects at
different times because of the runtime allocation and deallocation events. This problem
can be handled by allocation-driven mapping. The lifetime of a dynamic kernel object
naturally narrows the scope of a kernel malware analysis.
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(a) Type-projection mapping (b) Allocation-driven mapping

Fig. 1. Illustration of kernel memory mapping approaches. a1 and a2 represent kernel memory
addresses. X and Y are data types for kernel objects.

The contributions of this paper are summarized as follows:

– We present a new kernel memory mapping scheme called allocation-driven map-
ping that has the following properties desirable for kernel malware analysis: un-
tampered identification of kernel objects and temporal status of kernel objects.

– We implement allocation-driven mapping at the virtual machine monitor (VMM)
level. The identification and tracking of kernel objects take place in the VMM with-
out modification to the guest OS.

– We develop a hidden kernel object detector that can detect DKOM data hiding at-
tacks without requiring data invariants. The detector works by comparing the status
of the un-tampered kernel map with that of kernel memory.

– We develop a malware behavior monitor that uses a temporal view of kernel objects
in the analysis of kernel execution traces. The lifetimes of dynamic kernel objects
in the view guide the analysis to the events triggered by the objects manipulated by
the malware.

We have implemented a prototype of allocation-driven mapping called LiveDM (Live
Dynamic kernel memory Map). It supports three off-the-shelf Linux distributions.
LiveDM is designed for use in non-production scenarios such as honeypot monitoring,
kernel malware profiling, and kernel debugging.

2 Background – Kernel Memory Mapping

There have been several approaches [1,5,16,23,31] that leverage kernel memory map-
ping to test the integrity of OS kernels and thereby detect kernel malware. These ap-
proaches (similar to garbage collection [3,19]) commonly identify kernel objects by
recursively traversing pointers in the kernel memory starting from static objects. A ker-
nel object is identified by projecting the address and type of a traversed pointer onto
memory; thus, we call this mechanism type-projection mapping. For example, in Fig.
1(a) the mapping process starts by evaluating the pointer fields of the static data object.
When the second field of this object is traversed, the type X of the pointer is projected
onto the memory located in the obtained address a1, identifying an instance of type X.
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The underlying hypothesis of this mapping is that the traversed pointer’s type accu-
rately reflects the type of the projected object. In practice there are several cases when
this may not be true. First, if an object allocated using a specific type is later cast to a
generic type, then this mapping scheme cannot properly identify the object using that
pointer. For instance, in Fig. 1(a) the third field of the static object cannot be used to
identify the Y instance due to its generic void* type. Second, in modern OSes many
kernel objects are linked using embedded list structures which connect the objects us-
ing list types. When these pointers are traversed, the connected objects are inaccurately
identified as list objects. KOP [5] addresses these problems by generating an extended
type graph using static analysis. Some other approaches rely on manual annotations.

When type-projection mapping is used against kernel malware, these problems may
pose concerns as such inaccuracy can be deliberately introduced by kernel malware. In
type-projection mapping, the kernel memory map is based on the content of the kernel
memory, which may have been manipulated by the kernel malware. This property may
affect the detection of kernel rootkits that hide kernel objects by directly manipulating
pointers. To detect such attacks, a detector needs to rely on not only the kernel mem-
ory map but also additional knowledge that reveals the anomalous status of the hidden
objects. For this purpose, several approaches [1,5,18] use data structure invariants. For
example, KOP [5] detects a process hidden by the FU Rootkit [4] by using the invari-
ant that there are two linked lists regarding process information which are supposed to
match, and one of them is not manipulated by the attack. However, a data invariant is
specific to semantic usage of a data structure and may not be applicable to other data
structures. For type-projection mapping, it is challenging to detect data hiding attacks
that manipulate a simple list structure (such as the kernel module list in Linux) without
an accompanying invariant.

In general, we can categorize these approaches into two categories based on whether
they make use of a static snapshot or dynamic runtime memory access trace.

2.1 Static Type-Projection Mapping

This approach uses a memory snapshot to generate a kernel memory map. SBCFI [16]
constructs a map to systematically detect the violation of persistent control flow in-
tegrity. Gibraltar [1] extracts data invariants from kernel memory maps to detect kernel
rootkits. A significant advantage of this approach is the low cost to generate a memory
snapshot. A memory snapshot can be generated using an external monitor such as a
PCI interface [1], a memory dump utility [5], or a VMM [16], and the map is generated
from the snapshot later.

The memory snapshot is generated at a specific time instance (asynchronously);
therefore, its usage is limited for analyzing kernel execution traces where dynamic ker-
nel memory status varies over time. The same memory address, for example, could store
different dynamic kernel objects over a period of time (through a series of deallocations
and reallocations). The map cannot be used to properly determine what data was stored
at that address at a specific time. We call this a dynamic data identity problem, and it
occurs when an asynchronous kernel memory map is used for inspection of dynamic
memory status along the kernel execution traces.
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2.2 Dynamic Type-Projection Mapping

This mapping approach also uses the type-projection mechanism to identify kernel ob-
jects, but its input is the trace of memory accesses recorded over runtime execution
instead of a snapshot. By tracking the memory accesses of malware code, this approach
can identify the list of kernel objects manipulated by the malware. PoKeR [23] and
Rkprofiler [31] use this approach to profile dynamic attack behavior of kernel rootkits
in Linux and Windows respectively.

Since a runtime trace is used for input, this approach can overcome the asynchronous
nature of static type-projection mapping. Unfortunately, current work only focuses on
the data structures accessed by malware code, and may not capture other events. For
example, many malware programs call kernel functions during the attack or exploit
various kernel bugs, and these behaviors may appear to be part of legitimate kernel exe-
cution. In these cases, this dynamic type-projection techniques need to track all memory
accesses to accurately identify the kernel objects accessed by legitimate kernel execu-
tion. Since this process is costly (though certainly possible), it is not straightforward for
this approach to expand the coverage of the mapped data to all kernel objects.

3 Design of LiveDM

In this section, we first introduce the allocation-driven mapping scheme, based on which
our LiveDM system is implemented. We then present key enabling techniques to im-
plement LiveDM.

3.1 Allocation-Driven Mapping Scheme

Allocation-driven mapping is a kernel memory mapping scheme that generates a ker-
nel object map by capturing the kernel object allocation and deallocation events of
the monitored OS kernel. LiveDM uses a VMM in order to track the execution of the
running kernel. Whenever a kernel object is allocated or deallocated, LiveDM will in-
tercede and capture its address range and the information to derive the data type of
the object subject to the event (details in Section 3.2) in order to update the kernel
object map. We first present the benefits of allocation-driven mapping over existing ap-
proaches. After that we will present the techniques used to implement this mapping
scheme.

First, this approach does not rely on any content of the kernel memory which can
potentially be manipulated by kernel malware. Therefore, the kernel object map pro-
vides an un-tampered view of kernel memory wherein the identification of kernel data
is not affected by the manipulation of memory contents by kernel malware. This tamper-
resistant property is especially effective to detect sophisticated kernel attacks that
directly manipulate kernel memory to hide kernel objects. For instance, in the type-
projection mapping example (Fig. 1(a)) if the second pointer field of the static object
is nullified, the X object cannot be identified because this object cannot be reached
by recursively scanning all pointers in the memory. In practice, there can be multiple
pointer references to a dynamic object. However, malware can completely isolate an
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object to be hidden by tampering with all pointers pointing to the object. The address
of the hidden object can be safely stored in a non-pointer storage (e.g., int or char)
to avoid being discovered by the type-projection mapping algorithm while it can be
used to recover the object when necessary. Many malicious programs carefully control
their activities to avoid detection and prolong their stealthy operations, and it is a vi-
able option to suspend a data object in this way temporarily and activate it again when
needed [30].

In the allocation-driven mapping approach, however, this attack will not be effective.
As shown in Fig. 1(b), each dynamic object is recognized upon its allocation. There-
fore the identification of dynamic objects is reliably obtained and protected against the
manipulation of memory contents. The key observation is that allocation-driven map-
ping captures the liveness status of the allocated dynamic kernel objects. For malware
writers, this property makes it significantly more difficult to manipulate this view. In
Section 6.1, we show how this mapping can be used to automatically detect DKOM
data hiding attacks without using any data invariant specific to a kernel data structure.

Second, LiveDM reflects a temporal status of dynamic kernel objects since it cap-
tures their allocation and deallocation events. This property enables the use of the kernel
object map in temporal malware analysis where temporal information, such as kernel
control flow and dynamically changing data status, can be inspected to understand com-
plicated kernel malware behavior. In Section 2.1, we pointed out that a dynamic data
identity problem can occur when a snapshot-based kernel memory map is used for dy-
namic analysis. Allocation-driven mapping provides a solution to this problem by accu-
rately tracking all allocation and deallocation events. This means that even if an object
is deallocated and its memory reused for a different object, LiveDM will be able to
properly track it.

Third, allocation-driven mapping does not suffer from the casting problem that oc-
curs when an object is cast to a generic pointer because it does not evaluate pointers to
construct the kernel object map. For instance, in Fig. 1(b) the void pointer in the third
field of the static data object does not hinder the identification of the Y instance because
this object is determined by capturing its allocation. However, we note that another kind
of casting can pose a problem: If an object is allocated using a generic type and it is cast
to a specific type later, allocation-driven mapping will detect the earlier generic type.
However, our study in Section 5 shows that this behavior is unusual in Linux kernels.

There are a number of challenges in implementing the LiveDM system based on
allocation-driven mapping. For example, kernel memory allocation functions do not
provide a simple way to determine the type of the object being allocated.1 One solu-
tion is to use static analysis to rewrite the kernel code to deliver the allocation types to
the VMM, but this would require the construction of a new type-enabled kernel, which
is not readily applicable to off-the-shelf systems. Instead, we use a technique that de-
rives data types by using runtime context (i.e., call stack information). Specifically, this
technique systematically captures code positions for memory allocation calls by using
virtual machine techniques (Section 3.2) and translates them into data types so that OS
kernels can be transparently supported without any change in the source code.

1 Kernel level memory allocation functions are similar to user level ones. The function
kmalloc, for example, does not take a type but a size to allocate memory.
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3.2 Techniques

We employ a number of techniques to implement allocation-driven mapping. At the
conceptual level, LiveDM works as follows. First, a set of kernel functions (such as
kmalloc) are designated as kernel memory allocation functions. If one of these func-
tions is called, we say that an allocation event has occurred. Next, whenever this event
occurs at runtime, the VMM intercedes and captures the allocated memory address
range and the code location calling the memory allocation function. This code location
is referred to as a call site and we use it as a unique identifier for the allocated object’s
type at runtime. Finally, the source code around each call site is analyzed offline to
determine the type of the kernel object being allocated.

Runtime kernel object map generation. At runtime, LiveDM captures all alloca-
tion and deallocation events by interceding whenever one of the allocation/deallocation
functions is called. There are three things that need to be determined at runtime: (1) the
call site, (2) the address of the objected allocated or deallocated, and (3) the size of the
allocated object.

To determine the call site, LiveDM uses the return address of the call to the allocation
function. In the instruction stream, the return address is the address of the instruction
after the call instruction. The captured call site is stored in the kernel object map so that
the type can be determined during offline source code analysis.

The address and size of objects being allocated or deallocated can be derived from
the arguments and return value. For an allocation function, the size is typically given
as a function argument and the memory address as the return value. For a deallocation
function, the address is typically given as a function argument. These values can be
determined by the VMM by leveraging function call conventions.2 Function arguments
are delivered through the stack or registers, and LiveDM captures them by inspecting
these locations at the entry of memory allocation/deallocation calls. To capture the re-
turn value, we need to determine where the return value is stored and when it is stored
there. Integers up to 32-bits as well as 32-bit pointers are delivered via the EAX register
and all values that we would like to capture are either of those types. The return value
is available in this register when the allocation function returns to the caller. In order
to capture the return values at the correct time the VMM uses a virtual stack. When a
memory allocation function is called, the return address is extracted and pushed on to
this stack. When the address of the code to be executed matches the return address on
the stack, the VMM intercedes and captures the return value from the EAX register.

Offline automatic data type determination. The object type information related to
kernel memory allocation events is determined using static analysis of the kernel source
code offline. Fig. 2(a) illustrates a high level view of our method. First, the allocation
call site (C) of a dynamic object is mapped to the source code fork.c:610 using de-
bugging information found in the kernel binary. This code assigns the address of the
allocated memory to a pointer variable at the left-hand side (LHS) of the assignment
statement (A). Since this variable’s type can represent the type of the allocated memory,

2 A function call convention is a scheme to pass function arguments and a return value. We use
the conventions for the x86 architecture and the gcc compiler [8].
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(a) A high level view of static code analysis

(b) Case 1 (c) Case 2 (d) Case 3

Fig. 2. Static code analysis. C: a call site, A: an assignment, D: a variable declaration, T: a type
definition, R: a return, and F: a function declaration

it is derived by traversing the declaration of this pointer (D) and the definition of its type
(T). Specifically, during the compilation of kernel source code, a parser sets the depen-
dencies among the internal representations (IRs) of such code elements. Therefore, the
type can be found by following the dependencies of the generated IRs.

For type resolution, we enumerate several patterns in the allocation code as shown in
Fig. 2(b), 2(c), and 2(d). Case 1 is the typical pattern (C→A→D→T) as just explained.
In Case 2, the definition (D) and allocation (A) occur in the same line. The handling of
this case is very similar to that of Case 1. Case 3, however, is unlike the first two cases.
The pattern in Case 3 does not use a variable to handle the allocated memory address,
rather it directly returns the value generated from the allocation call. When a call site (C)
is converted to a return statement (R), we determine the type of the allocated memory
using the type of the returning function (F). In Fig. 2(d), this pattern is presented as
C→R→F→T.

Prior to static code analysis, we generate the set of information about these code el-
ements to be traversed (i.e., C, A, D, R, F, and T) by compiling the kernel source code
with the compiler that we instrumented (Section 4).

4 Implementation

Allocation-driven mapping is general enough to work with an OS that follows the stan-
dard function call conventions (e.g., Linux, Windows, etc.). Our prototype, LiveDM, sup-
ports three off-the-shelf Linux OSes of different kernel versions: Fedora Core 6 (Linux
2.6.18), Debian Sarge (Linux 2.6.8), and Redhat 8 (Linux 2.4.18).

LiveDM can be implemented on any software virtualization system, such as VMware
(Workstation and Player) [29], VirtualBox [26], and Parallels [14]. We choose the QEMU
[2] with KQEMU optimizer for implementation convenience.

In the kernel source code, many wrappers are used for kernel memory management,
some of which are defined as macros or inline functions and others as regular functions.
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Macros and inline functions are resolved as the core memory function calls at compile
time by a preprocessor; thus, their call sites are captured in the same way as core func-
tions. However, in the case of regular wrapper functions, the call sites will belong to the
wrapper code.

To solve this problem, we take two approaches. If a wrapper is used only a few times,
we consider that the type from the wrapper can indirectly imply the type used in the
wrapper’s caller due to its limited use. If a wrapper is widely used in many places (e.g.,
kmem cache alloc– a slab allocator), we treat it as a memory allocation function. Com-
modity OSes, which have mature code quality, have a well defined set of memory wrap-
per functions that the kernel and driver code commonly use. In our experience, capturing
such wrappers, in addition to the core memory functions, can cover the majority of the
memory allocation and deallocation operations.

We categorize the captured functions into four classes: (1) page allocation/free func-
tions, (2) kmalloc/kfree functions, (3) kmem cache alloc/free functions (slab al-
locators), and (4) vmalloc/vfree functions (contiguous memory allocators). These
sets include the well defined wrapper functions as well as the core memory functions.
In our prototype, we capture about 20 functions in each guest kernel. The memory func-
tions of an OS kernel can be determined from its design specification (e.g., the Linux
Kernel API) or kernel source code.

Automatic translation of a call site to a data type requires a kernel binary that is com-
piled with a debugging flag (e.g.,-g to gcc) and whose symbols are not stripped. Modern
OSes, such as Ubuntu, Fedora, and Windows, generate kernel binaries of this form. Upon
distribution, typically the stripped kernel binaries are shipped; however, unstripped bina-
ries (or symbol information in Windows) are optionally provided for kernel debugging
purposes. The experimented kernels of Debian Sarge and Redhat 8 are not compiled with
this debugging flag. Therefore, we compiled the distributed source code and generated
the debug-enabled kernels. These kernels share the same source code with the distributed
kernels, but the offset of the compiled binary code can be slightly different due to the
additional debugging information.

For static analysis we use a gcc [8] compiler (version 3.2.3) that we instrumented
to generate IRs for the source code of the experimented kernels. We place hooks in the
parser to extract the abstract syntax trees for the code elements necessary in the static
code analysis.

5 Evaluation

In this section, we evaluate the basic functionality of LiveDM with respect to the identifi-
cation of kernel objects, casting code patterns, and the performance of allocation-driven
mapping. The guest systems are configured with 256MB RAM and the host machine has
a 3.2Ghz Pentium D CPU and 2GB of RAM.

Identifying dynamic kernel objects. To demonstrate the ability of LiveDM to inspect
the runtime status of an OS kernel, we present a list of important kernel data structures
captured during the execution of Debian Sarge OS in Table 1. These data structures man-
age the key OS status such as process information, memory mapping of each process,
and the status of file systems and network which are often targeted by kernel malware
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Table 1. A list of core dynamic kernel objects and the source code elements used to derive their
data types in static analysis. (OS: Debian Sarge).

Call Site Declaration Data Type Case #Objects

Ta
sk

/S
ig kernel/fork.c:248 kernel/fork.c:243 task struct 1 66

kernel/fork.c:801 kernel/fork.c:795 sighand struct 1 63
fs/exec.c:601 fs/exec.c:587 sighand struct 1 1
kernel/fork.c:819 kernel/fork.c:813 signal struct 1 66

M
em

or
y

arch/i386/mm/pgtable.c:229 arch/i386/mm/pgtable.c:229 pgd t 2 54
kernel/fork.c:433 kernel/fork.c:431 mm struct 1 47
kernel/fork.c:559 kernel/fork.c:526 mm struct 1 7
kernel/fork.c:314 kernel/fork.c:271 vm area struct 1 149
mm/mmap.c:923 mm/mmap.c:748 vm area struct 1 1004
mm/mmap.c:1526 mm/mmap.c:1521 vm area struct 1 5
mm/mmap.c:1722 mm/mmap.c:1657 vm area struct 1 48
fs/exec.c:402 fs/exec.c:342 vm area struct 1 47

Fi
le

sy
st

em

kernel/fork.c:677 kernel/fork.c:654 files struct 1 54
kernel/fork.c:597 kernel/fork.c:597 fs struct 2 53
fs/file table.c:76 fs/file table.c:69 file 1 531
fs/buffer.c:3062 fs/buffer.c:3062 buffer head 2 828
fs/block dev.c:232 fs/block dev.c:232 bdev inode 2 5
fs/dcache.c:692 fs/dcache.c:689 dentry 1 4203
fs/inode.c:112 fs/inode.c:107 inode 1 1209
fs/namespace.c:55 fs/namespace.c:55 vfsmount 2 16
fs/proc/inode.c:93 fs/proc/inode.c:90 proc inode 1 237
drivers/block/ll rw blk.c:1405 drivers/block/ll rw blk.c:1405 request queue t 2 18
drivers/block/ll rw blk.c:2950 drivers/block/ll rw blk.c:2945 io context 1 10

N
et

w
or

k

net/socket.c:279 net/socket.c:278 socket alloc 1 12
net/core/sock.c:617 net/core/sock.c:613 sock 1 3
net/core/dst.c:125 net/core.dst.c:119 dst entry 1 5
net/core/neighbour.c:265 net/core/neighbour.c:254 neighbour 1 1
net/ipv4/tcp ipv4.c:134 net/ipv4/tcp ipv4.c:133 tcp bind bucket 2 4
net/ipv4/fib hash.c:586 net/ipv4/fib hash.c:461 fib node 1 9

and kernel bugs [13,15,16,17,18,23,27,28]. Kernel objects are recognized using allo-
cation call sites shown in column Call Site during runtime. Using static analysis, this
information is translated into the data types shown in column Data Type by traversing
the allocation code and the declaration of a pointer variable or a function shown in col-
umn Declaration. Column Case shows the kind of the allocation code pattern described in
Section 3.2. The number of the identified objects for each type in the inspected runtime
status is presented in column #Objects. At that time instance, LiveDM identified total
of 29488 dynamic kernel objects with their data types derived from 231 allocation code
positions.

In order to evaluate the accuracy of the identified kernel objects, we build a reference
kernel where we modify kernel memory functions to generate a log of dynamic kernel
objects and run this kernel in LiveDM. We observe that the dynamic objects from the
log accurately match the live dynamic kernel objects captured by LiveDM. To check the
type derivation accuracy, we manually translate the captured call sites to data types by
traversing kernel source code as done by related approaches [5,7]. The derived types at
the allocation code match the results from our automatic static code analysis.

Code patterns casting objects from generic types to specific types. In Section 3.1, we
discussed that allocation-driven mapping has no problem handling the situation where a
specific type is cast to a generic type, but casting from generic types to specific types can
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be a problem. In order to estimate how often this type of casting occurs, we manually
checked all allocation code positions where the types of kernel objects are derived for
the inspected status. We checked for the code pattern that memory is allocated using a
generic pointer and then the address is cast to the pointer of a more specific type. Note
that this pattern does not include the use of generic pointers for generic purposes. For
example, the use of void or integer pointers for bit fields or buffers is a valid use of generic
pointers. Another valid use is kernel memory functions that internally handle pre-typed
memory using generic pointers to retail it to various types. We found 25 objects from 10
allocation code positions (e.g., tty register driver and vc allocate) exhibiting
this behavior at runtime. Such objects are not part of the core data structures shown
in Table 1, and they account for only 0.085% of all objects. Hence we consider them
as non-significant corner cases. Since the code positions where this casting occurs are
available to LiveDM, we believe that the identification of this behavior and the derivation
of a specific type can be automated by performing static analysis on the code after the
allocation code.

Performance of allocation-driven mapping. Since LiveDM is mainly targeted for non-
production environments such as honeypots and kernel debugging systems, performance
is not a primary concern. Still, we would like to provide a general idea of the cost of
allocation-driven mapping. In order to measure the overhead to generate a kernel object
map at runtime, we ran three benchmarks: compiling the kernel source code, UnixBench
(Byte Magazine Unix Benchmark 5.1.2), and nbench (BYTEmark* Native Mode Bench-
mark version 2). Compared to unmodified QEMU, our prototype incurs (in the worst
case) 41.77% overhead for Redhat 8 (Linux 2.4) and 125.47% overhead for Debian Sarge
(Linux 2.6). For CPU intensive workload such as nbench, the overhead is near zero be-
cause the VMM rarely intervenes. However, applications that use kernel services requir-
ing dynamic kernel memory have higher overhead. As a specific example, compiling the
Linux kernel exhibited an overhead of 29% for Redhat 8 and 115.69% for Debian Sarge.
It is important to note that these numbers measure overhead when compared to an un-
modified VMM. Software based virtualization will add additional overhead as well. For
the purpose of inspecting fine-grained kernel behavior in non-production environments,
we consider this overhead acceptable. The effects of overhead can even be minimized in
a production environment by using decoupled analysis [6].

6 Case Studies

We present two kernel malware analysis systems built on top of LiveDM: a hidden ker-
nel object detector and a temporal malware behavior monitor. These systems highlight
the new properties of allocation-driven mapping which are effective for detection and
analysis of kernel malware attacks.

6.1 Hidden Kernel Object Detector

One problem with static type-projection approaches is that they are not able to detect
dynamic kernel object manipulation without some sort of data invariant. In this section
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(a) Temporal live status of kernel modules
based on allocation-driven mapping.

(b) Live set (L) and scanned set (S) for kernel
modules at t1, t2, and t3.

Fig. 3. Illustration of the kernel module hiding attack by cleaner rootkit. Note that the choice
of t1, t2, and t3 is for the convenience of showing data status and irrelevant to the detection. This
attack is detected based on the difference between L and S.

we present a hidden kernel object detector built on top of LiveDM that does not suffer
from this limitation.

Leveraging the un-tampered view. Some advanced DKOM-based kernel rootkits hide
kernel objects by simply removing all references to them from the kernel’s dynamic
memory. We model the behavior of this type of DKOM data hiding attack as a data
anomaly in a list. If a dynamic kernel object does not appear in a kernel object list, then it
is orphaned and hence an anomaly. As described in Section 3.1, allocation-driven map-
ping provides an un-tampered view of the kernel objects not affected by manipulation of
the actual kernel memory content. Therefore, if a kernel object appears in the LiveDM-
generated kernel object map but cannot be found by traversing the kernel memory, then
that object has been hidden. More formally, for a set of dynamic kernel objects of a given
data type, a live set L is the set of objects found in the kernel object map. A scanned set
S is the set of kernel objects found by traversing the kernel memory as in the related
approaches [1,5,16]. If L and S do not match, then a data anomaly will be reported.

This process is illustrated in the example of cleaner rootkit that hides the adore-ng
rootkit module (Fig. 3). Fig. 3(a) presents the timeline of this attack using the lifetime
of kernel modules. Fig. 3(b) illustrates the detailed status of kernel modules and cor-
responding L and S at three key moments. Kernel modules are organized as a linked
list starting from a static pointer variable. When the cleaner module is loaded after
the adore-ng module, it modifies the linked list to bypass the adore-ng module entry
(shown at t2). Therefore, when the cleaner module is unloaded, the adore-ng mod-
ule disappears from the module list (t3). At this point in time the scanned set S based
on static type-projection mapping has lost the hidden module, but the live set L keeps
the view of all kernel modules alive. Therefore, the monitor can detect a hidden kernel
module due to the condition, |L| �= |S|.

Detecting DKOM data hiding attacks. There are two dynamic kernel data lists which
are favored by rootkits as attack targets: the kernel module list and the process control
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Table 2. DKOM data hiding rootkit attacks that are automatically detected by comparing LiveDM-
generated view (L) and kernel memory view (S)

Rootkit
|L| - |S|

Manipulated Data Operating Attack
Name Type Field System Vector

hide lkm # of hidden modules module next Redhat 8 /dev/kmem
fuuld # of hidden PCBs task struct next task, prev task Redhat 8 /dev/kmem
cleaner # of hidden modules module next Redhat 8 LKM
modhide # of hidden modules module next Redhat 8 LKM
hp 1.0.0 # of hidden PCBs task struct next task, prev task Redhat 8 LKM
linuxfu # of hidden PCBs task struct next task, prev task Redhat 8 LKM
modhide1 1 (rootkit self-hiding) module next Redhat 8 LKM

kis 0.9 (server) 1 (rootkit self-hiding) module next Redhat 8 LKM
adore-ng-2.6 1 (rootkit self-hiding) module list.next, list.prev Debian Sarge LKM
ENYELKM 1.1 1 (rootkit self-hiding) module list.next, list.prev Debian Sarge LKM

block (PCB) list.3 However other linked list-based data structures can be similarly sup-
ported as well. The basic procedure is to generate the live set L and periodically generate
and compare with the scanned set S. We tested 8 real-world rootkits and 2 of our own
rootkits (linuxfu and fuuld) previously used in [12,21,23], and these rootkits com-
monly hide kernel objects by directly manipulating the pointers of such objects. LiveDM
successfully detected all these attacks just based on the data anomaly from kernel mem-
ory maps and the results are shown in Table 2.

In the experiments, we focus on a specific attack mechanism – data hiding via DKOM
– rather than the attack vectors – how to overwrite kernel memory – or other attack fea-
tures of rootkits for the following reason. There are various attack vectors including the
ones that existing approaches cannot handle and they can be easily utilized. Specifically,
we acknowledge that the rootkits based on loadable kernel module (LKM) can be de-
tected by code integrity approaches [22,24] with the white listing scheme of kernel mod-
ules. However, there exist alternate attack vectors such as /dev/mem, /dev/kmem de-
vices, return-oriented techniques [11,25], and unproven code in third-party kernel drivers
which can elude existing kernel rootkit detection and prevention approaches. We present
the DKOM data hiding cases of LKM-based rootkits as part of our results because these
rootkits can be easily converted to make use of these alternate attack vectors.

We also include results for two other rootkits that make use of these advanced at-
tack techniques. hide lkm and fuuld in Table 2 respectively hide kernel modules and
processes without any kernel code integrity violation (via /dev/kmem) purely based on
DKOM, and current rootkit defense approaches cannot properly detect these attacks.
However, our monitor effectively detects all DKOM data hiding attacks regardless of
attack vectors by leveraging LiveDM-generated kernel object map. Allocation-driven
mapping can uncover the hidden object even in more adversary scenarios. For example,
if a simple linked list having no data invariant is directly manipulated without violating
kernel code integrity, LiveDM will still be able to detect such an attack and uncover the
specific hidden object.

In the experiments that detect rootkit attacks, we generate and compare L and S sets
every 10 seconds. When a data anomaly occurs, the check is repeated in 1 second. (The

3 A process control block (PCB) is a kernel data structure containing administrative information
for a particular process. Its data type in Linux is task struct.
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repeated check ensures that a kernel data structure was not simply in an inconsistent state
during the first scan.) If the anomaly persists, then we consider it as a true positive. With
this monitoring policy, we successfully detected all tested DKOM hiding attacks without
any false positives or false negatives.

We note that while this section focuses on data hiding attacks based on DKOM, data
hiding attacks without manipulating data (such as rootkit code that filters system call
results) may also be detected using the LiveDM system. Instead of comparing the un-
tampered LiveDM-generated view with the scanned view of kernel memory, one could
simply compare the un-tampered view with the user-level view of the system.

6.2 Temporal Malware Behavior Monitor

Kernel rootkit analysis approaches based on dynamic type-projection are able to perform
temporal analysis of a running rootkit. One problem with these approaches, however, is
that they are only able to track malware actions that occur from injected rootkit code. If
a rootkit modifies memory indirectly through other means such as legitimate kernel func-
tions or kernel bugs, these approaches are unable to follow the attack.
Allocation-driven mapping does not share this weakness. To further illustrate the
strength of allocation-driven mapping, we built a temporal malware behavior monitor
(called a temporal monitor or a monitor below for brevity) that uses a kernel object map
in temporal analysis of a kernel execution trace.

In this section, we highlight two features that allocation-driven mapping newly pro-
vides. First, allocation-driven mapping enables the use of a kernel object map covering
all kernel objects in temporal analysis; therefore for any given dynamic kernel object
we can inspect how it is being used in the dynamic kernel execution trace regardless
of the accessing code (either legitimate or malicious), which is difficult for both static
and dynamic type-projection approaches. Second, the data lifetime in allocation-driven
mapping lets the monitor avoid the dynamic data identity problem (Section 2.1) which
can be faced by an asynchronous memory map.

Systematic visualization of malware influence via dynamic kernel memory. Our
monitor systematically inspects and visualizes the influence of kernel malware attacks
targeting dynamic kernel memory. To analyze this dynamic attack behavior, we gener-
ate a full system trace including the kernel object map status, the executed code, and the
memory accesses during the experiments of kernel rootkits. When a kernel rootkit attack
is launched, if it violates kernel code integrity, the rootkit code is identified by using our
previous work, NICKLE [22]. Then the temporal monitor systematically identifies all
targets of rootkit memory writes by searching the kernel object map. If the attack does
not violate code integrity, the proposed technique in the previous section or any other ap-
proach can be used to detect the dynamic object under attack. The identified objects then
become the causes of malware behavior and their effects are systematically visualized
by searching the original and the modified kernel control flow triggered by such objects.
For each object targeted by the rootkit, there are typically multiple behaviors using its
value. Among those, this monitor samples a pair of behaviors caused by the same code,
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Table 3. The list of kernel objects manipulated by adore-ng rootkit. (OS: Redhat 8).

Runtime Identification Offline Data Type Interpretation
Call Site Offset Type / Object (Static, Module object) Field
fork.c:610 0x4,12c,130 task struct (Case (1)) flags,uid,euid
fork.c:610 0x134,138,13c task struct (Case (1)) suid,fsuid,gid
fork.c:610 0x140,144,148 task struct (Case (1)) egid,sgid,fsgid
fork.c:610 0x1d0 task struct (Case (1)) cap effective
fork.c:610 0x1d4 task struct (Case (1)) cap inheritable
fork.c:610 0x1d8 task struct (Case (1)) cap permitted
generic.c:436 0x20 proc dir entry (Case (2)) get info

(Static object) proc root inode operations lookup
(Static object) proc root operations readdir
(Static object) unix dgram ops recvmsg

(Module object) ext3 dir operations readdir
(Module object) ext3 file operations write

the latest one before the attack and the earliest one after the attack, and presents them
for a comparison.

As a running example in this section, we will present the analysis of the attacks by
the adore-ng rootkit. This rootkit is chosen because of its advanced malware behavior
triggered by dynamic objects; and other rootkits can be analyzed in a similar way. Table 3
lists the kernel objects that the adore-ng rootkit tampers with. In particular, we focus on
two specific attack cases using dynamic objects: (1) The first case is the manipulation
of a PCB (T3) for privilege escalation and (2) the second case is the manipulation of
a function pointer in a dynamic proc dir entry object (P1) to hijack kernel control
flow. Fig. 4 presents a detailed view of kernel control flow and the usage of the targeted
dynamic kernel memory in the attacks. The X axis shows the execution time, and kernel
control flow is shown at top part of this figure. The space below shows the temporal usage
of dynamic memory at the addresses of T3 and P1 before and after rootkit attacks. Thick
horizontal lines represent the lifetime of kernel objects which are temporally allocated
at such addresses. + and × symbols below such lines show the read and write accesses
on corresponding objects. The aforementioned analysis process is illustrated as solid
arrows. From the times when T3 and P1 are manipulated (shown as dotted circles), the
monitor scans the execution trace backward and forward to find the code execution that
consumes the values read from such objects (i.e., + symbols).

Fig. 4. Kernel control flow (top) and the usage of dynamic memory (below) at the addresses of
T3 (Case (1)) and P1 (Case (2)) manipulated by the adore-ng rootkit. Time is in billions of
kernel instructions.
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Selecting semantically relevant kernel behavior using data lifetime. Our monitor in-
spects dynamic memory states in the temporal execution trace and as such we face the
dynamic data identity problem described in Section 3.1. The core of the problem is that
one memory address may correspond with multiple objects over a period of time. This
problem can be solved if the lifetime of the inspected object is available because the
monitor can filter out irrelevant kernel behaviors triggered by other kernel objects that
share the same memory address. For example, in Fig. 4, we observe the memory for T3

is used for four other PCBs (i.e., T1, T2, T4, and T5) as well in the history of kernel ex-
ecution. Simply relying on the memory address to analyze the trace can lead to finding
kernel behavior for all five PCBs. However, the monitor limits the inspected time range
to the lifetime of T3 and select only semantically relevant behaviors to T3. Consequently
it can provide a reliable inspection of runtime behavior only relevant to attacks.

Other kernel memory mapping approaches commonly cannot handle this problem
properly. In static type-projection, when two kernel objects from different snapshots are
given we cannot determine whether they represent the same data instance or not even
though their status is identical because such objects may or may not be different data in-
stances depending on whether memory allocation/deallocation events occur between the
generation of such snapshots. Dynamic type-projection mapping is only based on mal-
ware instructions, and thus does not have information about allocation and deallocation
events which occur during legitimate kernel execution.

Case (1): Privilege escalation using direct memory manipulation. In order to demon-
strate the effectiveness of our temporal monitor we will discuss two specific attacks em-
ployed by adore-ng. The first is a privilege escalation attack that works by modifying
the user and group ID fields of the PCB. The PCB is represented by T3 in Fig. 4. To
present the changed kernel behavior due to the manipulation of T3, the temporal monitor
finds the latest use of T3 before the attack (at t2) and the earliest use of it after the attack
(at t3). The data views at such times are presented in Fig. 5(a) and 5(b) as 2-dimensional
memory maps where a kernel memory address is represented as the combination of the
address in Y axis and the offset in X axis. These views present kernel objects relevant to
this attack before and after the attack. The manipulated PCB is marked with “Case (1)”
in the views and the values of its fields are shown in the box on the right side of each view
(PCB status). These values reveal a stealthy rootkit behavior that changes the identity of

(a) The original data view at t2. (b) The manipulated data view at t3.

Fig. 5. Kernel data view before and after the adore-ng rootkit attack
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a user process by directly patching its PCB (DKOM). Before the attack (Fig. 5(a)), the
PCB has the credentials of an ordinary user whose user ID is 500. However, after the
attack, Fig. 5(b) shows the credentials of the root user. This direct transition of its status
between two accounts is abnormal in conventional operating system environments. su
or sudo allow privileged operations by forking a process to retain the original identity.
Hence we determine that this is a case of privilege escalation that illegally permits the
root privilege to an ordinary user.

Case (2): Dynamic kernel object hooking. The next adore-ng attack hijacks kernel
code execution by modifying a function pointer and this attack is referred to as Kernel
Object Hooking (KOH) [10]. This behavior is observed when the influence of a manipu-
lated function pointer in P1 (see Fig. 4) is inspected. To select only the behaviors caused
by this object, the monitor guides the analysis to the lifetime of P1. The temporal mon-
itor detects several behaviors caused by reading this object and two samples are chosen
among those to illustrate the change of kernel behavior by comparison: the latest original
behavior before the attack (at t1) and the earliest changed behavior after the attack (at t4).
The monitor generates two kernel control flow graphs at these samples, each for a period
of 4000 instructions. Fig. 6(a) and 6(b) present how this manipulated function pointer
affects runtime kernel behavior. The Y axis presents kernel code; thus, the fluctuating
graphs show various code executed at the corresponding time of X axis. A hook-invoking
function (proc file read) reads the function pointer and calls the hook code pointed
to by it. Before the rootkit attack, the control flow jumps to a legitimate kernel function
tcp get info which calls sprintf after that as shown in Fig. 6(a). However, after the
hook is hijacked, the control flow is redirected to the rootkit code which calls kmalloc
to allocate its own memory, then comes back to the original function (Fig. 6(b)).

(a) The original control flow at t1. (b) The hijacked control flow at t4.

Fig. 6. Kernel control flow view before and after the adore-ng rootkit attack

7 Discussion

Since LiveDM operates in the VMM beneath the hardware interface, we assume that
kernel malware cannot directly access LiveDM code or data. However, it can exhibit po-
tentially obfuscating behavior to confuse the view seen by LiveDM. Here we describe
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several scenarios in which malware can affect LiveDM and our counter-strategies to de-
tect them.

First, malware can implement its own custom memory allocators to bypass LiveDM
observation. This attack behavior can be detected based on the observation that any mem-
ory allocator must use internal kernel data structures to manage memory regions or its
memory may be accidentally re-allocated by the legitimate memory allocator. Therefore,
we can detect unverified memory allocations by comparing the resource usage described
in the kernel data structures with the amount of memory being tracked by LiveDM. Any
deviance may indicate the presence of a custom memory allocator.

In a different attack strategy, malware could manipulate valid kernel control flow and
jump into the body of a memory allocator without entering the function from the be-
ginning. This behavior can be detected by extending LiveDM to verify that the function
was entered properly. For example, the VMM can set a flag when a memory allocation
function is entered and verify the flag before the function returns by interceding before
the return instruction(s) of the function. If the flag was not set prior to the check, the
VMM detects a suspicious memory allocation.

8 Related Work

Static type-projection mapping has been widely used in the defense against kernel mal-
ware attacks. SBCFI [16] detects persistent manipulations to the kernel control flow
graph by using kernel memory maps. Gibraltar [1] derives data invariants based on a
kernel memory map to detect kernel malware. KOP [5] improves the accuracy of map-
ping using extended type graph based on static analysis in addition to memory analysis.
Complementing these approaches, allocation-driven mapping provides an un-tampered
view of kernel objects where their identification is not affected by kernel malware’s ma-
nipulation of the kernel memory content. It also accurately reflects the temporal status of
dynamic kernel memory, which makes it applicable to temporal analysis of kernel/kernel
malware execution.

PoKeR [23] and Rkprofiler [31] use dynamic type-projection mapping generated from
rootkit instructions to understand the rootkit behavior. Since only rootkit activity is used
as the input to generate a kernel memory map, this approach can only cover the kernel
objects directly manipulated by rootkit code. Moreover, there exist the attacks that are
difficult to be analyzed by these profilers because rootkits can use various resource such
as hardware registers to find the attack targets [21].

KernelGuard (KG) [20] is a system that prevents DKOM-based kernel rootkits by
monitoring and shepherding kernel memory accesses. It identifies kernel objects to be
monitored by scanning the kernel memory using data structure-specific policies enforced
at the VMM level. Similar to type-projection mapping, KG’s view of kernel memory is
based on the runtime kernel memory content which is subject to malware manipulation.
As such, KG’s reliability can be improved by adopting LiveDM as the underlying kernel
memory mapping mechanism.

LiveDM involves techniques to capture the location, type, and lifetime of individ-
ual dynamic kernel objects, which can be described as belonging to the area of virtual
machine introspection [9].
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9 Conclusion

We have presented allocation-driven mapping, a kernel memory mapping scheme, and
LiveDM, its implementation. By capturing the kernel objects’ allocation and dealloca-
tion events, our scheme provides an un-tampered view of kernel objects that will not
be affected by kernel malware’s manipulation of kernel memory content. The LiveDM-
generated kernel object map accurately reflects the status of dynamic kernel memory and
tracks the lifetimes of all dynamic kernel objects. This temporal property is highly desir-
able in temporal kernel execution analysis where both kernel control flow and dynamic
memory status can be analyzed in an integrated fashion. We demonstrate the effective-
ness of the LiveDM system by developing a hidden kernel object detector and a temporal
malware behavior monitor and applying them to a corpus of kernel rootkits.
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