
Digital Object Identifier (DOI) 10.1007/s00530-002-0061-4
Multimedia Systems 8: 420–430 (2002) Multimedia Systems

© Springer-Verlag 2002

An integrated runtime QoS-aware middleware framework
for distributed multimedia applications

Baochun Li1, Dongyan Xu2, Klara Nahrstedt3

1 Department of Electrical and Computer Engineering, University of Toronto, Canada (e-mail: bli@eecg.toronto.edu)
2 Department of Computer Sciences, Purdue University, USA (e-mail: dxu@cs.purdue.edu)
3 Department of Computer Science, University of Illinois at Urbana-Champaign, USA (e-mail: klara@cs.uiuc.edu)

Abstract. Future-generation distributed multimedia applica-
tions are expected to be highly scalable to a wide variety
of heterogeneous devices, and highly adaptive across wide-
area distributed environments. This demands multiple stages
of run-time support in QoS-aware middleware architectures,
particularly, probing the performance of QoS parameters, in-
stantiating the initial component configurations, and adapting
to on-the-fly variations. However, few of the past experiences
in related work have shown comprehensive run-time support
in all of the above stages – they often design and build a mid-
dleware framework by focusing on only one of the run-time
issues. In this paper, we argue that distributed multimedia ap-
plications need effective run-time middleware support in all
these stages to be highly scalable and adaptive across a wide
variety of execution environments. Nevertheless, the design
of such a middleware framework should be kept as stream-
lined and simple as possible, leading to a novel and integrated
run-time middleware platform to unify the probing, instanti-
ation and adaptation stages. In addition, for each stage, the
framework should enable the interaction of peer middleware
components across host boundaries, so that the corresponding
middleware function can be performed in a coordinated and
coherent fashion. We present the design of such an integrated
architecture, with a case study to illustrate how it is simple
yet effective to monitor and configure complex multimedia
applications.

Key words: Run-time adaptation, middleware support, mul-
timedia systems

1. Introduction

With the advent of next-generation multimedia technologies
such as mobile and ubiquitous media delivery, future mul-
timedia applications are expected to be highly scalable to
a wide variety of heterogeneous devices, and highly adap-
tive across wide-area distributed environments. Such objec-
tives call for significant extensions to the current-generation
distributed multimedia technologies, such as the streaming,

caching, and processing of media data. However, these tech-
nologies are usually developed independently, and their per-
formances are tailored and tuned to specific operating systems
and platforms. On the other hand, it has been envisioned in re-
cent work [1] that, with the assistance of multimedia middle-
ware, the goals of achieving scalability and adaptivity can be
achieved with minimum modifications to current-generation
multimedia applications.

By interacting with operating system kernels and
application-level hooks, QoS-aware middleware has been
proved highly effective in supporting multimedia applications
via run-time probing, instantiation and adaptation of applica-
tions. Therefore, application configurations and performances
can be tailored to different user behavior and characteristics of
ubiquitous environments. To be more specific, the QoS-aware
middleware framework is expected to provide the following
critical functions:

– Run-time probing. Distributed multimedia applications are
subject to both off-line and run-time probing with respect
to the instantaneous performances of their QoS parame-
ters. Such QoS probing is the responsibility of middleware
components. Probing is useful in learning about applica-
tion behavior, so that better run-time adaptation rules may
be set accordingly.

– Run-time instantiation. A distributed multimedia applica-
tion may have various application configurations. Each
application configuration consists of a set of application
components; and is represented by a configuration graph.
At the stage of run-time instantiation, the middleware will
select a suitable configuration which matches the specific
resource availability and user preference.

– Run-time adaptation. During application run-time, the
middleware may assist the application to adapt to the trig-
gering sources, including changes of resource availability
or user requirements. Such triggering sources exist due
to the sharing of resources among applications; lack of
resource reservation mechanisms; or change of user pref-
erences (including location and environment). The mid-
dleware changes the application behavior correspondingly
when significant variations in these triggering sources are
detected.

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [2834.5 2834.5] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

Distributed multimedia applications 421

Past experiences (Sect. 2) have focused on various aspects
of providing run-time middleware support. As two examples,
the Agilos middleware project [2] has focused on the aspects
of off-line probing and run-time adaptation, particularly on
how to make informed decisions regarding when, how and to
what extent to adapt to the fluctuations in resources and user
requirements. In comparison, the 2KQ project [3] has focused
on architectures and protocols that appropriately instantiate a
particular application configuration for the application, so that
minimum user-specified requirements are met.

On evaluating past experiences in related work, we make
the following three key observations. First, few of the existing
projects has shown integrated run-time support in all of the
above aspects – they are typically designed with considera-
tions of only one of the run-time issues. We argue that, to be
highly scalable and adaptive across a wide variety of execution
environments, distributed multimedia applications need effec-
tive run-time middleware support in all of these aspects. That
said, the design of such middleware framework should be kept
as streamlined and simple as possible, leading to a novel and
integrated run-time middleware platform to unify the prob-
ing, instantiation and adaptation stages. Secondly, the design
of such framework should consider the interaction of peer
middleware components across host boundaries, to support
distributed application components in a coordinated fashion.
Third, it has not been previously identified that the triggering
sources of these three critical functions are in fact identical.
The triggering sources include variations in user preferences
and resource availability. Therefore, run-time probing, instan-
tiating and adapting can all be considered as actions driven by
the same set of triggering sources. This leads to a unified and
streamlined decision-making process to configure and adapt
distributed applications in an integrated fashion. In this paper,
we present the design of such an integrated architecture, with a
case study to illustrate how it is simple yet effective to monitor
and configure complex multimedia applications. Towards this
objective, this paper identifies common run-time triggering
sources for different run-time middleware functions.

The rest of the paper is organized as follows. Section 2
summarizes and evaluates past experiences in related work and
our recent projects, with respect to run-time support by QoS-
aware middleware. Section 3 identifies common triggering
sources for activating run-time middleware functions. Based
on these triggering sources, Sect. 4 proposes a unified archi-
tecture to integrate the middleware functions to be performed
in different run-time stages. Section 5 presents an example
multimedia application (video streaming and object tracking)
as a case study, to show the effectiveness and simplicity of
using the proposed framework to monitor and configure com-
plex applications at run-time. Finally, Sect. 6 concludes the
paper with directions to future work.

2. Past experiences in related work

There are a number of proposed frameworks and systems for
the purpose of managing run-time resource usage and applica-
tion component configuration at the middleware level. For ex-
ample, the BBN QuO project [4] proposed an adaptation-based
middleware-level architectural enhancement to CORBA; the
Da CaPo++ [5] framework implemented adaptation-based

services in the middleware; in the Adapt project [6], the con-
cept of open binding was introduced as a programming model
for the implementation of adaptation policies in mobile mul-
timedia applications; in the Darwin project [7], a hierarchical
service brokerage architecture was proposed for composing
complicated and value-added distributed services. From an
architecture point of view, the group of work on reflective
middleware designs [8] attempts to increase the flexibility of
existing middleware frameworks by allowing them to be dy-
namically configurable to accommodate rapidly changing ex-
ecution requirements.

In the past few years, we have concurrently developed two
separate middleware systems for supporting application-level
Quality-of-Service, namely, the2KQ and Agilos projects, with
different design objectives and assumptions. The 2KQ project
[3] aims at QoS provisioning with the presence of OS-level re-
source reservation mechanisms, particularly focusing on two
important aspects. First, it translates from application-level
to OS-level QoS parameters; Second, during application run-
time, it instantiates a specific service configuration by check-
ing both resource availability (via a service configuration se-
lection algorithm) and available services at run-time (via a
resource-aware service discovery mechanism). In comparison
with 2KQ, the Agilos project [2] does not assume the presence
of existing resource reservation schemes at the OS level, and
emphasizes QoS adaptation mechanisms at run-time, caused
mainly by resource variations. It resorts to off-line probing
techniques to obtain the relationships between application-
level QoS parameters and their corresponding resource de-
mands, and uses a rule-based system to cater for application-
specific needs for specifying adaptation preferences. In addi-
tion, the internal processing engine for generating adaptation
decisions is generic and application-neutral, designed using
control-theoretical techniques. Figure 1 shows the skeleton
architecture for both projects, highlighting their differences
in design objectives and assumptions with respect to run-time
operations.

As illustrated in Fig. 1, in both projects we use a generic
application component model, shown as an application com-
ponent graph. In this model, we view a collection of in-
terconnected application components on a single host as a
set of tasks, with input-output dependencies. Beyond a sin-
gle end host, we group the entire distributed application into
clients and services. The collection of clients and services
form another directed graph representing the service provider-
consumer relations. As the graph becomes more complex,
some services may contain application components that are
clients as well.

Based on this model, middleware components of both
projects attempt to instantiate or reconfigure the application
component graph based on certain triggering sources. In the
case of 2KQ, the descriptors of ‘service requests’ at appli-
cation initialization time are translated to resource-level QoS
requirement vectors, which are used to select a specific ap-
plication component graph (i.e. an application configuration),
and subsequently reserve resources on each of the hosts in
the component graph. In the case of Agilos, the resource-level
control values are processed against an application-specific
rule base, generating application-specific control actions as
outputs. Such generated control actions may include tuning

422 B. Li et al.

application-specific control actionsselected service configuration

Operating systems and protocol stack (on multiple participating hosts)

QoSProxy

Resource Adaptor Observer

Run-time Service Configurator

Run-time Component Configurator

application-neutral control values

resource variations as "triggers"enforce resource reservations

Application

Resource Broker Resource Monitor

Service requests

Dynamic Service Configuration Selection
Rule base

QualProbes

2K
Q Agilos

C2

C1 C5

C4

C7

C6

C3
Client

Services

Services

C8

Resource-aware Service Discovery

translate to
resource vectors

application
component
graph

Fig. 1. A run-time comparison between the 2KQ and Agilos middleware architectures

specific parameters within a component, or reconfiguring the
application component graph.

With respect to QoS probing, the 2KQ project includes re-
source monitors to perform end-to-end resource checking in
order to select an appropriate application configuration. Such
resource checking is performed at application initialization
time. The Agilos project, on the other hand, actively monitors
resource usage via observers during application run-time, and
makes adaptation decisions based on such run-time probing.
In addition, a separate component, the QualProbe, is used to
perform off-line probing during benchmarking runs, to dis-
cover the mapping between application-level and resource-
level QoS parameters, thus assisting the specification of the
rule base.

Based on previous discussions, we further analyze the trig-
gering sources and corresponding ‘actions’ of both middle-
ware systems, with respect to their run-time support. Such
analysis leads to the integration of these run-time solutions
in a unified architecture, so that a complete and streamlined
system can be designed.

3. Triggering sources of run-time middleware functions

Before we present our design of an integrated run-time support
architecture, we first need to identify the triggering sources
that activates such run-time support. We also note that this is
not a ‘cure-all’ middleware solution for any applications. In-
stead, we consider a typical range of distributed multimedia
applications such that they can be componentized and mod-
eled with the application component graph. These applications
include video streaming, video-over-IP telephony, video con-
ferencing and visual tracking. They may be deployed over a
variety of computing devices, from PDAs to workstation clus-
ters. In such a dynamic and heterogeneous environment, it is
necessary for the run-time support middleware to react to the
following types of changes:

1. Variations in resource availability. Such variations are
generally shown as changes in specific resource-level QoS
parameters. We are most concerned with the following pa-
rameters: (1) client-side parameters such as CPU availabil-
ity, bandwidth for multimedia streaming, or buffer space;
(2) service-side parameters of similar types; and (3) pa-
rameters that show network performances between the
service and the client, such as delay, jitter and loss. In
the application component graph, all three categories of
parameters may be represented as a ‘label’ on either the
component itself (core parameters), the inbound and out-
bound interfaces of the component (inbound and outbound
parameters), or on an edge of the component graph (edge
parameters). Figure 2 illustrate an example, where the la-
bels are shown as <parameter type, parameter value>
pairs. These <type, value> pairs are coherently monitored
by on-line QoS probing components that execute in each
of the hosts, usually by interacting with the OS kernel via
system calls.

C1

C4

Client Service

C5

<CPU(c5), 10%>

<BW (c5), 1800Kbps>
out

<BW (c4), 1800Kbps>

<Delay(c4, c5), 200ms>

in
At inbound interface: At outbound interface:

Between components from different hosts:

Within a
component:

inbound parameter outbound parameter

 core
parameter

edge parameter

Fig. 2. Labeling the application component graph

Distributed multimedia applications 423

2. Variations in user preferences. There are two categories
of preferences that a user may specify and change at run-
time. First, the level of satisfaction (e.g. Quality of Per-
ception in video streaming clients) at different application
QoS levels; secondly, the tradeoff policy among QoS pa-
rameters of conflicting interests. For example, for video
streaming, one user may require the best image quality
with lower frame rate, while another user may prefer the
highest frame rate with lower image quality.

3. User mobility. In a complex distributed environment, the
mobility of users should be treated as a normal case, rather
than as an exception. The user may move with its client
host or between multiple client hosts, where he reconnects
when he arrives at the new location (either wirelessly or
with cables). In this case, the application component graph
may be disrupted (changed) for a short period of time,
referred to as application-level handoff. If we consider
the ‘location’1 of an application component to be one of
its core parameters, it is observed that any user mobility
may be treated as one of the following: (1) a spontaneous
reconfiguration in the application component graph; or (2)
parameters that are already labeled in such a graph.

It is apparent that if we only consider the above three types
of triggering sources that may activate run-time support, we
may conveniently use the application component graph and its
parameters (core, edge, inbound or outbound) to effectively
model such triggering sources. In other words, we may define
a data structure, referred to as application states, maintained
in all participating hosts, which includes the following two
categories of information: (I) the definition of the applica-
tion component graph, including related parameters that are
labeled in such a graph; (II) possible instances of alternative
application configurations that may result from topological
changes in the application component graph. These are rep-
resented by different topologies of the same pool of compo-
nents. Any changes in such a data structure will activate run-
time middleware functions; while any run-time function may
also influence these application states. Such application states
form the basis of discussion on our integrated architecture in
the subsequent sections.

4. An integrated run-time support middleware
architecture

We propose an integrated middleware architecture for run-time
application support, providing the functions of run-time prob-
ing (monitoring) of application states, run-time instantiation
of a specific service configuration, and run-time adaptation
to application state variations. These three run-time support
functions are driven by the same set of ‘triggering sources’de-
scribed in Sect. 3; while the application states are maintained
on all participating end hosts in the distributed application. In
this section, we present our design by detailing the vertical
and horizontal aspects between middleware and application
components involved: vertical aspects involve middleware and
application components within the same host boundary; while
horizontal aspects take place among middleware components

1 The location of a component may be represented by its host’s
address or interface name.

across different hosts. We believe that, for effective monitoring
and control of a complex distributed application, both verti-
cal and horizontal aspects should be carefully designed in a
streamlined fashion. The tenet of such a design is to provide
simple, yet effective run-time support in probing, instantiating
and adapting distributed applications.

4.1. Vertical aspects

Within the host boundary, we propose to represent the applica-
tion states (defined in Sect. 3) as a database stored within each
of the participating host. The application states is the focal
point of operations to all the run-time middleware compo-
nents, which include a probe component, a run-time instanti-
ation component, and a run-time adaptation component. Each
of these components is activated at run-time when certain trig-
gering sources are detected based on the application states. By
clearly defining the triggering sources and the activation tim-
ing of each of these components, we are able to operate the
framework at run-time without ambiguity. We illustrate these
components and their interactions in Fig. 3.

We describe the details of each component as in the fol-
lowing.

The probe.
For the purpose of QoS probing and monitoring of ap-
plication states, the probe, as a middleware component,
should be activated periodically. When activated, it goes
through two probing steps. First, it checks input-output
relationships of current application components (within
the same host boundary) against the recorded application
states, which include an application component graph. If
there exists a mismatch, it updates the application states
to reflect the discovered changes. This step is necessary
in order to detect topological changes in the application
component graph within the host boundary. Second, it uses
OS-level system calls or application-level hooks to mea-
sure all labeled parameters (including inbound, outbound,
core and edge parameters) related to the components in
the application states within the same host boundary. The
probing results of the first two steps will be recorded in the
database of application states. The probe is well aware of
all system calls and application hooks necessary for moni-
toring any changes in resource and application parameters,
as well as topology changes in the application component
graph.

Run-time instantiation.
For the purpose of run-time instantiation, we design a
‘processing engine’ that makes application instantiation
decisions solely based on the application states as input.
The instantiation component is activated once at applica-
tion start-up time. It collaborates horizontally with their
counterparts on other involved hosts, to decide the actual
application configuration under which the distributed ap-
plication will be executed. Such a ‘processing engine’ uti-
lizes the application configuration selection algorithm, the
results of the algorithm (i.e. a particular application con-
figuration among the possible alternatives) are enforced by
the middleware. Since such enforcement updates the ap-
plication component graph, it effectively changes the ap-

424 B. Li et al.

selected
service configuration

adaptation
decisions

Operating systems and protocol stack (on multiple participating hosts)

Distributed multimedia applications (componentized)

OS-level system calls for resource
parameter monitoring

Activate if discovers a match

Activates
periodically

Run-time instantiation

Rule base

Integrated
run-time support Local states

C2

C1 C5

C4

C7

C6

C3
Client

Services

Services

C8

Run-time adaptations

Probe

Application states
(labeled parameters not shown)

results stored back

results stored back

results stored back

application hooks

Activate once
at application
start-up time

Fig. 3. An integrated run-time support architecture

plication states. After run-time instantiation, such changes
should be stored back to the database of application states
in each of the participating hosts.
The goal of the application configuration selection algo-
rithm is to select an optimal application component graph
(application configuration) that best reflects the current
status with respect to all triggering sources. These include
resource availability, QoS needs and user preferences in an
application. The design of the algorithm was proposed in
previous work [9] derived from our past experiences with
the 2KQ project, and we observe that it can be readily
applied to this new integrated architecture.

Run-time adaptation.
For the purpose of run-time adaptations, we include a
database of application-specific adaptation policies and
rules (hereafter referred to as the rule base) based on the
application states. Such a rule base is critical to the process
of automating run-time adaptation that is tailored to the
needs of a specific application. Assume the probe within
the host boundary is activated on adjacent time instants
t1 and t2, while the application component graph (moni-
tored by the probe) on these time instants is Gt1 and Gt2 ,
respectively. A specific rule in the rule base is represented
as a standard ‘if ... then ...’ clause, in the following form:

if c1(p1(Gt1), p1(Gt2), l1, u1)
and c2(p2(Gt1), p2(Gt2), l2, u2)
and . . .
and ci(pi(Gt1), pi(Gt2), li, ui)
then some adaptation action

where each pi may either be a labeled parameter, or the
topology of the component graph. In the case of a pa-
rameter, ci(pi(Gt1), pi(Gt2), li, ui) represents a desired
condition that is dependent on the scalar value of this pa-
rameter at time t1 and t2, as well as a lower bound li and
an upper bound ui. If pi is a certain topology of the com-
ponent graph, then the condition ci represents a condition
that the topology satisfies, e.g. the removal of a certain
edge in the graph at t2 compared to the graph at t1. Each
pi is considered as a triggering source to trigger adaptation
controlled by the middleware component. In other words,
adaptation takes place on satisfying the precondition of

one of the rules in the rule base. Since the current states of
each pi are monitored by the probe, the correct behavior
of run-time adaptation relies on the periodic activations of
the probe. For the specific matching process to discover
the set of rules to use, we reuse the inference engine based
on fuzzy logic, presented in our previous work [2].
We further note that run-time adaptation – using a probing-
decision-adaptation feedback loop – has the potential risk
of leading to oscillations. This occurs when adaptation
is too fine-grained and/or when probing results in an
incorrect (inconsistent or inaccurate) image of the sys-
tem/application state. There are previous work address-
ing this issue [10,11], while our previous work [2] ana-
lyzed the stability properties quantitatively by using clas-
sic control-theoretic approaches.

To summarize, our design is vertically simplified and
streamlined compared with previous approaches. For exam-
ple, all three components have clearly defined activation tim-
ing. While the instantiation component is activated only once
at start-up time and the probe is activated periodically, the
adaptation component is activated only when a match to the
precondition of one of the rules is detected. Furthermore, all
components take advantage of a unified database of applica-
tion states. Whenever application states are modified, results
of such changes are written back to the database. Since the
triggering sources of all three aspects (probing, instantiating
and adapting applications) are identical, this unified database
makes it straightforward for the middleware to maintain cur-
rent knowledge of the application in control.

In comparison to previous approaches, we note that vari-
ous other middleware-based approaches (e.g. QuO) use com-
plex multi-partite negotiations to establish a QoS contract.
Such a contract is used in the subsequent request invocation
or streaming phase as a reference for decisions concerning
run-time adaptations, given observations on the actual perfor-
mance during this phase. The streamlined design proposed in
this paper does not require such complex negotiations, but uses
a simple rule base to achieve similar results.

4.2. Horizontal aspects

Due to the distributed nature of applications, it is also criti-
cal to enable horizontal coordinations among peer middleware

Distributed multimedia applications 425

components on multiple end hosts. This can be easily derived
from the application component graph (Fig. 2), since only ap-
plication components within the same host are grouped as one
node in the top hierarchy, which consists of the topology be-
tween services and clients. On the other hand, the collection of
the application states, most notably the application component
graph, forms an entity requiring global information across the
host boundary. For example, in Fig. 3, the probe of a single
host can only update the labeled parameters that are attached
to the components of the same host. Without horizontal inter-
actions between probes on different hosts, some parameters
in the application component graph may be out of date on any
one of the hosts.

The above stated problem is caused by the logically cen-
tralized nature of application states for a certain distributed
application.Assuming the existence of an omniscient observer
that is able to collect all the changes from middleware com-
ponents on all participating hosts, such an observer would be
able to construct an accurate application component graph in a
centralized fashion. Such an accurate ‘snapshot’of the current
component graph can thus be propagated to the databases of
application states on all participating hosts. Without such an
omniscient observer, the middleware components are respon-
sible to interact in a peer-to-peer fashion, so that the appli-
cation state changes are propagated in a timely and efficient
way.

A trivial solution to this issue is that, whenever a change
is detected in the application states (be it a parameter or topo-
logical change) on one of the hosts, such changes are propa-
gated to all participating hosts in the application component
graph. Obviously, a more efficient design is desired to reduce
the overhead of propagating changes to the application states,
with the trade-off of relaxed consistency across peer hosts.
In the following, we present a randomized propagation algo-
rithm to perform this task. The level of consistency is tunable
in the algorithm to meet either more relaxed or more stringent
requirements. This algorithm is implemented in the probe, on
all participating hosts.

The randomized propagation algorithm

In this algorithm, the application component graph on each
host is periodically propagated to a randomly selected subset
of the participating hosts. The total number of hosts in this
randomly selected subset, n, is a tunable parameter of the
algorithm. Naturally, if n is equal to the total number of hosts
(minus one), the algorithm upgrades to the standard solution
(described previously), in which changes are propagated to all
the participating hosts in the component graph. On the other
hand, n is at least 1, i.e. changes are propagated to at least one
of the hosts in the graph.

On receiving the propagated changes from other hosts, a
host executes a merge algorithm to merge any new changes
into its own application component graph. In order to distin-
guish new changes from outdated ones, a version number
is labeled at each ‘node’ in the top hierarchy of the graph,
where each ‘node’ represent either a client or a service. Figure
4 shows the results of attaching version numbers on the nodes
representing clients and services.

C8

C7
C5

node 3 (client) node 4 (service)

C6

C1

C2
C4

node 1 (client) node 2 (service)

C3

Version 5Version 4

Version 3 Version 4

Fig. 4. Labeling version numbers in the application component graph

In this example, each node (either client or service) in
the top hierarchy of the application component graph main-
tains a version number. The version number is incremented
every time the host executes the randomized propagation al-
gorithm. When a host in the selected subset receives such an
update, it updates all changes (including parameter and topo-
logical changes) in the corresponding client or service node, if
the local node has a smaller version number. The randomized
propagation algorithm and the merge algorithm is presented
in Tables 1 and 2, respectively. In these tables, we assume that
each participating host (as well as its corresponding node, e.g.
node 1 to 4 in Fig. 4, in the top hierarchy of the application
component graph) has an identifier in the range of (1 . . . max),
where max is the total number of participating hosts in the ap-
plication.

Identical algorithms are used for constructing the initial
application component graph on all participating hosts (or
bootstrapping: each host propagates its own states (compo-
nents on the same host, their relationships and parameters) to
a selected subset of other hosts. It can be easily derived that, if
there are no further changes caused by adaptation, the appli-
cation component graph on any one of the participating hosts
converges to accurate global states. In the case where adap-
tations on each host occur concurrently with propagations of
states, there may be instances where the application compo-
nent graphs on some of the hosts do not reflect the actual global
states in the distributed application. Such inconsistencies may
be eliminated by conservatively choosing n = max−1. How-
ever, we believe that a relaxed level of consistency is tolerable
for the needs of run-time support, since adaptation only occurs
when the application can not meet the minimum QoS needs;
and the precondition of each adaptation rule only reflects such
an extremely unfavorable condition. Therefore, if the propaga-
tion period T is tuned according to the frequency of minimum
QoS violation occurrences (which can be estimated based on
earlier entries in the application state databases), the relaxed
level of consistency will not compromise the timeliness of
adaptation actions taken by the run-time support middleware.

426 B. Li et al.

Table 1. The randomized propagation algorithm

The following algorithm is executed periodically with a period T :

If (changes exist in application component graph since last propagation)
Then

For i = 1 to n (n: tunable parameter)
m = random(1...max), s.t. m is neither previously selected nor the local host
Propagate the local application component graph to host m
If (changes exist in node m in top hierarchy of application component graph)
Then

v(m) = v(m) + 1, where v(m) is version number of node m
End

End

The following is executed when a topological change is activated for adaptation purposes:

For all nodes m involved in the topological change
v(m) = v(m) + 1

Table 2. The merge algorithm

The following algorithm is executed on receiving an application component graph
from a peer host m:

For i = 1 to max
If vr(i) > vl(i) (vr: received version; vl: local version)
Then

Copy node i from received application component graph
to local application component graph
vl(i) := vr(i)

End
End

4.3. Implementation issues

With respect to implementation, one of the critical objec-
tives of our design is to be able to implement the middleware
framework without the need of a full-fledged middleware ar-
chitecture, such as CORBA. This is in sharp contrast with
existing proposals (e.g. reflective middleware, QuO), where
the designed framework heavily relies on the existence of the
CORBA architecture. This is made possible by minimizing the
interface between application and middleware components for
the purpose of monitoring and adapting applications.

Interface for probing. As may be observed from Fig. 3, one
of the interfaces between applications and our run-time sup-
port architecture is the collection of application hooks that
are necessary for the probe to accurately monitor application
parameters, such as the frame rate in a multimedia streaming
application. Although such application hooks may be imple-
mented using a traditional middleware architecture such as
CORBA, it is, obviously, not the only solution. Based on our
experiments, the monitoring interface can be implemented in
the form of a third-party application service (i.e. a daemon
in UNIX or a service in Windows NT/2000). The applica-
tions may register and update their parameters within such a
third-party service, while the probe queries the service asyn-
chronously.

Interface for adaptations. The middleware components for
run-time instantiations and adaptations also need to use an
interface to instantiate and adapt the application. If the ap-
plication is CORBA-aware (e.g. consisted of CORBA com-
ponents), the middleware can take advantage of the defined
interfaces of these application components to construct the
component graph, or to tune the application parameters. How-
ever, even for mainstream applications without awareness of
CORBA, we can still use a third-party service to accomplish
this task. In this case, the middleware components update the
parameters and component graphs registered within the third-
party service, where the application queries the service peri-
odically to adapt itself, taking the query results as ‘hints’ for
the adaptation.

To summarize, our proposed run-time middleware support
architecture does not need to rely on any existing middleware
architectures such as CORBA. This brings substantial benefits
towards the possibility of deploying the framework rapidly
over existing platforms and applications. This is especially
valuable given the current trend towards ubiquitous and per-
vasive computing environments, where it may not be feasible
to deploy complex middleware architectures (e.g. CORBA)
on some of the portable platforms (e.g. Pocket PC). Eliminat-
ing such dependencies on CORBA greatly improves the flex-
ibility of the design to support a wide variety of applications
on a wide variety of platforms. Indeed, based on our experi-
ences, our framework can even be implemented as a library
in binary form, that can be statically compiled or dynamically

Distributed multimedia applications 427

loaded. Since the algorithms and inter-component interactions
are generally streamlined, such a middleware layer poses min-
imum resource needs and restrictions in addition to those from
the applications themselves.

5. An application case study
with the unified framework

As a case study, we present and evaluate our experiences of
implementing our proposed run-time support architecture to
monitor and adapt a complex multimedia application, referred
to as online video streaming with object tracking. The appli-
cation is client/server based, with a server serving live feeds
of video (from its attached camera) in the MPEG-2 format,
and one or more clients receiving such live video feeds, track-
ing an interested moving object within the video. The clients
may include heterogeneous portable devices running different
OS platforms. This application is helpful to many real-world
scenarios, such as live streaming of a football game to one or
more clients with heterogeneous platforms, with one of the
key players tracked.

Since the clients are on heterogeneous platforms (e.g. Pal-
mOS vs. Windows) and have different levels of bandwidth or
CPU availability (e.g. wireless PalmPilot vs. wired Pentium
III-based notebook PC), there is a need for intermediate prox-
ies to transcode the video to different formats, e.g. H.261 or
uncompressed bitmap. The intermediate proxies are on sepa-
rate hosts from the server and clients. Within the application,
critical software components include the following: (1) The
MPEG streaming service, located on the server; (2) The play-
ers that play video in either MPEG, H.261 or bitmap formats,
depending on the bandwidth or CPU availability of each client;
(3) The tracking filter that implements a collection of com-
putationally intensive tracking algorithms, which processes
incoming video and outputs the coordinates of the tracked ob-
ject; and (4) The transcoders, which perform MPEG-to-H.261
or MPEG-to-bitmap transcoding. The application skeleton is
illustrated in Fig. 5.

From the perspectives of probing, run-time instantiation
and adaptation, we present examples of using our middleware
components to provide run-time support to this example ap-
plication. We will also show that, from our experiences, the
streamlined design of our framework leads to straightforward
implementations, keeping the modifications to the minimum
on existing applications.

5.1. Probing

The probe monitors system-level and application-level param-
eters periodically. For system-level parameters such as in-
bound bandwidth to a host or CPU availability on a host, it
uses OS system calls in UNIX and Performance Data Helper
library in Windows NT. On starting the application, the probe
is started automatically (as a dynamically shared library) and
is activated periodically within a different thread. Probes on all
participating hosts store probing results in the local applica-
tion component graph. Thanks to the randomized propagation
algorithm, our experiences show that each of the local compo-
nent graphs converge to reflect accurate global states after an

initial period of ‘stabilization’ time. For faster convergence,
we set n = max−1 in the randomized propagation algorithm
during this stabilization period.

5.2. Run-time instantiation

During the stabilization period, the probe on each end host
checks its local resource availability, and propagates the results
to its peers on other end hosts. When every probe component
has collected the global resource availability information, it
will pass the information to the instantiation component on
the same end host. The latter will treat the information as the
initial triggering source, and therefore starts the key function
of run-time application instantiation.

More specifically, run-time instantiation involves the se-
lection of an appropriate configuration for the application, so
that it will execute properly under the specific resource avail-
ability condition. There are four possible configurations for
our example application, each of which is suitable for a dif-
ferent resource availability condition:

• Configuration C1 involves three application components:
MPEG streaming service on the server, tracking filter and
MPEG player on the client. C1 is suitable for a high per-
formance client which has sufficient CPU, bandwidth, and
energy resources.

• Configuration C2 involves four application components:
MPEG streaming service on the server, MPEG-to-H.261
transcoder on the proxy, and tracking filter and H.261
player on the client. C2 is suitable for a client with suffi-
cient CPU and energy resources, but without a high-speed
network connection.

• Configuration C3 consists of four application components:
MPEG streaming service and tracking filter on the server,
MPEG-to-bitmap transcoder on the proxy, and Bitmap
player on the client. C3 targets the following situation: the
client is weak in its CPU, bandwidth, and energy resources
(for example, a handheld PC); and the server has higher
CPU capacity than the proxy. Since the client is weak,
Bitmap player is used to avoid CPU and energy consum-
ing decoding2. In addition, the tracking filter is off-loaded
from the client to the server.

• ConfigurationC4 involves the same set of application com-
ponents as configuration C3. However, the tracking filter
is now on the proxy instead of on the server. C4 also helps
a weak client. However, it is a better choice than C3 when
the proxy has higher CPU capacity than the server.

The selection among C1, C2, C3, and C4 is governed by a
rule base in the following form (for simplicity, the triggering
source involves an incomplete set of resources):

if CPUserver ∈ [20%, 100%]
and BWin

client ∈ [1Mbps, ∞]
and ENERGYclient ∈ [100%, 100%]
then select C1

if CPUserver ∈ [20%, 100%]
2 We assume that the MPEG-to-bitmap transcoding will signifi-

cantly degrade the media data rate and quality.

428 B. Li et al.

Tracking filter

Windows client

Server

Proxy

MPEG
streaming
service

MPEG player

Tracking filter

Palm client

Bitmap player

MPEG-to-
bitmap
transcoder

Fig. 5. Case study: online video streaming with object
tracking

Server Proxy

 MPEG
streaming
 service

Tracking
 filter

Client

H.261
player

MPEG-to-
 H.261
transcoder

Server

 MPEG
streaming
 service

Tracking
 filter

Client

MPEG
player

Server

Server

Proxy

Proxy

 MPEG
streaming
 service

 MPEG
streaming
 service

Tracking
 filter

Tracking
 filter

Client

Client

Bitmap
player

Bitmap
player

MPEG-to-
 bitmap
transcoder

MPEG-to-
 bitmap
transcoder

C1

C2

C3

C4

Fig. 6. Possible application configurations: C1 to C4

and CPUproxy ∈ [20%, 100%]

and BWin
client ∈ [64Kbps, 1Mbps)

and ENERGYclient ∈ [100%, 100%]
then select C2

if CPUserver ∈ [40%, 100%]
and CPUproxy ∈ [20%, 40%)

and BWin
client ∈ [16Kbps, 64Kbps)

and ENERGYclient ∈ [20%, 40%] then select C3

if CPUserver ∈ [20%, 40%)
and CPUproxy ∈ [40%, 100%]

and BWin
client ∈ [16Kbps, 64Kbps)

and ENERGYclient ∈ [20%, 40%]
then select C4

Distributed multimedia applications 429

Every instantiation component has a copy of the rule base
above. To select the appropriate application configuration, an
instantiation component compares the global resource avail-
ability information against the precondition of each rule in
the rule base. For example, if the global resource availability
shows that the client’s inbound bandwidth is 32Kbps; and the
server CPU capacity (60%) is larger than the proxy CPU ca-
pacity (20%), then configuration C3 will be selected. We note
that the selection may be made by the instantiation component
on any end host, which will then propagate the selection to its
peers on other end hosts. Even if selections are made concur-
rently on different hosts, the selections should be identical.
This is because the global resource availability information
has been propagated to each end host during probing, and the
same rule base is used on each end host.

After the application configuration has been selected and
the selection is known by every end host, the application com-
ponents involved in the selected configuration will be selected
and activated by the corresponding instantiation component.
Similarly, those not involved in the selected configuration will
be deactivated. Meanwhile, the application state database on
each end host will be updated, including the application com-
ponent graph (which represents the selected configuration)
and the corresponding label values on the graph. During the
execution, the application state database will be periodically
updated by the probe.

5.3. Run-time adaptation

Run-time instantiation is activated only once at application
start-up time (after an initial stabilization period). In contrast,
run-time adaptation is activated only when any one of the
adaptation rules in the rule base is satisfied. As an example,
one of the rules in the rule base is in the following form:

if CPUserver < 10%
and CPUproxy > 80%
and C3 is selected
then select C4

Such a rule switches the application configuration from
C3 to C4 if original justifications to select C3 no longer hold;
rather, the opposite situation is detected by the probe. Obvi-
ously, the sensitivity (responsiveness) of adaptation depends
on the actual rules used [2].

5.4. Implementation discussions

Because the objective of our design is simplicity, we were able
to deploy the middleware framework to monitor and adapt the
video streaming and tracking application in a very short pe-
riod of time. We have also attempted to use the previous 2KQ

and Agilos architectures to instantiate and adapt the same ap-
plication. We have observed that, in our proposed framework
without the support of CORBA, the results of instantiation
and adaptation behavior show no differences compared with
previous results. If we consider the fact that both 2KQ and Ag-
ilos rely on CORBA to function correctly, the verdict is that
considerable implementation efforts can be saved using our

new, streamlined middleware design. This is especially true if
the application is not CORBA-aware, since modifications to a
typical application so that it becomes aware of CORBA is not
a trivial task. As an additional note, although we generally use
n = max − 1 in the randomized propagation algorithm, we
have not detected any unexpected adaptation behavior when
n < max - 1. This may be due to the limitation of using a
local area network environment to perform all experiments.

6. Conclusion

In this paper, we have presented a unified middleware archi-
tecture to integrate various run-time solutions found in pre-
vious middleware designs with different perspectives. Such
integration leads to a streamlined design, so that applications
may be configured at run-time in a coherent fashion. We have
identified three common sources of triggering such run-time
middleware support, followed by proposing the design of the
unified architecture. With our past experience in designing and
implementing QoS-aware middleware components, we have
come to believe that integrating and streamlining a wide va-
riety of existing solutions into a coherently designed, simple
framework is critical to the acceptance of such middleware in
mainstream computing platforms. Such framework does not
have to be a ‘cure-all’ solution; rather, it needs to identify an
array of distributed multimedia applications of similar cat-
egories, and is only customized towards the needs of these
applications. With a case study involving a complex multi-
media application, we have demonstrated that the implemen-
tation of such a streamlined, integrated run-time framework
effectively controls and monitors the application behavior. The
main objective of this paper is to discuss and present the merits
involved in such a streamlined design. As part of our future
work, we plan to study the effects of our middleware frame-
work on more applications, in order to further simplify our
design as much as possible.

Acknowledgements. The valuable and insightful comments from the
anonymous reviewers are much appreciated. They were helpful in
the process of revising and improving the quality of this paper.

References

1. Chang F, Karamcheti V (2001) A Framework for Automatic
Adaptation of Tunable Distributed Applications. In: Cluster
Computing: The Journal of Networks, Software, and Applica-
tions, Volume 4, Number 1, 2001.

2. Li B, Nahrstedt K (1999) A control-based middleware frame-
work for Quality of Service adaptations. IEEE J SelAreas Com-
mun (Special Issue on Service Enabling Platforms) 17(9):1632–
1650

3. Wichadakul D, Nahrstedt K, Gu X, Xu D (2001) 2KQ+: An
integrated approach of QoS compilation and component-based,
run-time middleware for the unified QoS management frame-
work. In: Proceedings of IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware 2001). Heidel-
berg, Germany, November 2001

4. Zinky J, Bakken D, Schantz R (1997) Architectural support for
Quality of Service for CORBA objects, Theory and practice of
object systems. A Wiley journal publication

430 B. Li et al.

5. Stiller B, Class C, Waldvogel M, Caronni G, Bauer D (1999)
A flexible middleware for multimedia communication: design,
implementation, and experience. IEEE J Sel Areas Commun
17:1580–1598

6. Fitzpatrick T, Blair G, Coulson G, Davies N, Robin P (1998)
Supporting adaptive multimedia applications through open
bindings. In: Proceedings of International Conference on Con-
figurable Distributed Systems (ICCDS ’98). Annaolis, Mary-
land, pp. 128–135

7. Chandra P, Fisher A, Kosak C, Ng T, Steenkiste P, Takahashi E,
Zhang H (1998) Darwin: resource management for value-added
customizable network service. In: Proceedings of IEEE Inter-
national Conference on Network Protocols (ICNP ’98). Austin,
Texas, pp. 177-188

8. Coulson G, Costa F, Duran H (2000) On the design of reflec-
tive middleware platforms. In: Proceedings of Workshop on
Reflective Middleware (RM 2000). New York, USA

9. Xu D, Wichadakul D, Nahrstedt K (2000) Multimedia service
configuration and reservation in heterogeneous environments.
In: Proceedings of 20th International Conference on Distributed
Computing Systems (ICDCS 00). Taipei, Taiwan, pp. 512–521

10. Angin O, Campbell A, Kounavis M, Liao R (1998) The Mobi-
ware Toolkit: programmable support for adaptive mobile net-
working. IEEE Personal Commun Mag 5(4):32–43

11. Noble B, Satyanarayanan M, Narayanan D, Tilton J, Flinn J,
Walker K (1997) Agile application-aware adaptation for mobil-
ity. In: Proceedings of the 16th ACM Symposium on Operating
System Principles. Saint-Malo, France, pp. 276–287

