Towards Integrated Runtime Solutions
In QoS-aware Middleware

Baochun Li
Department of Electrical and Computer
Engineering
University of Toronto
bli@eecg.toronto.edu

ABSTRACT

Future-generation multimedia applications are expected to be highly
scalable to a wide variety of heterogeneous devices, and highly
available across wide-area distributed environments. This demands
multiple stages of run-time support in QoS-aware middleware ar-
chitectures, particularly, probing the performance of QoS parame-
ters, instantiating the initial component configurations, and adapt-
ing to on-the-fly variations. In this paper, we review past experi-
ences and lessons learned in our existing architectures with respect
to run-time support, and present a novel approach to unify these
stages into an integrated run-time middleware architecture, so that
multimedia applications are monitored and configured in a coherent
fashion.

1. INTRODUCTION

With the advent of next-generation multimedia technologies such
as very-low bit rate MPEG-4 streaming and voice-over-IP, future
multimedia applications are expected to be highly scalable to a
wide variety of heterogeneous devices, and highly available across
wide-area distributed environments. On the other hand, current-
generation distributed multimedia applications (such as video-on-
demand, multimedia streaming and visual tracking) are developed
in an ad-hoc fashion, while their performances are tailored to spe-
cific operating systems and platforms.

It has been envisioned in recent work [1] that with middleware
architectures designed for Quality-of-Service (QoS) requirements
in multimedia applications, the following unique characteristics in
pervasive and heterogeneous environments are feasible for these
applications: First, once componentized to multimedia services and
consumers, various service configurations are possible, and may be
selected by the middleware based on resource availability and user
preferences at the time of application instantiation; Second, multi-
media applications are subject to both off-line! and run-time prob-
ing with respect to the performance of their QoS parameters, and

'Probing, or monitoring, applications in benchmarking runs under
‘sand-boxed’ environments to emulate resource availability. Refer
to [2] for details.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM Multimedia Middleware Workshop *01, Ottawa, Canada

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Dongyan Xu, Klara Nahrstedt
Department of Computer Science
University of Illinois at Urbana-Champaign
d-xu,klara@cs.uiuc.edu

such QoS probing is the responsibility of middleware components;
Third, during application run-time, the middleware layer may at-
tempt to assist the application to adapt to ‘triggering sources’ in-
cluding changing user requirements or resource availability. Such
‘triggering sources’ are often caused by statistical multiplexing of
concurrent resource usage; lack of resource reservation schemes;
or user preference/environment changes such as user mobility. To
summarize, the QoS-aware middleware is most effective in sup-
porting multimedia applications during application run-time, by
probing, instantiating and adapting applications, tailoring their per-
formances to user behavior and pervasive environments.

In our recent work, we have focused on several different aspects
of QoS-aware middleware that was previously summarized. The
Agilos middleware project [3] has focused on the aspects of off-
line probing and run-time adaptation, particularly how to make in-
formed decisions on when, how and to what extent to adapt to the
fluctuations in resources and user requirements. In comparison, the
2K 2 project [4] has focused on architectures and protocols to un-
derstand user requirements and appropriately instantiate a particu-
lar service configuration for the application, so that minimum user-
specified requirements are met. In this paper, we evaluate our past
experiences and learned lessons with previously proposed middle-
ware architectures, and make the following three key observations.
First, there exist three critical aspects of run-time support that
the middleware components are in the best positions to provide:
probing, instantiating and adapting multimedia applications. Sec-
ond, it has not previously been identified that the “driving force’,
or ‘triggering sources’, of these three critical aspects are identical.
They include variations in user preferences and resource availabil-
ity. Third, by integrating run-time solutions with respect to prob-
ing, instantiating and adapting to the unified ‘triggering sources’,
we may design a unified decision-making process to configure and
adapt the applications in a coherent fashion.

There exist a number of proposed frameworks and systems for
the purpose of managing run-time resource usage and application
component configuration at the middleware level. For example, the
BBN QuO project [5] has proposed an adaptation-based middleware-
level architectural enhancement to CORBA; the Da CaPo++ [6]
framework has implemented adaptation-based services in the mid-
dleware; in the Adapt project [7], the concept of open binding
was introduced as a programming model for the implementation of
adaptation policies in mobile multimedia applications; in the Dar-
win project [8], a hierarchical service brokerage architecture was
proposed for composing complicated and value-added distributed
services.

This paper attempts to identify such common ‘triggering sources’
for different stages of run-time solutions, and propose the design
of a coherent architecture to unify the run-time phases of probing,

instantiating and adapting applications. The rest of the paper is or-
ganized as follows. Section 2 summarizes and evaluates our past
experiences with respect to run-time support in QoS-aware middle-
ware. Section 3 identifies common ‘triggering sources’ for activat-
ing these run-time solutions. Section 4 proposes a coherent archi-
tecture to integrate different stages of run-time solutions. Section 5
concludes the paper with directions about future work.

2. PASTEXPERIENCESWITH QOS-AWARE

MIDDLEWARE DESIGN

In the past several years, we have concurrently developed two

separate middleware designs for supporting application-level Quality-

of-Service, namely, the 2K © and Agilos projects, with different de-
sign objectives and assumptions. The 2K? project [4] aims at QoS
provisioning with the presence of OS-level resource reservation
mechanisms, particularly focusing on two important aspects. First,
before run-time initialization, it translates between application-level
and OS-level QoS parameters; Second, during application run-time,
it instantiates a specific service configuration by checking both re-
source availability (via a service configuration selection algorithm)
and available services at run-time (via a resource-aware service dis-
covery mechanism). In comparison with 2K @, the Agilos project
[3] does not assume the presence of existing resource reservation
schemes at the OS level, and emphasizes QoS adaptation mecha-
nisms at run-time, caused mainly by resource variations. It resorts
to off-line probing techniques to obtain the relationships between
application-level QoS parameters and their corresponding resource

demands, and uses a rule-based system to cater to application-specific

needs for specifying adaptation preferences. In addition, the inter-
nal processing engine for generating adaptation decisions is generic

and application-neutral, designed using control-theoretical techniques.

Figure 1 shows the skeleton architecture for both projects, high-
lighting their differences in design objectives and assumptions with
respect to run-time operations.

As illustrated in Figure 1, in both projects we use a generic ap-
plication component model, shown as an application component
graph. In this model, we view a collection of interconnected ap-
plication components on a single host as a set of tasks, with input-
output dependencies. Beyond a single end host, we group the entire
distributed application into clients and services. The collection of
clients and services form another directed graph representing the
service provider-consumer relations.

Based on this model, middleware components of both projects
attempt to instantiate or reconfigure the application component graph
based on certain “triggering sources”. In the 2K case, the de-
scriptors of “service requests” at application initialization time are
translated to resource-level QoS requirement vectors, which are
used to select a specific application component graph (i.e., a ser-
vice configuration), and subsequently reserve resources on each of
the hosts in the component graph. As a comparison, in the Agi-
los case, the resource-level control values are processed against an
application-specific rule base, generating application-specific con-
trol actions as outputs. Such generated control actions may include
tuning specific parameters within a component, or reconfiguring
the application component graph.

With respect to QoS probing, the 2K ? project includes resource
monitors to perform end-to-end resource checking in order to select
an appropriate service configuration. Such resource checking are
performed at application instantiation time. The Agilos project, on
the other hand, actively monitors resource usage via the Observers
during application run-time, and makes adaptation decisions based
on such run-time probing. In addition, a separate component, the

QualProbe, is used to perform off-line probing during benchmark-
ing runs, in order to discover the mapping between application-
level and resource-level QoS parameters, thus assisting the specifi-
cation of the rule base.

Observing from the previous discussions, it is noted that the
“driving forces” and the “processing engines” of both middleware
designs are strikingly similar with respect to their run-time support.
It is therefore preferable to integrate these run-time solutions and
present a unified architecture, in order to simply the design and ac-
celerate the acceptance. We then proceed to discuss our proposals
towards this goal.

3. TRIGGERING SOURCES TO ACTIVAT-
ING RUN-TIME SUPPORT

Before we present our design of an integrated run-time support
architecture, we need to first identify the triggering sources, or
“driving forces”, that activates such run-time support. Towards this
end, rather than attempting a “cure-all” middleware solution for any
applications, we consider a typical range of distributed multimedia
applications that may easily be componentized and modeled with
the application component graph. These applications include video
multicast streaming services, video-over-1P telephony, video con-
ferencing or visual tracking applications. They may be deployed
over a variety of computing devices, from PDAs to clustered work-
stations. We have identified that activating run-time middleware
support to react to the following types of changes are necessary:

1. Variationsin resourceavailability. Such variations are gen-
erally shown as changes in specific resource-level QoS pa-
rameters. We are most concerned with the following param-
eters. (1) client-side parameters such as CPU availability,
bandwidth at the inbound interface for multimedia stream-
ing, or buffer space. (2) service-side parameters of similar
types; (3) parameters that show network performances be-
tween the service and the client, such as delay, jitter and
loss. In the application component graph, all three cate-
gories of parameters may be represented as a “label” on ei-
ther the component itself (core parameters), the inbound and
outbound interfaces of the component (inbound and outbound
parameters), or on an edge of the component graph (edge pa-
rameters). If these labels are shown as <parameter type, pa-
rameter value> pairs, Figure 2 illustrate an example. These
<type, value> pairs are coherently monitored by on-line QoS
probing components that execute in each of the hosts, usually
by interacting with the OS kernel via system calls.

At inbound interface: At outbound interface:

t
<BW"(c4), 1800Kbps> <BW’(c5), 1800Kbps>

C5
Within a
-r component:

Client

Between components from different hosts:
<Delay(c4, c5), 200ms>

Figure 2: Labeling the Application Component Graph

2. Variationsin user preferences. There are two categories of
preferences that a user may specify and change at run-time.
First, the level of satisfaction (e.g. Quality of Perception in

ﬁpplication

application :

component }

graph : ?
: Client

Services

Servwces

selected service configuration

(" Service requests translate to
q nresource vectors

Dynamic Service Configuration Selection I

QoSProxy

Resource-aware Service Discovery

application-specific | | control actions

|Qua|Probes || Run-time Component Configurator

Rule base | Run-time Service Configurator |

application-neutral control values

CResource BrokeD @esource Monitor @esource Adaptor observer)
: 4
2K Q enforce resource reservations Agl'OS resource variations as "triggers”
\ Operating systems and protocol stack (on multiple participating hosts) J

Figure1: A run-time comparison between the 2K ? and Agilos middleware ar chitectures

video streaming clients) at different application QoS levels;
second, the tradeoff policy among QoS parameters of con-
flicting interests. For example, for video streaming, one user
may require the best image quality with lower frame rate,
while another user may prefer the highest frame rate with
lower image quality.

3. User mobility. In a complex distributed environment, the
mobility of users should be treated as a normal case, rather
than as an exception. Since the user may move with the same
client host or with multiple client hosts, and then reconnects
at the new location (either wirelessly or with cables), the ap-
plication component graph may be disrupted (changed) for a
short period of time, referred to as application-level handoff.
If we consider the “location”? of an application component
to be one of its core parameters, It is observed that any user
mobility may be treated as a either a spontaneous reconfigu-
ration in the application component graph or parameters that
are already labeled in such a graph.

It is apparent that if we only consider the above three types of
triggering sources that may activate run-time support, we may con-
veniently use the application component graph and its parameters
(core, edge, inbound or outbound) to effectively model such trig-
gering sources. In other words, we may define a data structure, re-
ferred to as application states, maintained in all participating hosts,
which includes the following information: (1) the definition of the
application component graph; (11) possible instances of alternative
service configurations that may result from topological changes in
the application component graph. These are represented by differ-
ent topologies of the same pool of components; (l11) related pa-
rameters that are labeled in such a graph; (1) upper and lower
bounds of these relevant parameters. Any changes in such a data
structure (particularly parts | and 111) will activate run-time mid-
dleware behavior; while any run-time behavior may also influence
these application states. Such application states are the basis of the
discussions on our integrated architecture as follows.

2The location of a component may be represented by its host’s ad-
dress or interface name.

4. ANINTEGRATED RUN-TIME SUPPORT
ARCHITECTURE

We propose an integrated middleware architecture for run-time
application support, specializing in run-time probing (monitoring)
of application states, run-time instantiation of a specific service
configuration, and run-time adaptation to application state varia-
tions. For all three types of support, we observe identical “trigger-
ing sources”, namely, application states maintained on all partic-
ipating end hosts in the distributed application. The main design
can be summarized as the following.

(a) For the purpose of QoS probing and monitoring of applica-
tion states, each participating host activates a middleware
component, referred to as the ““probe™, at fixed intervals.
When activated, it goes through three probing steps. First, it
checks input-output relationships of current application com-
ponents against cached application states (which include an
application component graph). If there exists a mismatch,
it first updates its own cached application states to reflect the
discovered changes, then multicasts such changes to all other
participating hosts. Second, it checks the input-output rela-
tionship between all local application components and rele-
vant components of other hosts. It updates its cached states
correspondingly if there is a change. The first two steps are
responsible of detecting topological changes in the applica-
tion component graph. The final step is to use OS-level sys-
tem calls or application-level hooks to measure all labeled
parameters (including inbound, outbound, core and edge pa-
rameters) that are related to the residing host of the “probe”.
The probing results are stored back in the application states,
and multicasted to all participating hosts if necessary.

(b) For the purpose of run-time instantiations, we reuse the orig-
inal design of the “processing engine’ in the 2K < architec-
ture, but based solely on the application states stored on each
participating host as the input. As in 2K?, such run-time in-
stantiation process is divided into two parts. It first executes
a particular service discovery algorithm to discover unknown
services at application compile-time, followed by a dynamic
service configuration selection algorithm to finalize the ac-
tual service configuration to be enforced by the middleware.

Distributed multimedia applications (componentized)

selected adaptation ﬂl
service configuration decisions

A
[results stored back 7

Run-time instantiation I [

Activate once
at application
start-up time

Run-time adaptations

N
results[stored back 7

&

Services

Activate if discovers a match T

| Probe

Integrated
run-time support

> @)
Istored back
I ‘application hooks

Activates OS-level system calls for resource
periodically | parameter monitoring

[results

@) .
.
@
Client @ Services

Application states

(labeled parameters not shown) LOcal states

:

_ Operating systems and protocol stack (on multiple participating hosts)

S

Figure3: An Integrated Run-time Support Architecture

Such enforcement effectively changes the application states,
the results of which are stored back into participating hosts
after the run-time instantiation stage.

(c) For the purpose of run-time adaptations, again, we reuse our
original design of the configurators from the Agilos archi-
tecture. In order to represent the policies for such adapta-
tions, we utilizes a particular application-specific rule-based
system based on application states. This rule-based system
is critical to the entire process of automatically performing
run-time adaptation tailored to the needs of a specific appli-
cation. For example, assume the “probe” on a specific host is
activated on adjacent time instants ¢ and ¢2, while the appli-
cation states measured on such instants are S(¢1) and S(¢2),
respectively. A specific rule in the rule-based system is rep-
resented as a standard “if ... then ...” clause, with the pre-
condition being pg:,)—s(t,). Where p is either a labeled pa-
rameter or the topology of the component graph. In the case
of a parameter, it represents the scalar differences of such a
parameter in between S(¢1) and S(t2); otherwise, it shows
the topological change between time ¢, and ¢ in the compo-
nent graph. The results of such adaptations are represented
by a modified application state, illustrated by either parame-
ter changes or topological changes in the graph. Again, such
results are stored back into participating hosts after perform-
ing the adaptation. Such adaptation behavior is activated by
the “probe” only when necessary, when it discovers a match
between its observed application state and the precondition
of one of the rules in the rule base.

We summarize the above discussions of such an integrated run-
time middleware architecture in Figure 3. As illustrated, the tenet
of such a design is to propose a simple, yet effective, architecture
operating on clearly identified triggering sources.

5. CONCLUDING REMARKS

In this paper, we have presented a unified middleware architec-
ture to integrate various run-time solutions found in previous mid-
dleware designs with different perspectives, namely, 2K and Ag-
ilos projects. Such integration leads to a streamlined design, so that
applications may be configured at run-time in a coherent fashion.
We have identified three common sources of triggering such run-
time middleware support, followed by proposing the design of the
unified architecture. With our years of experiences designing and
implementing QoS-aware middleware components, we have come
to believe that integrating and streamlining a wide variety of ex-
isting solutions into a coherently designed, simple framework is

critical to the acceptance of such middleware in mainstream com-
puting. Such framework does not have to be a “cure-all” solution;
rather, it needs to identify an array of distributed multimedia appli-
cations of similar categories, and is only customized towards the
needs of these applications. Implementation of such a streamlined,
integrated run-time framework is still on-going work, with multi-
media multicast streaming as the application of focus. The objec-
tive of this paper is to discuss the merits of such a design, learning
from our past experiences with QoS-aware middleware.

6. REFERENCES

[1] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti, “CANS:
Composable, Adaptive Network Services Infrastructure,”
USENIX Symposium on Internet Technologies and Systems
(USITS), March 2001.

[2] F. Chang and V. Karamcheti, “A Framework for Automatic
Adaptation of Tunable Distributed Applications,” Cluster
Computing: The Journal of Networks, Software and
Applications, 2001.

[3] B. Liand K. Nahrstedt, “A Control-based Middleware
Framework for Quality of Service Adaptations,” IEEE Journal
of Selected Areas in Communications, Special Issue on
Service Enabling Platforms, vol. 17, no. 9, pp. 1632-1650,
September 1999.

[4] K. Nahrstedt, D. Wichadakul, and D. Xu, “Distributed QoS
Compilation and Runtime Instantiation,” In Proceedings of the
Eighth IEEE/IFIP International Workshop on Quality of
Service, pp. 198-207, June 2000.

[5] J. Zinky, D. Bakken, and R. Schantz, “Architectural Support
for Quality of Service for CORBA Objects,” Theory and
Practice of Object Systems, 1997.

[6] B. Stiller, C. Class, M. Waldvogel, G. Caronni, and D. Bauer,
“A Flexible Middleware for Multimedia Communication:
Design, Implementation, and Experience,” IEEE Journal on
Selected Areas in Communications, vol. 17, no. 9, pp.
1580-1598, September 1999.

[7] T. Fitzpatrick, G. Blair, G. Coulson, N. Davies, and P. Robin,
“Supporting Adaptive Multimedia Applications through Open
Bindings,” in Proceedings of International Conference on
Configurable Distributed Systems (ICCDS ’98), May 1998.

[8] P.Chandra, A. Fisher, C. Kosak, T. Ng, P. Steenkiste,

E. Takahashi, and H. Zhang, “Darwin: Resource Management
for Value-Added Customizable Network Service,” in
Proceedings of IEEE International Conference on Network
Protocols (ICNP ’98), October 1998.

