
Policy-Driven Multi-File Distribution
Catherine Rosenberg

School of Electrical and
Computer Engineering

Purdue University
West Lafayette, IN 47907

Email: cath@ecn.purdue.edu

Pascal Pons
Department of

Computer Science
Ecole Normale Superieure

Paris, France
Email: pascal.pons@ens.fr

Dongyan Xu
Department of

Computer Sciences
Purdue University

West Lafayette, IN 47907
Email: dxu@cs.purdue.edu

Abstract— We propose to study the impact of a suite of
policies on the performance of a multi-file distribution system
that integrates CDN and P2P techniques. One of the policies is
the peer contribution policy that decides the limited data rate
and data volume to be contributed by each peer. The peer con-
tribution policy is critical to maintaining the system’s overall file
distribution capacity without unfairly overloading the individual
peers. In our previous work, we present an analytical framework
for the modeling of a hybrid CDN-P2P architecture under a file-
specific peer contribution policy. In this paper, we focus on a
different scenario where multiple files are being distributed and
the peer contribution policy is file-independent. We argue that
a suite of policies need to be studied, in order to understand
their impacts on the overall file distribution performance. The
policies include: (1) file-independent peer contribution policy, (2)
file request admission policy, (3) supplier selection policy, and (4)
file replacement policy. We define a system model for the analysis
of these policies. Based on the model, we also propose possible
definitions of the policies.

I. INTRODUCTION

Recent years have witnessed the increasing demand for
large-volume data such as digital media and massive scientific
data. The distribution of high-volume data poses new chal-
lenges and has led to cost-effective file distribution techniques.
We have shown in [1] that the P2P (Peer-to-Peer) architecture,
if properly jumpstarted by the CDN (Content Distribution
Network) capacity, can dynamically generate and maintain
aggregated file distribution capacity that satisfies subsequent
file requests with low request rejection rate. In P2P data
distribution, an individual peer offers limited storage space
and out-bound data rate. For this reason, the contribution of
each peer to the file distribution process needs to be care-
fully determined, in order to aggregate sufficient distribution
capacity while keeping the contribution fair among the peers.

Our peer contribution policy in [1] is based on the volume
of the file that is being distributed. Each peer is requested to
transmit a total amount of data equal to r (r ≥ 1) times the
file size, regardless of the out-bound data rate it commits. An
analysis is presented to capture the relation between the overall
file distribution capacity and the individual peer contribution,
demonstrating the impact of the latter on the former. However,
the analysis in [1] assumes that the peer contribution policy is
file-specific. In other words, after a peer receives a specific file
f , it will fulfill its contribution commitment by re-distributing
only the content of file f .

In this paper, we consider a peer contribution policy that
is file-independent: Multiple files are being distributed in the
system; and each peer only maintains one contribution contract
based on the total volume of data it has received, rather
than multiple contribution contracts - each for a different file.
Interestingly, under this new scenario, a suite of new problems
arise. Each problem is associated with a policy which may
affect the overall file distribution performance of the system.
The first policy is the file request admission policy: with
multiple files being distributed, the admission of a file request
from a peer may have to be decided by the peer’s contribution
fulfillment status. The second policy is the supplying peer
selection policy: with the supplying peers of a file making
varying progress in their contract fulfillment, the choice of
supplying peers for each file request may affect the overall
distribution capacity of different files. The last policy is the
file replacement policy: with limited storage space for P2P
distribution, each peer needs to carefully decide which files to
retain and which files to discard, when the P2P storage space
is full. To further complicate the analysis, these policies are
not orthogonal. Instead, they need to be designed and analyzed
in an integrated fashion.

The purpose of this paper is to motivate an in-depth study
of these new policies (including the new file-independent
peer contribution policy), and capture their impacts on the
file distribution performance. We present a comprehensive
system model as the basis for further investigation. We also
propose candidate (not necessarily optimal) policies for multi-
file distribution and describe our policy-making principles.
Results from the proposed study will be especially useful in the
planning and dimensioning of systems involving concurrent
and continuous release of files, such as in the distribution of
news and movies.

The rest of this paper is organized as follows: Section II
presents a model for the multi-file distribution system. Section
III proposes a suite of policies for multi-file distribution. Sec-
tion IV discusses related work. Finally, Section V concludes
this paper and suggests open research problems.

II. SYSTEM ARCHITECTURE AND MODEL

We assume the same hybrid system architecture as in [1],
with one CDN server (or “server” for the rest of the paper)
and a peer community it serves. The server releases files for



distribution on a continuous basis. It is also the manager
of the file distribution system, accepting peer requests and
making decisions on file request admission, supplying peer
selection, and file replacement in peers, based on the suite
of file distribution policies to be described in Section III. For
analysis convenience, we assume centralized enforcement of
the policies, which does not necessarily reflect its real-world
implementation. The peers receive files from the system. On
the other hand, they will be required to re-distribute the files
they have received to other peers, based on a peer contribution
policy. For modeling simplicity, we focus on file distribution
in a local region, assuming that the intermediate network
connecting the server and the peers is not the bottleneck.

A. The Server

Modeled as one logical entity, the server is the source of all
files distributed in the system. For modeling convenience, we
assume that it has a global view of the system, with complete
information about each peer and each file. In particular, for
each peer, it keeps track of the files that the peer is keeping
for re-distribution, as well as the peer’s contribution contract
fulfillment status. For each file request, the server performs
admission control to determine if the request can be admitted.
If the request is admitted, the server will further decide if
the request will be served by the server itself or by peers. If
the latter is the case, the server will select a set of peers as
suppliers. Furthermore, the server also manages the limited
P2P storage space set aside in each peer, by deciding which
files should be kept by the peer among the files that the peer
has received. To jumpstart the P2P distribution capacity, the
server itself allocates a capacity of Cserver to the system,
which can be considered as the out-bound bandwidth for file
distribution.

B. The Peers

The community of registered peers is a finite set P with
N peers. The attributes of each peer p ∈ P include: (1) the
downloading bandwidth Cin(p); (2) the committed out-bound
data rate Cout(p) for file re-distribution; (3) the storage space
set aside for the system Space(p) - this space is used for
keeping a limited number of files that the peer has received
from the system. When the storage space is full, the file
replacement decision will be made by the server; (4) the debt
Debt(p, t) (in data volume) to the system at time t - a peer
with zero debt does not have to contribute; while a peer with
a positive debt is called an “active peer” and is expected to
distribute Debt(p, t) amount of data to other peers. The initial
debt of all peers is zero (Debt(p, 0) = 0).

C. The Files

At a given time t, the set of files being distributed in the
system is F(t). Over the time, the server releases new files
and removes old files from the system. The release of new
files can either be deterministic (for example, a set of new
files every day) or be a stochastic process. Each file f ∈ F
has the following attributes: (1) the size of f Size(f); (2) the

initial release time of f by the server Tf ≥ 0; (3) the removal
time of f from the server T̃f - note that after T̃f , f can still
be distributed by the peers in the system; and (4) the mean
request rate λf (t) for file f at time t.

D. The Peer Contribution Contract

Each peer in the system is required to fulfill a dynamic and
file-independent contribution contract, enforced by the server.
When a peer p completes the downloading of a file f , its debt
Debt(p, t) is increased by β(f, t)×Size(f). β(f, t) is a time-
varying contribution factor. When a peer p provides K amount
of data to another peer, the debt of p is decreased by K. The
debt Debt(p, t) of a peer may be bounded by a maximum
debt MaxDebt(p) such that: ∀p ∈ P , 0 ≤ Debt(p, t) ≤
MaxDebt(p). A peer with zero debt will be freed from the
re-distribution duties.

III. POLICIES FOR MULTI-FILE DISTRIBUTION

With the introduction of file-independent peer contribution
contract, it becomes necessary to investigate a number of
policy issues which are critical to the overall file distribution
performance. To the best of our knowledge, there has been no
systematic study on these policies and their impacts on the file
distribution process. In this section, we first identify the suite
of policies for multi-file distribution. We then define candidate
policies and discuss their design principles.

A. A Suite of Policies

We propose to study the following multi-file distribution
policies:

• The file request admission policy This policy is expected
to differentiate requesting peers based on the status
of their contribution contract fulfillment status. Conse-
quently, it will have impact on the aggregated distribution
capacity for different files in F(t), by giving preference
to peers that will help to increase the capacity for highly
demanded files.

• The supplier selection policy When a request is admitted,
the server has to decide which supplying peers will be
selected to serve this request. The chosen peers must have
a copy of the requested file and be available at that time.
If there are more qualified supplying peers than needed,
a selection must be made according to the peers’ current
debts, other files stored, and committed out-bound data
rate Cout(p). Intuitively, it should be avoided that a peer
that has a highly requested file be selected to serve the
request for a much less popular file. The policy should
also avoid creating peers with excessively high debt.

• The file replacement policy Due to the limited Space(p)
of each peer, a file replacement policy is needed to decide
which file should be discarded by a peer when the storage
space is full. The policy will determine how many peers
system-wide should store a specific file: If too many peers
keep this file, it will lead to a waste of space. However,
if there are not enough peers storing the file, low file



request admission rate will occur, even if the distribution
capacity (or, the overall debt) abounds among the peers.

• The peer contribution policy A good contribution policy
should avoid an infinite growth of the total debt. Instead,
it should maintain the debt of each peer at an appropriate
level, in order to ensure that there exist enough active
peers in the system at any time. It is possible to control
the total debt of peers by imposing appropriate contri-
bution factor β(f, t) at different times. The contribution
factor may be bounded such that βmin ≤ β(f, t) ≤ βmax.

B. Useful Variables and Parameters

Before proposing our policies for multi-file distribution, we
first define a number of useful variables and parameters, in
order to characterize the supply and demand of files.

• Cin: the average downloading bandwidth of the peers.
Cin = 1

N

∑

p∈P

Cin(p).

• Cout: the average committed out-bound data rate of the
peers. Cout = 1

N

∑

p∈P

Cout(p).

• α(p, t) and α(f, p, t): the participation probability of
peer p. We define the participation probability α(p, t)
of p as the probability that p is busy serving a request
at time t. Thus the mean bandwidth provided by p is
α(p, t)Cout(p). Now we consider a moment t when p is
serving: we define the participation probability of p for
file f as α(f, p, t): the probability that p is re-distributing
f at this moment.

• Crequested(f, t): the total requested bandwidth for file f

at time t. Since the request rate for file f is λf (t), we
have Crequested(f, t) = λf (t) × Size(f)

Cin
×Cin, in which

Size(f)
Cin

is the expected downloading time of file f . We
thus have Crequested(f, t) = λf (t) × Size(f).

• Contrib(f, t): the expected bandwidth contribution from
peers for the distribution of f . For each peer, we expect
that its contribution is fairly distributed among the files it
currently keeps. Therefore, the expected participation ra-
tio of peer p for file f is Size(f)

Space(p) ; and the expected contri-

bution is Contrib(f, t) =
∑

p∈P

δ(f, p, t) Size(f)
Space(p)Cout(p),

where δ(f, p, t) = 1 if p has f at t; and δ(f, p, t) = 0
otherwise. The actual total bandwidth contribution from
peers for f can be greater than the expected bandwidth
contribution at a given time.

• Ch(f, t): the demand-supply ratio of file f at t. In the
file distribution system, it is desirable that the demand -
the total requested bandwidth for file f (Crequested(f, t))
- be met by the supply - the expected bandwidth contri-
bution from peers for f (Contrib(f, t)). Therefore, the
demand-supply ratio of file f is defined as Ch(f, t) =
Crequested(f,t)
Contrib(f,t) . If the value of Ch(f, t) for file f is too

large, it means that the demand cannot be met by the
supply; and the peers that have f will have to contribute
more to the distribution of f . To be fair among all the
files, our policies should try to narrow the difference in
Ch(f, t) among these files.

C. Proposed Policies

In this section, we propose our definitions of the policies.
For each policy, we will always begin by presenting a simple
“benchmark” policy and then describe our policy. The bench-
mark policies will be used to compare with our policies so
that the performance improvement achieved by the latter may
be demonstrated. The key principle behind our policies is to
balance the demand-supply ratio among all the files being
distributed.

1) The Supplier Selection Policy: When a peer p submits a
file request, the system tries to provide a file downloading rate
that is equal to p’s in-bound bandwidth Cin(p). If this rate
cannot be reached, the system provides the highest possible
rate. If no supplying peers (peer having f ) are available and
the server does not have free capacity, the request will be
rejected.

Benchmark policy: In the simple benchmark policy, the
system always first selects the available supplying peers of
f that have the highest debt. If there are not enough peers
to provide Cin(p), the server may provide the remaining
bandwidth if available.

Our policy: The benchmark policy is very simple. However
it is already a good policy. By selecting the peers with the
greatest debt, the policy distributes debts more evenly among
the peers and therefore increases the percentage of active peers
(namely, peers with positive debt) in the system. Our policy
is based on a similar principle, but has the nice property
that the participation probability α(f, p) can be estimated.
When selecting the supplying peers of file f , our policy
randomly chooses enough peers among the available peers,
with a weight assigned to each peer p as Cout(p)

Space(p)Debt(p, t).
With some approximation, we can show that in this case
α(p, t) = min(1,

Debt(p,t)
MeanDebt(t)

∑

g∈F

(δ(g, p)Ch(g, t) size(g)
Space(p) )

and α(f, p, t) = Ch(f,t)size(f)∑

g∈F

δ(g,p)Ch(g,t)size(g)
. Especially, if the

demand-supply ratios of all the files kept by p are equal, we
will simply have α(f, p, t) = size(f)

Space(p) .

2) The File Replacement Policy: When a peer has received
a requested file, if there is enough space in its P2P storage, the
file will always be kept in the P2P storage for re-distribution.
Otherwise, the peer may save the file by replacing other files.
This choice is guided by the file replacement policy.

Benchmark policy: The simplest replacement policy is to
always save the new file received. If there is no sufficient
space, a randomly selected file will be deleted. For simplicity,
we assume that all files are of equal size for the rest of this
paper.

Our policy: The replacement policy is strongly related to
the selection policy, both influencing the number of peers
that supply each file in the system. The replacement policy
helps to control the distribution and placement of files among
the peers. A good file placement will in turn improve the
effectiveness of the selection policy. Since our goal is to
narrow the difference in demand-supply ratio among all files,



we propose a replacement policy that will make the demand-
supply ratio of all files converge to the same value.

There are two events that can change the value of Ch(f, t):
When a peer deletes f , Ch(f, t) increases. When a peer
saves f , Ch(f, t) decreases. To make the values of Ch(f, t)
converge, the policy will replace a file with a lower Ch(f, t)
with a file having a higher Ch(f, t). Therefore, when a peer
has received file f , the peer will save f only if it can find
another file g with a lower Ch(g, t). In our policy, let g

be the file saved by the peer that has the lowest Ch(g, t).
If Ch(f, t) > Ch(g, t), the system will replace g with f .
Otherwise, f will not be saved.

However, this policy may completely delete an unpopular
file from all peers in the system. In this case, when a new
request for this file arrives, there may not be any available
peers to serve this request. To avoid the complete deletion of
an unpopular file that is still being requested, we will impose
a number Nmin, which is the minimum number of peers that
store a file f in the system. Let Nf (t) be the number of
peers having f at time t. When Nf (t) ≤ Nmin, we stop the
replacement policy from deleting f from a peer. However, in
order to determine the time when a file really needs to be
deleted from the system, the policy stipulates that the system
only keeps the set of files Fsaved = {f ∈ F|λf (t) > λmin}.

3) The Peer Contribution Policy: In the file-independent
peer contribution policy, the debt of a peer will be bounded:
0 ≤ Debt(p, t) ≤ MaxDebt(p). A peer that reaches zero
debt will not have to contribute. When a peer reaches the
upper bound MaxDebt(p), it will still be able to request
files but its debt will not increase. For example, we may set
MaxDebt(p) = 4 times the size of a file. The key factor in
the contribution policy is β(f, t), the contribution factor for
the distribution of f at time t. The value of β(f, t) is also
bounded: βmin ≤ β(f, t) ≤ βmax. For example, we may set
βmin = 1

2 and βmax = 2.

Benchmark policy: The simplest contribution policy is to
require that each peer gives back exactly the same amount of
data that it receives. Therefore, the contribution factor β(f, t)
is always equal to 1. The net growth of the total debt of all
the peers (D(t)) is due to the contribution of the server. On
the other hand, the net loss of contribution is due to the upper
bound of debt MaxDebt(p).

Our policy: The mean debt of peers 1
N

∑

p∈P

Debt(p, t) is

an important parameter that determines the peer distribution
capacity in the system. The higher the mean debt, the greater
the capacity. However, increase in mean debt will not lead to
infinite increase in the overall file distribution capacity. There-
fore, an appropriate target mean debt needs to be determined.
We assume that an ideal mean debt of a peer IdealDebt is set
by the policy. If the actual mean debt is less than IdealDebt,
β(f, t) will be dynamically set as greater than 1.0. If the actual
mean debt is greater than IdealDebt, β(f, t) will be reduced

to less than 1.0. More specifically, we may define:

β(f, t) = 1 + γ(1 −

1
N

∑

p∈P

Debt(p, t)

IdealDebt
) (1)

γ is a bounding factor. For example, we may set γ = 5 to
ensure that the mean debt of a peer will never be greater than
1.2× IdealDebt

At the beginning of the distribution process of file f , it is
useful to make the peers contribute more to the distribution
of f . By doing this, we can increase the ratio of active peers
for f and build up its distribution capacity. Moreover, if the
contribution factor β(f, t) is large, some peers may prefer to
wait until the file becomes less “expensive”, thus lowering the
request rate of file f . We will compute β(f, t) according to
the demand-supply ratio Ch(f, t). It is expected that β(f, t) =
1 when Ch(f, t) = 1. However, we cannot always expect
β(f, t) = Ch(f, t) at any time t. In fact, Ch(f, t) tends to be
too high for β(f, t) to match at the beginning. Rather, β(f, t)
can be defined as an affine transformation of ch(f, t), such that
β(f, t) = 1 when Ch(f, t) = 1; and that β(f, t) = A when
Ch(f, t) = M (1 < A < M ) - both A and M are tunable
in the policy. We can then derive an expression of β(f, t) by
revising (1) as:

β(f, t) = (1 + (ch(f, t) − 1)
A − 1

M − 1
)×

(1 + γ(1 −

1
N

∑

p∈P

Debt(p, t)

IdealDebt
))

Our preliminary simulation study shows that the proposed
suite of policies achieve significant improvement in file dis-
tribution performance, compared with the benchmark policies.
The performance metrics include file request admission rate,
average file downloading time, file distribution time (i.e. total
time needed to distribute a file to all interested peers), and
contribution fairness among peers.

IV. RELATED WORK

An integrated and measurement-based study is presented in
[2] on Internet content delivery systems, including HTTP web
traffic, CDN (Akamai) and P2P (Gnutella and Kazaa). The
study verifies the increasing popularity of P2P-based content
delivery and characterizes the behavior of different content
delivery systems. An emerging content distribution scheme is
based on the integration of CDN and P2P architectures. Such a
hybrid architecture has been shown to be highly cost-effective
[1] [3].

Analytical models have been proposed to study the dy-
namics of P2P systems. In [4], a P2P file sharing system is
modeled as a multi-class closed queuing network. This allows
for the analysis of system throughput dynamics under various
configurations of the peer community. Different from the file
distribution capacity defined in our model, the throughput
analysis in [4] does not consider the limited peer bandwidth



contribution. Also, it assumes one supplier for each file
request.

Incentive-based mechanisms aim at encouraging peers to
contribute to the P2P community [5] [6] [7] [8]. Also related
is the free riding problem: [9] and [10] investigate the problem
through measurement study and through game-theoretic analy-
sis, respectively. Both [9] and [10] advocate the use of payment
mechanisms in order to motivate the peers with incentives to
contribute to the system. Instead of an abstract payment model,
our work adopts a simpler model that directly associates the
volume of data received by a peer with the volume of data the
peer is supposed to re-distribute.

Reputation models have also been proposed for P2P systems
[11] [12]. A reputation-based admission control algorithm is
proposed in [12]: The reputation of each peer is based on
its past contributions and is computed using a distributed
eigenvector method. A peer requesting a specific service would
have to acquire a certain level of reputation, i.e., to have
made a certain amount of contributions. While reputation-
based methods motivate peers to behave properly, it is not
clear if the methods also lead to optimal P2P service capacity
growth and distribution.

V. CONCLUSION AND FUTURE WORK

We have proposed a framework for the study of different
file distribution policies in a hybrid CDN-P2P architecture.
We argue that in the presence of multiple files in the system,
the distribution processes of different files will interfere with
each other, and a file-independent peer distribution policy
needs to be carefully designed to achieve optimal generation
and allocation of file distribution capacity. Furthermore, the
policies of file request admission, supplying peer selection, and
file replacement all have impact on the overall file distribution
performance. Especially, they need to be aware of the dynamic
demand-supply status of different files in the system.

While making a case for policy-driven multi-file distri-
bution, this paper leads to research problems rather than
solutions. A detailed yet tractable analysis is needed to model
the system dynamics under the file distribution policies. More
specifically, the analysis is expected to show that the policies
achieve convergence of demand-supply ratios among all files.
Another challenge is to compare the proposed model with the

incentive-based and reputation-based models, so that a uni-
form and comprehensive framework for P2P system capacity
planning and distribution can be established. Finally, efforts
are needed to design and analyze protocols for enforcing the
proposed policies in a fully distributed (rather than centralized)
fashion.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments. This work is supported by a
grant from the e-Enterprise Center at Discovery Park, Purdue
University.

REFERENCES

[1] D. Xu, H.K. Chai, C. Rosenberg, S. Kulkarni. Analysis of a Hybrid
Architecture for Cost-Effective Streaming Media Distribution, SPIE/ACM
Conf. on Multimedia Computing and Networking (MMCN’03), San Jose,
CA, Jan. 2003.

[2] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, H. Levy. An Analysis of
Internet Content Delivery Systems, USENIX Symposium on Operating
Systems Design and Implementation (OSDI’02), Boston, MA, Dec. 2002.

[3] L. Guo, S. Chen, S. Ren, X. Chen, S. Jiang. PROP: a Scalable and
Reliable P2P Assisted Proxy Streaming System, 24th International Con-
ference on Distributed Computing Systems (ICDCS’04), Tokyo, Japan,
Mar. 2004.

[4] Z. Ge, D. Figueiredo, S. Jaiswal, J. Kurose, D. Towsley. Modeling Peer-
to-Peer File Sharing Systems, IEEE INFOCOM’03, San Francisco, CA,
Mar. 2003.

[5] Q. Sun, H. Garcia-Molina. SLIC: a Selfish Link-Based Incentive Mech-
anism for Unstructured Peer-to-Peer Networks, 24th International Con-
ference on Distributed Computing Systems (ICDCS’04), Tokyo, Japan,
Mar. 2004.

[6] R.T.B. Ma, S.C.M. Lee, J.C.S. Lui, D.K.Y. Yau. An Incentive Mechanism
for P2P Networks, 24th International Conference on Distributed Comput-
ing Systems (ICDCS’04), Tokyo, Japan, Mar. 2004.

[7] K. Anagnostakis, M. Greenwald. Exchange-Based Incentive Mechanisms
for Peer-to-Peer File Sharing, 24th International Conference on Dis-
tributed Computing Systems (ICDCS’04), Tokyo, Japan, Mar. 2004.

[8] W. Wang, B. Li. To Play or to Control: A Game-based Control-theoretic
Approach to Peer-to-Peer Incentive Engineering, IEEE/IFIP IWQoS’03,
Monterey, CA, Jun. 2003.

[9] E. Adar, B. Huberman. Free Riding on Gnutella, First Monday, 5(10),
2000.

[10] P. Golle, K. Leyton-Brown, I. Mironov. Incentives for Sharing in Peer-
to-Peer Networks, Second Workshop on Electronic Commerce (WEL-
COM’01), Heidelberg, Germany, 2001.

[11] S. Kamvar, M. Schlosser, H. Garcia-Molina. The EigenTrust Algorithm
for Reputation Management in P2P Networks, Twelfth International
World Wide Web Conference (WWW’03), Budapest, Hungary, May 2003.

[12] H.T. Kung, C. Wu. Differentiated Admission for Peer-to-Peer Systems:
Incentivizing Peers to Contribute Their Resources, Workshop on Eco-
nomics of Peer-to-Peer Systems, Berkeley, CA, Jun. 2003.


