
Distributed QoS Compilation and Runtime Instantiation 1

Klara Nahrstedt, Duangdao Wichadakul, Dongyan Xu
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

Abstract
The rapid growth and coexistence of different

application domains, such as multimedia and electronic
commerce, present a significant challenge to the
provision of their Quality of Service (QoS). To solve this
challenge, we need a unified QoS framework, which
allows flexibility and reconfigurability.

In this paper, we present a reconfigurable
component-based QoS framework, called

�����
, which

solves the challenge by partitioning the end-to-end QoS
setup process into distributed QoS compilation and
runtime QoS instantiation phases for different types
of applications. Entities, services and protocols of this
framework, such as application-to-component translator
and component-to-resources translators, achieve the
distributed QoS compilation and prepare all necessary
QoS structures for the end-to-end QoS setup. Other
capabilities of this framework, such as a reconfigurable
middleware and functional adaptation, achieve the
runtime instantiation of the end-to-end QoS setup.

We have implemented the first prototype of this
framework and the results show a feasible overhead of
the runtime service instantiation and reconfiguration for
different applications and their QoS requirements.

I. INTRODUCTION

The rapid growth and coexistence of different application
domains, such as multimedia and electronic commerce,
present a significant challenge to provision different levels
of QoS. The big question is: “How should a unified
end-system QoS framework look like to allow different
applications to use it and achieve required QoS guarantees
without re-implementation of the underlying QoS services.”

Current QoS frameworks are tailored towards specific
1This work was supported by the National Science Foundation

under contract number 9870736, the Air Force Grant under contract
number F30602-97-2-0121, National Science Foundation Career
Grant under contract number NSF CCR 96-23867, NSF PACI
grant under contract number NSF PACI 1 1 13006, NSF CISE
Infrastructure grant under contract number NSF EIA 99-72884,
NSF CISE Infrastructure grant under contract number NSF CDA
96-24396, and NASA grant under contract number NASA NAG 2-
1250.

applications such as providing QoS guarantees for
multimedia services [1, 2, 3, 4, 5] with timing and
bandwidth requirements, or for messaging services [6, 7]
with reliability requirements. Hence, there is currently
no unifying framework which would allow a clear QoS
specification, translation, and configuration of a QoS
framework for different applications. Furthermore, the
QoS frameworks lack a clean methodology of how to
specify QoS, how to compile QoS parameters for different
applications, how to configure and instantiate corresponding
end-to-end QoS path during the runtime, as well as how to
reconfigure services in a distributed fashion when resources
become scarce. The current QoS frameworks have services
such as QoS monitoring and QoS adaptation, however,
these services are tied to resource management and data
adaptation.

In this paper we present a unified QoS framework, called
�����

, and a methodology of an establishment process from
user QoS specification through QoS compilation to runtime
end-to-end execution of end-system services configured
according to the user QoS specification.

Our QoS framework differentiates itself from existing
QoS frameworks by (1) introducing a distributed QoS
translation and compilation process to prepare QoS
structures and mappings for runtime QoS setup; (2)
providing dynamic discovery and configuration protocols
to synchronize services and resources when establishing
end-to-end QoS during the runtime, and (3) expanding the
data QoS monitoring and data QoS adaptation towards
functional configuration and reconfiguration of services for
provision of QoS guarantees.

Our solution takes a component-based middleware
approach and consists of two phases: (1) distributed QoS
compilation phase which is performed in the off-line mode
of a considered application, and (2) runtime instantiation
phase during which the application end-to-end services as
well as the QoS-aware middleware services are dynamically
configured and set up according to user QoS specification.
In Section 2, we outline the overall framework architecture
as well as entities participating in this framework. Section
3 expands in detail on the distributed QoS compilation
phase, the algorithms, services and protocols achieving the
desired end-to-end QoS translation. Section 4 discusses
the configuration and instantiation of end-to-end services

according to the user QoS specification during the runtime
phase. In Section 5, a running example presents the usability
of the QoS framework by describing concrete structures,
services and protocols in both phases. In Section 6, we
present the implementation, based on dynamic TAO [8] and
component-based 2K system [9], and experiments with our
first prototype of this unified QoS framework. In the Section
7, related work is briefly discussed. We conclude in section
8 with lessons learned from this framework.

II. ����� FRAMEWORK

The unified QoS framework is a component-based,
multi-tier middleware framework which consists of the
QoS-aware resource management, and the application-aware
service management as shown in Figure 1.

Application-to-Component Translation

QoS Proxy

Distributed Resource
Coordination Entity

Adaptation
QoSProxy

 Entity
Service Configuration

Adaptation
DataBroker

Adaptation
Data

Resource
Broker

Resource

Application-Aware
Service Management

QoS-Aware
Resource Management

Figure 1: Reconfigurable Component-based QoS Framework
(���	�)

The QoS-aware resource management is based on the
concept of resource brokers which have the capabilities of
the QoS-aware resource admission, reservation, allocation,
enforcement and data adaptation. The

� � �
QoS-aware

resource management relies on the QualMan system [10]
which delivers the above capabilities for CPU, memory and
network resources.

The application-aware service management uses the
QoS proxy to provide capabilities such as component
configuration, component adaptation, translation between an
application and underlying service components, as well as
translations between QoS of components and the required
underlying resources. This paper concentrates mainly on
the application-aware service management part of the

��� �

framework because the QoS-aware resource management
is already published in [10, 11]. The

�����
framework

establishes the QoS contract in two phases: (1) distributed
QoS compilation phase and (2) runtime instantiation phase.

The distributed QoS compilation phase is performed
off-line and it prepares QoS parameters and structures for
a specific application. The goal of this phase is to take an
application, represented by a functional graph, and its user
QoS requirements, and translate it into application and
system QoS parameters. During the runtime, the application
then takes these parameters to get a QoS contract from

the underlying system and networks or to adapt its QoS
contract.

The runtime instantiation phase is performed online
and it has two major goals: (1) QoS setup of an end-to-end
QoS path according to given user QoS requirements as
well as negotiation of a QoS contract between the user and
the underlying system and network; (2) functional QoS
adaptation and dynamic service reconfiguration during the
runtime.

III. DISTRIBUTED QOS COMPILATION PHASE

The distributed QoS compilation phase deals with QoS
translations in multi-facet way. The translations range from
analytical translations to measurement-based translations
between different QoS parameters. This phase runs before
a user requests an application with a QoS contract. The
reason we need this phase is because different applications
might require different QoS translations, structures and
parameters. Hence, we need to examine (sometimes even
instrument) the application and find out the QoS relations
so that when the application enters the runtime phase with
the goal to achieve a QoS contract, the end-to-end QoS
instantiation can be done efficiently. This is similar to the
language compilation concept where an application source
code is optimized and translated into an executable code by
the language compiler, so that during the runtime we get a
highly optimized and high-performance program.

The distributed QoS compilation phase requires four
major specifications done by the application designer in
order to perform the compilation process: (1) Specification
of an application via a functional graph which presents
feasible configurations of service components2 and the
interactions among them; (2) Specification of relations
between user QoS parameters, given by the user of
an application, and the corresponding application QoS
parameters, represented via an application-specific
translator (TApp); (3) Specification of relations among
the application code, its services, and possible locations
of services (service component description), and (4)
Specification of application-specific adaptation policies and
other application-related information such as importance.

Once these specifications are in place, the QoS
compilation protocol executes as follows:

 First Step: The specification of the application via the
functional graph is translated into a set of component
configurations, dependent on multiple paths, specified
by the functional graph.

2We decompose an application into a set of services and each
service will be represented and implemented by a component.
Hence, in the text the two terms ’service’ and ’component’ are
interchange-able.

 Second Step: The set of component configurations
(result of the first step) together with (a) the
specification of relations between user QoS
requirements and application QoS parameters
inside of the application-specific translator, (b) the
specification of relations between application code,
components and location, and (c) the specification
of application-specific adaptation policies and
application-related information, are translated
into the QoS-aware component specification
(QoSCSpec). This translation is performed by the
application-to-component translator as shown in the
Figure 2.

Service component description

TApp

TApp

TApp

SC’s QoS

 Translators

Application-to-Component Translator

Application-specific Application functional graphs

Adaptation policies

TApp: Application-specific translator

QoS-aware Component Specification (QoSCSpec)

Figure 2: Application to Components QoS-aware Translator

In this step, the QoSCSpec consists of the following
information: (1) application information such as
name and request priority, (2) adaptation policies
such as dropping policies for transport components,
(3) dependencies among components, expressed via
QoS-based configurations, and (4) per component
QoS specifications, including the locations of the
components within the considered platform. Note
that the result of this step is a set of component
configurations, labeled with corresponding application
QoS, and possible locations of components. Figure 3
shows the QoSCSpec structure.

Machine platform

 QoS-aware component specification
 (QoSCSpec)

Service-specific QoS specs.Service component QoS spec.ConfigurationsAdaptation
Policies

Application
Information
Name
Request

 priority

Component name

List of required resources

 preference spec.
QoS attributes
QoS attributes

Figure 3: QoS-aware Component Specification (QoSCSpec)

 Third Step: The QoS-based configurations in
QoSCSpec must be translated into the corresponding
system QoS parameters and their resource
requirements (e.g., CPU or network bandwidth).

This is achieved either by analytical translations
if any exist or by the probing service, performing
measurement-based translations. Analytical
translations provide translations between application
QoS parameters and the network QoS parameters3.
For example, we can translate user frame rate and
frame size parameters into a required network
bandwidth [12]. The probing service runs the
application’s possible QoS configurations in a lightly
loaded environment and measures the amount of
required resources for each service component. The
result is stored in the field ‘Service Component QoS
Specification’ of the QoSCSpec structure.

The result of the overall QoS compilation phase is the
QoS-aware component specification structure (QoSCSpec),
including all the QoS-aware configurations and their
corresponding resource requirements. The dynamic
downloading and distributed probing are the underlying
mechanisms for resource profiling in the compilation phase.
QoSCSpec for an application can be stored at the initiator
site (e.g., client) and/or initiatee site (e.g., server) and/or
intermediate sites. For example, if we have a powerful client
(e.g., workstation), then the QoSCSpec structure can be
stored at the client site. On the other hand if the client is a
thin client (e.g., palm pilot), then the QoS structure could
be stored at a specific server, such as the discovery server
or the server of the corresponding application, or it can be
distributed.

IV. RUNTIME INSTANTIATION PHASE

The runtime instantiation phase needs to provide
(1) a QoS setup protocol for the application’s setup of
end-to-end QoS guarantees according to specified user QoS
parameters, and (2) adaptation services during the runtime
of applications in case of changed resource availability.

The QoS setup takes first a user request (e.g. a service
description with required QoS parameters), and based on
the information, it looks up in the QoSCSpec structure what
are the corresponding component configurations and their
QoS/resource requirements. Several configuration paths can
be result of this look-up step. With this result, the QoS setup
enters the service configuration discovery protocol. Once the
appropriate configuration path is found, resource reservation
and allocation protocol can be executed in an end-to-end
fashion [10].

Note that a configuration discovery protocol can be
executed in multiple ways. For example, the protocol
can pick one configuration out of the set of possible
configurations satisfying given user QoS, and the

3Network QoS parameters are subset of the system QoS
parameters.

components are then down-loaded and configured at
individual nodes along the end-to-end path. Another
possibility is to use a discover server where the
configurations in QoSCSpec are stored, and the most
appropriate configuration path can be found locally on
this server. Once a configuration path is found, the
individual components are down-loaded to individual
nodes and configured accordingly. This solution is a
centralized solution. There exists also a distributed solution
which requires that the sender has all corresponding
configurations available, and the sender sends a request
over multiple configuration paths to down-load, configure
individual components on the path nodes, and to collect
information about the end-to-end performance of individual
configurations. The receiver chooses the best configuration.

The distributed solution delivers a configuration path
which is closest to the given QoS request because the
discovery will be based on the most recent resource
availability information. However, this approach also
requires a lot of overhead as multiple configuration paths
might need to be pursued and a lot of resources blocked
before a final decision for an application is met. The
single configuration path selection is the fastest and lowest
overhead approach, however, it is also the most inaccurate
solution to the configuration path problem. Therefore, we
selected at this time the discovery server approach which we
describe below.

A. Service Configuration Discovery Protocol
The configuration discovery protocol finds the best

possible configuration path and allocates individual service
components among distributed nodes such that each
component will have sufficient available resources to satisfy
requested QoS. To achieve this goal, each node includes a
service configuration entity and the distributed configuration
protocol enforces the interactions among the service
configuration entities shown in Figure 4.

Our configuration protocol performs the following
steps: First, prerequisite or alternative components and the
corresponding QoS component-to-resources translators
(TCom) of the initiating node are found in the QoSCSpec
and dynamically down-loaded according to the current
available resources. Second, on behalf of the requested
application, a query is issued to the discovery server for
available required service components (SC) on distributed
nodes. Third, the discovery service inside the discovery
server proposes suitable configuration path node(s) as the
result of a query to the initiating node. The initiating node
contacts the proposed node(s), passes the corresponding
dependency graph, and waits for the notification of success
or failure. Forth, a distributed node determines if the
required components are already in the node or not. If the

Initiating node

Discovery Server

1

3

3

2

4

4

55

55

55

6

6

Distributed node

...
TCom

SC

Resource
Broker

Resource
Broker

...

Broker
Resource
Broker

Distributed node

...
TCom

SC

Resource
Broker

Resource
Broker

Component Repository

QoSCSpec

Discovery Service

TCom

Resource

SC

TCom : Component-to-Resources Translator

SC : Service Component

Figure 4: Service Configuration Discovery Protocol

required components are not in the node, the node contacts
the component repository to dynamically down-load the
components. Fifth, the node contacts the local resource
brokers asking the current available resources. During
this step, the component-to-resource translation is active.
This translation utilizes the compiled information about
the relations between components and resources, stored in
QoSCSpec, as well as online resource usage monitoring
and translation. If a resource is insufficient (e.g. a resource
utilization is over a threshold), reconfiguration needs to
occur. Sixth, the result of the component allocation on a
distributed node is sent back to the initiating node.

The complexity of the service configuration protocol
depends on application domains which require different
components running on various locations in the distributed
environment. For example, to provide QoS for the
Messaging Service, the service configuration engine
has to locate the appropriate locations of messaging
routers which forward a message to another router and
synchronously deliver a message to their intended target
[13]. On the other hand, for a distributed omni-directional
visual tracking system [14], the service configuration
discovery has to locate an appropriate gateway to control
switching capabilities from one camera server to another
according to client’s request. The messaging routers and the
omni-directional gateways are examples of configuration
path nodes with corresponding service components.

Note, that after the configuration discovery protocol,
the end-to-end resource reservation and allocation protocol
executes4, using various resource brokers as described in

4Our QoS framework performs in an heterogeneous
environment, hence some nodes such as thin clients might

[10].

B. Integrated Adaptation Model
Adaptations are necessary in our framework due to

the following two reasons: First, the resource reservation
uses an optimistic approach for resource reservation which
means that resources are reserved only for minimum QoS
guarantees. If the reserved resources cannot satisfy the
required bursts during the execution time, adaptations have
to take place. Second, our QoS framework was designed for
heterogeneous environments where nodes can have different
types and levels of resource availability and usage. For
example, for some nodes, a resource reservation does not
make sense, hence in order to provide application QoS, we
will deploy adaptation services in the middleware to adjust
the resource allocation in case of availability changes.

The adaptation model consists of an integration of data,
and functional adaptation capabilities, assuming adaptive
and reconfigurable applications.

Data adaptation is a resource-level adaptation which is
resource-specific. An amount of a reserved resource can
be dynamically adjusted based on data-specific adaptation
strategies (e.g. drop of packets, skip a CPU cycle) provided
by a resource broker. If a low-level adaptation cannot
reconcile QoS violation, functional adaptation will take
place for component reconfiguration [14].

Functional adaptation(QoS Proxy adaptation) is the
component-level adaptation which deals with component
reconfigurations. This adaptation service is part of the
Service Configuration Entity as shown in Figure 1. The
cause for a new configuration path can be a component
allocation failure, component-resource reservation or
allocation failure, QoS degradation, QoS upgrade, and QoS
violation.

This functional adaptation service looks up in the
QoSCSpec structure a new component configuration that
satisfies the current available resources.

The QoS Proxy adaptation provides application-level
reconfiguration as well as middleware-level reconfiguration
based on different application domains. For example, the
format of a VoD application may be changed from MPEG-II
streaming to MJPEG streaming with the reconfiguration
of the encoder and decoder components on the server side
and the client side respectively. The replacement of the
encoding and decoding components is an example of the
application-level reconfiguration. In case of messaging
application, insertion of an interceptor in the middleware

not need reservation for all resources as they do not share some
resource (e.g., CPU on the palm pilot). Our end-to-end resource
allocation protocol takes this into account.

Adaptation Entity
Service Configuration QoSProxy

Resource
Broker

Adaptation
Data

Resource
Broker

Adaptation
Data

Component Repository

QoSCSpec

Discovery Server

Discovery Service

Figure 5: Integrated Adaptation

invocation path for intercepting message invocations or
switching from a router proxy to another router proxy are
examples of the middleware reconfiguration. Figure 5 shows
the integrated adaptation model.

V. EXAMPLE OF QOS COMPILATION AND

RUNTIME INSTANTIATION

A. Distributed QoS Compilation Phase
In the

� � �
framework, an application developer is

responsible to specify the following information:

 Application functional graph represents
dependencies among possible combinations of
components to form an application. Figure 6 shows
an example of a Video-on-Demand (VoD) application
functional graph with three service components �����
(Retrieval Service), ����� (Display Service), and �����
(Transcoding Service). The visual graph is then
internally translated into two configuration paths
[(���	��
������), (���	�
�������
������)] as shown in Figure
6.

SC1 SC2

SC3

(SC , SC)1 2
(SC , SC , SC)1 23

Figure 6: Application Functional Graph

 Application-specific translator (TApp) contains
rules to map user’s required QoS to different level
of application QoS parameters. Table 1 shows an
example of a VoD Translator5.

5We are currently providing templates to the application
developers to create the translations.

User QoS level Frame rate Frame size (pixel)
High 30fps 320x240

Medium 20fps 240x160

Table 1 � Example of a VoD Translator

 Application’s service component description
includes the service name (e.g. MPEG-II player),
its logical location (e.g. the directory containing
the service component’s implementation), and
physical location (e.g. the nodes). Table 2 represents
an example of some VoD’s service component
descriptions. Similar to TApp, we provide a template
to the application developer for a service component
description.

Svc. Comps Name Directory Nodes
���	� MPEG-II player /VoD/player N1
����� MPEG-II server /VoD/server N2
����� Media Gateway /VoD/MeGa N3, N4

Table 2 � VoD’s Service Component Description for Components���������	��
����	��

Once the above specifications are in place, the QoS
compilation protocol executes as follows:

1. Application-to-Component Translator uses the
combined information provided by (1) the application
functional graph in Figure 6, (2) the application-
specific translator in Table 1, and (3) the service
component description in Table 2 and translates it into
a set of QoS-based configurations. Figure 7 shows the
resulting application-to-component translations6. The
result of this translation is stored in the QoSCSpec
structure.

SC1 SC2

SC3

++
... ...
... ...QoS2 level

AppQoS-2AppQoS-1

SC
1

SC
2

3

...

...

...

...

...

...

...

...

...SC

QoS1 level

(SC , SC)
QoS

1, N

QoS

2, N

QoS

1, N

QoS

2, N

(SC , SC , SC)
QoS

1, N

QoS

3,N ,N 2, N

QoS

(SC , SC , SC)
QoS

1, N

QoS

3,N ,N 2, N

QoS

1 1

1 2

2 2

1 2

1 1 1

1 3 4 2

1 3 4 2

2 2 2

(SC , SC)

Directory NodesService ComponentsNameUser QoS level

Figure 7: Application-to-Component Translation

6In this example, we do not consider any adaptation policies.

2. Configuration Resource Profiling translates all
configurations generated by the application-to-
component translator into required system resources
using the probing service. Note that two more
configurations in this step come from choices of
physical nodes � � or ��� for the service component
����� . � , �������
���� , and � represent the amount of a
required resource, a resource type � , and a physical
node, respectively.

(���
���! #"
�!$ % " , ���

���& #"
�'$ %�())+*-, (. % "�
 �),..., (. % "/
 �+0 ,1 . % (�
 �20 , ...,
1 . %�(/
 �+0'*

(���
���! #"
�!$ % " , ���

���! 3"
��$ %	4 , ���

���& #"
�'$ %�())+*5, (. % "�
 �),...,

(. % "/
 �+0 , 1 . %	4�
 �+0 , ...,
1 . % 4/
 �+0 , 1 . %�(�
 �+0 , ...,1 . %�(/
 �20�*

(���
���! #"
�!$ % " , ���

���! 3"
��$ %�6 , ���

���& #"
�'$ %�())+*5, (. % "�
 �),...,

(. % "/
 �+0 , 1 . % 6�
 �+0 , ...,
1 . %�6/
 �+0 , 1 . % (�
 �+0 , ...,1 . %�(/
 �20�*

(���
���! (
�!$ % " , ���

���& (
�'$ %�())+*-, (. % "�
 �),..., (. % "/
 �+0 ,1 . %�(�
 �20 , ...,
1 . %�(/
 �+0'*

(���
���! (
�!$ % " , ���

���! (
��$ %	4 , ���

���& (
�'$ %�())+*5, (. % "�
 �),...,

(. % "/
 �+0 , 1 . % 4�
 �+0 , ...,
1 . %	4/
 �+0 , 1 . % (�
 �+0 , ...,1 . %�(/
 �20�*

(���
���! (
�!$ % " , ���

���! (
��$ %�6 , ���

���& (
�'$ %�())+*5, (. % "�
 �),...,

(. % "/
 �+0 , 1 . %�6�
 �+0 ,..., 1 . %�6/
 �+0 , 1 . %�(�
 �+0 , ...,1 . %�(/
 �20�*
The result of this translation is also stored in the
QoSCSpec structure. Figure 8 shows the result of the
component-resource profiling corresponding to some
configurations generated in the previous step.

1

N1 N1

N2N2

N1N1

N3N2

N3 N3

N2

VoD Candidate Configurations VoD Distributed Resource Requirements

QoS

1, N

QoS

3,N

(SC , SC)
QoS

1, N

QoS

2, N

 (Bandwidth , 200kbps)>

1 1

2
 (CPU , 20%). (Bandwidth , 200kbps)>

<(CPU , 10%), (Bandwidth , 200kbps),

1 1

1

QoS1
2, N23

(SC , SC , SC)
<(CPU , 10%), (Bandwidth , 200kbps),

 (Bandwidth , 100kbps), (CPU , 15%),

 (CPU , 20%), (Bandwidth , 200kbps),

Figure 8: VoD Components Resource Profiling for Two
Configurations

B. Runtime Instantiation Phase
During the runtime phase a user provides a service

description (user QoS) as follows:

S1: [Service Name = Video on Demand

[Data Type = Streaming Video
[Format = MPEG-II
[Quality = High]]]]
[Accessibility = "Public"]

Once the service description is given, the QoS setup
follows:

1. QoSCSpec Lookup: QoS setup uses the information
in the service description � � to look up in the
VOD QoSCSpec structure the possible component
configurations and their resource requirements. Based
on the user QoS specification “High” in the service
description, corresponding to the ��� � � quality level
in our example, we retrieve all service component
configurations with ��� � � level:

(���
���& #"
�!$ % " , ���

���! 3"
�'$ %�())2* , (. % "�
 �),..., (. % "/
 �20 ,1 . %�(�
 �+0 , ...,
1 . %�(/
 �+0'*

(���
���& "
�!$ % " , ���

���! "
� $ %	4 , ���

���! "
�'$ %�())2* , (. % "�
 �),...,

(. % "/
 �+0 , 1 . %	4�
 �+0 , ...,
1 . % 4/
 �20 , 1 . %�(�
 �+0 ,

...,
1 . % (/
 �+0 *

(���
���& #"
�!$ % " , � �

���& #"
� $ %�6 ��� ���& #"��$ %�())+* , (. % "�
 �),...,

(. % "/
 �+0 , 1 . %�6�
 �+0 , ...,
1 . %�6/
 �20 , 1 . %�(�
 �+0 ,

...,
1 . %�(/
 �+0 *

2. Service Configuration: The service configuration
discovery protocol determines the most appropriate
configuration out of the returned result from the
QoSCSpec look up using one of the possible
approaches:

(a) A configuration is selected from the returned
set of configurations. If service configuration
discovery protocol cannot configure the
distributed service corresponding to the selected
configuration, the next configuration in the
returned QoSCSpec can be selected. Figure 9
presents possible configurations. Configuration
(1) in Figure 9 will be selected first.

SC2

N
2

SC1

N
1

SC1

N
1

SC2

N
2

N

SC3

3

SC1

N
1

SC2

N

SC3

4
N

2

(1)

(2)

(3)

...

Figure 9: Ordered Service Configuration

(b) Multiple configurations, returned from
QoSCSpec, are initiated and configured

simultaneously. Figure 10 illustrates service
configuration discovery protocol in distributed
fashion.

SC1 SC2

SC3

SC3
N

1

N
4

N
3

N
2

Figure 10: Distributed Service Configuration

(c) The service configuration discovery protocol
contacts the discover server to return the most
appropriate configuration path.

VI. IMPLEMENTATION AND EXPERIMENTS

Our QoS framework is implemented as a CORBA
service, based on the dynamic reconfigurable middleware,
called “dynamicTAO” [8], in the 2K system, and the
resource reservation model in the QualMan [10] system.
Both our

� � �
framework and the dynamicTAO, run on

distributed nodes connected via a 10 Mbps Ethernet. The
distributed node types are: node (1) Sun Ultra-2 workstation
with two 200MHz processors and 256MB memory, node (2)
two Sun Ultra-2 workstations with one 200MHz processor
and 128MB memory, node (3) Sun Ultra-1 workstation
with one 143MHz processor and 128 MB memory, and
node (4) Sun Ultra-1 workstation with one 143MHz, and 64
MB memory. All machines are running Solaris 2.6 UNIX
operating system.

We present experimental results in three different
scenarios:

 Scenario 1: A user on the node (1) requests different
application services: (1) VoD service, (2) a simple
‘Hello World’ text return service, (3) a monitoring
service, and (4) a concurrency service. Within this
scenario, we illustrate the configuration overhead in
terms of down-loading delay times when configuring
and dynamically down-loading different sizes of
service components. Figure 11 shows the result of
different elapsed down-loading times for service
components with sizes: 16.5 KB (concurrency
service), 23.2 KB (text return service, version 1),
44.7 KB (text return service, version 2), 109.3 KB
(VoD service), and 277.9 KB (monitoring service).
The average elapsed down-loading times from the
smallest to the largest service components are on
average 134.29, 144.53, 161.46, 291.85 and 451.81
ms. Figure 12 illustrates the proportions of the
down-loading times corresponding to the sizes of the
service components.

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25

T
im

e
(m

s)

Trail

"s2Concurrency-load"
"s2Hello-load"

"s2Hello1-load"
"s2VOD-load"

"s2Monitoring-load"

Figure 11: Downloading Time for Different Application Services
(Configuration Overhead)

100

150

200

250

300

350

400

450

500

0 50000 100000 150000 200000 250000 300000

Lo
ad

in
d

tim
e

(m
s)

Library size

"compare-load-g.txt"

Figure 12: Relation between Service Component Size and
Down-loading Overhead

 Scenario 2: The VoD application is requested
by a user. Within this scenario, we demonstrate
instantiation times used for two different QoS
configurations : case (1) VoD server connects to the
VoD client directly, and case (2) VoD server connects
to the VoD client via its gateway. The results in
Figure 13 show that the smallest overhead comes
from the application-to-component (AtoC) translation
time which is currently implemented as the lookup of
pre-specified QoS compilations. The largest overhead
is the service allocation time which deals mainly with
dynamic down-loading of service components on
distributed nodes. QoS setup in case (2) needs more
time for service allocation than the QoS setup in case
(1). The reason is that in case (2) not only VoD client
and VoD server are allocated on the client and the
server nodes respectively, but also transcoding service
has to be allocated on the VoD gateway node.

Values plotted in the Figure 13 come from the average
values of 25 trials presented in the Table 3.

Figure 13: QoS Setup Time (Runtime Instantiation)

Setup AtoC trans. Svc. alloc. Other Total
case 1 0.16ms 565.71ms 77.17ms 643.05ms
case 2 0.14ms 873.54ms 76.00ms 949.70ms

Table 3 � Average Setup Times for Two Different QoS
Configurations

 Scenario 3: The case (1) configuration of the VoD
application is switched to the case (2) configuration.
Within this scenario, we illustrate the reconfiguration
overhead of the functional adaptation, represented by
the runtime service component insertion. Figure 14
shows the reconfiguration overhead with 25 trails of
a media gateway component insertion. The size of
the media gateway service component is 110 KB. The
average reconfiguration time is 301.73 ms. Comparing
the results in this scenario with the results in scenario
1, we can conclude that the major overhead of the
functional adaptation comes from the dynamic down-
loading time which varies mainly due to the service
component’s size.

260

280

300

320

340

0 5 10 15 20

T
im

e
(m

s)

Trail

"reconfiguration-time"

Figure 14: Reconfiguration Overhead for a VoD Application

VII. RELATED WORK

Different research groups consider middleware-based
QoS provision. Some propose the QoS provision

functionalities as a middleware itself while others propose
QoS functions as services in a middleware.

Washington University’s TAO system [15] developed
real-time CORBA-compliant ORB focusing on the
optimization of real-time method invocations in the ORB
itself. OMG’s Audio/Video Streaming and Messaging
Services [16, 13] have been proposed for QoS provision in
distributed multimedia applications and object invocations,
respectively. Microsoft’s COM Non-Blocking method calls
[17] provide asynchronous method invocation similar to
OMG’s Messaging Service.

BBN’s QuO project [6, 7], integrated with AQuA [18]
framework provides fault tolerance and dependability
QoS for CORBA objects invocations. While BBN
mentioned broader range of QoS parameters extending from
multimedia applications such as frame rate and frame size to
other QoS parameters such as security level, reliability, and
availability, they do not consider a unified reconfigurable
QoS framework. University of Illinois’ EPIQ project [19]
proposes an end-to-end QoS management architecture
which manages different dimensions of QoS. This work
is theoretically interesting and shares the same goal of
our resource translation; however, it does not address
QoS provision for distributed component-based systems.
Lancaster’s Adapt project [5] provides an adaptation
QoS middleware via open bindings. QoS management is
done directly via manipulations of object graphs which
represent the underlying end-to-end communication path.
While Adapt project shares parts of our QoS framework’s
objective, they do not consider QoS provision for different
application domains.

While our
��� �

framework shares the same goal as
the CMU’s Darwin project [20] to provide application-
oriented QoS, based on underlying resource management
mechanisms, our framework provides a complete
methodology for QoS compilation and runtime instantiation
as well as concrete models for the application-to-component
QoS translation, dynamic service configuration, distributed
resource allocation and reservation, and integrated QoS
adaptations.

VIII. CONCLUSION

Our component-based QoS framework,
��� �

, is
a light-weighted, reconfigurable framework.

��� �
is

light-weighted in the sense that it can be tailored to run
on different nodes with different resource availability
flexibly. The running application, using this framework,
is also light-weighted and receives services and resources
according to its request. It means that with our framework
we can provide a “What you need is what you get” behavior.
Furthermore, our results indicate that the framework is
flexible and effective. The application-to-component

QoS-aware translation during the QoS compilation phase
helps the runtime phase to provide multiple levels of QoS
aspects for different application domains in an efficient,
speedy and flexible manner. Flexibility is also supported by
the availability of adaptive component-based applications
and reconfigurable middleware. The integrated adaptation
model provides a broader range of adaptations to satisfy a
user’s QoS requirements.

In summary, the partition of the end-to-end QoS setup
process into QoS compilation and runtime QoS instantiation
phases proved to be a very useful approach to achieve a
unified QoS framework for different applications. Our
presented methodology towards a unified QoS framework
also triggers new research directions in areas such as
QoS specification, QoS compilers, distributed QoS
configurations, and others which we will be pursuing in the
future work.

IX. REFERENCES

[1] K. Nahrstedt and J.M. Smith. The QoS Broker. IEEE
Multimedia, 2(1), 1995.

[2] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A
Resource Allocation Model for QoS Management. In
Proceedings of the IEEE Real-Time Systems Symposium,
December 1997.

[3] A. Campbell, G. Coulson, and D. Hutchison. A Quality
of Service Architecture. Computer Communication Review,
April 1994.

[4] A. Campbell, A. Lazar, H. Schulzinne, and R. Stadler.
Building Open Programmable Multimedia Networks.
Computer Communications Journal, June 1998.

[5] G. Coulson, G.S. Blair, N. Davies, P. Robin, and
T. Fitzpatrick. Suppoting Mobile Multimedia Applications
Through Adaptive Middleware. IEEE journal on selected
areas in communications, 17, September 1999.

[6] J. Zinky, D. Bakken, and R. Schantz. Overview of Quality
Service for Distributed Objects. Proceedings of the Fifth IEEE
Dual Use Conference, 1995.

[7] J. Zinky, D. Bakken, and R. Schantz. Architecture Support for
Quality of Service for CORBA Objects . Theory and Practice
of Object Systems, January 1997.

[8] M. Roman, F. Kon, and R.H. Campbell. Design and
Implementation of Runtime Reflection in Communication
Middleware: the dynamicTAO case. ICDCS’99 Workshop on
Middleware, June 1999.

[9] F. Kon, A. Singhai, R.H. Campbell, D. Carvalho, R. Moore,
and F. Ballesteros. 2K: A Reflective, Component-Based
Operating System for Rapidly Changing Environments.
Proceedings of ECOOP’98 Workshop on Reflective Object-
Oriented Programming and Systems, July 1998.

[10] K. Nahrstedt, H. Chu, and S. Narayan. QoS-Aware Resource
Management for Distributed Multimedia Applications.
Journal of High-Speed Networks, Special Issue on Multimedia
Networking, 7, 1998.

[11] H. Chu and K. Nahrstedt. CPU Service Classes for
Multimedia Applications. Proceedings of IEEE International

Conference on Multimedia Computing and Systems (IEEE
ICMCS ’99), June 1999.

[12] K. Kim and K. Nahrstedt. QoS Translation and Admission
Control for MPEG Video. 5th International Workshop on
Quality of Service (IWQoS’97), 1997.

[13] BEA Systems Inc., Expersoft Corporation, Imprise
Corporation, International Business Machine Corporation,
International Computers Ltd., IONA Technologies Plc.,
Northern Telecom Corpoaration, Novell Inc., Oracle
Corporation, Peerlogic Inc., and TIBCO Inc. CORBA
Messaging. online documentation at http://www.omg.org/cgi-
bin/doc?orbos/98-05-05., May 1998.

[14] B. Li and K. Nahrstedt. A Control-based Middleware
Framework for Quality of Service Adaptation. IEEE JSAC,
September 1999.

[15] D. Schmidt, D.Levine, and C. Cleeland. Architectures and
Patterns for High-performance, Real-time CORBA Object
Request Brokers, (updated September 19th). Advances
in Computers, Academic Press, Ed., Marvin Zelkowitz, to
appear.

[16] IONA Technologies Plc., Lucent Technologies Inc., and
AG Siemens-Nixdorf. Control and Management of
Audio/Video Streams OMG RFP Submission. online
documentation at http://www.omg.org/docs/telecom/98-10-
5.doc, May 1998.

[17] Micorsoft Corporation B. Sabino. Non-Blocking Method
calls. Microsoft Corporation white paper, August 1999.

[18] M. Cukier, J. Ren, C. Sabnis, D. Henke, J. Pistole,
W. H. Sanders, D. E. Bakken, M. Berman, D. Karr, and
R. Schantz. AQuA: An Adaptive Architecture That Provides
Dependable Distributed Objects. Proceedings of the 17th
IEEE Symposium on Reliable Distributed Systems (SRDS’98),
October 1998.

[19] M. Shankar, M. DeMiguel, and J. Liu. An End-to-End QoS
Management Architecture. Proceedings of IEEE RTAS’99,
June 1999.

[20] P. Chandra, A. Fisher, C. Kosak, T. Ng, P. Steenkiste,
E. Takahashi, and H. Zhang. Darwin: Resource
Management for Value-Added Customizable Network
Service. Proceedings of IEEE ICNP’98, October 1998.

