
IEEE Network • July/August 201112 0890-8044/11/$25.00 © 2011 IEEE

ecent years have witnessed the emergence of virtual-
ized public and private computing clouds that offer
Infrastructure as a Service (IaaS). In this paradigm,
cloud operators maintain the underlying physical

infrastructure and provide virtual machines (VMs) to cloud
users (e.g., Amazon EC2). Cloud users then deploy their
applications or services within the VMs allocated to them. A
virtualized infrastructure provides a flexible pay-as-you-go
environment that allows scale out/in of services based on
demand fluctuation. Real-life usage scenarios cover a wide
spectrum including outsourcing of IT departments, providing
new Internet services, and performing scientific computations.
For many users, high availability (i.e., running applications/ser-
vices when needed where needed) is a key proponent of cloud
services. As hardware and software failures occur on a regular
basis in large-scale environments [1, 2], IaaS providers should
support primitives that enable failure recovery and service
availability.

Current failure recovery mechanisms for cloud services
have serious limitations. For many cloud providers, failure
recovery entails replacing a failed VM with a new VM freshly
booted from a custom VM image. This simple approach has
two problems:
• Loss of runtime state
• Long setup time to bootstrap the VM, to reconfigure it, and

to re-establish network connections
To capture and replay the runtime state, many techniques

have been proposed that perform checkpointing at the
application, operating system, or hypervisor level. A com-
prehensive comparison of techniques along with advantages
and disadvantages of each has been presented in [3]. As
cloud providers cannot make modifications to a VM’s soft-
ware stack to support checkpointing, checkpointing at the

hypervisor level appears to be the most practical solution
for IaaS systems.

Failure recovery mechanisms for VMs can be roughly clas-
sified into two main approaches. Fast failover is the technique
used by high-availability systems like Remus [4], where the
VM state is continuously synchronized to another physical
host to create a backup copy of the VM in standby. After a
VM failure, the standby copy can immediately take over and
continue service without any loss or rollback of the execution
state. In theory, one can run this mechanism for all VMs of a
given service instance and attain continuous availability for
the whole service. However, offering such a live replication
service incurs high computational and bandwidth overheads,
doubles the VM hosting costs, and is limited to a local area
network. An alternative approach is to capture the global
state of a cloud service using distributed snapshots (check-
points). This approach involves making modifications to either
the virtual networking layer at the end hosts (e.g., the VNsnap
system [3] on top of the VIOLIN [5] virtual networking layer)
or the networking stack in the VM (e.g., checkpointing Emu-
lab experiments [6]).

In this article, we propose GENI-VIOLIN, a distributed
snapshot mechanism that operates exclusively at the network
level and provides fault tolerance for stateful services provi-
sioned over multiple VMs. The GENI-VIOLIN approach is
applicable to a variety of virtualization platforms (e.g.,
VMware ESX, Xen, KVM) and only requires live VM migra-
tion support from the underlying virtualization platform. The
unique aspect of GENI-VIOLIN that distinguishes it from the
previous work is that GENI-VIOLIN exploits virtualizable
and programmable networking hardware (e.g., OpenFlow
switches [7]) to implement the distributed snapshot function-
ality. This capability makes GENI-VIOLIN one of the first

RR

Ardalan Kangarlou and Dongyan Xu, Purdue University
Ulas, C. Kozat, Pradeep Padala, Bob Lantz, and Ken Igarashi, DOCOMO USA Laboratories

Abstract
Infrastructure as a Service (IaaS) has become an increasingly popular type of ser-
vice for both private and public clouds. The virtual infrastructures that enable IaaS
support multitenancy by multiplexing the computational resources of data centers
and result in substantial reductions in operational costs. Since hardware and soft-
ware failures occur on a routine basis in large-scale systems, it is imperative for
cloud providers to offer various failure recovery options for distributed services
hosted on such infrastructures. In this article we present GENI-VIOLIN, a new cloud
capability that can checkpoint a stateful distributed service while incurring very low
overhead. The unique aspect of GENI-VIOLIN compared to previous work is that
GENI-VIOLIN exploits programmable OpenFlow switches to provide checkpointing
services in the network, thereby requiring minimal changes to the end host virtual-
ization framework. We have developed a prototype of GENI-VIOLIN using the
GENI infrastructure, and have demonstrated GENI-VIOLIN’s checkpoint and restore
capability across multiple GENI sites.

In-Network Live Snapshot Service for
Recovering Virtual Infrastructures

KANGARLOU LAYOUT 7/7/11 11:59 AM Page 12

IEEE Network • July/August 2011 13

systems of its kind to demonstrate a novel application of mod-
ern programmable networking hardware. GENI-VIOLIN’s
main features are summarized below:
• The distributed snapshot algorithm is moved into the net-

work by exploiting OpenFlow switches.
• Moving the distributed snapshot functionality to the net-

work enables a generic solution that requires minimal cus-
tom platform-specific modification to end hosts.

• GENI-VIOLIN can support snapshot operation for services
that span multiple subnets, availability zones, or even differ-
ent geographical regions.

• GENI-VIOLIN is completely transparent and requires no
modifications to cloud application and system software.

We have built a prototype of GENI-VIOLIN on the GENI [8]
testbed consisting of two geographically distributed data cen-
ters. Technical details of our implementation along with pre-
liminary evaluation are presented in the rest of this article.

System Architecture
The GENI-VIOLIN architecture consists of multiple compo-
nents that participate during different stages of the distributed
snapshot operation. Figure 1 illustrates these components and
their relationship to each other. For the remainder of this sec-
tion, we briefly describe the role of each component within
our proposed in-network snapshot solution.

VM Server
A VMS is a physical server that hosts VMs in the cloud data
centers. GENI-VIOLIN requires only minimal changes to a
VMS. Instead, it relies on standard functionalities such as live
VM migration, VM pause, and VM resume that are common-
ly supported by different system virtualization platforms. Our

prototype implementation is based on Xen [9] virtualization
and operates similarly to the VM snapshot implementation in
VNsnap [3]. Both GENI-VIOLIN and VNsnap rely on live
VM migration to transfer the VM state to a remote host. It is
only during the last iteration of migration that a VM is actual-
ly paused. Hence, both GENI-VIOLIN and VNsnap incur less
than a second of downtime, since the VM is operational dur-
ing much of the snapshot operation. Once the image is fully
transferred, the VM migration is aborted, so the VM resumes
operation on the same VMS. If the virtualization software
provides a live VM checkpoint capability, one can leverage
this functionality instead of relying on live VM migration. The
current implementation of GENI-VIOLIN also relies on a sig-
naling mechanism at the VMS, so other components of
GENI-VIOLIN can be notified when a snapshot operation is
in progress or complete. We cover the details of signaling
more extensively later.

Snapshot Server
An SS serves as the destination for a live VM snapshot. A sin-
gle SS can serve multiple VMSs, and a VMS can use different
SSs at different times. An SS is responsible for:
• Receiving a VM image during snapshot and writing it to

persistent storage
• Aborting the migration once a VM image is fully received

so that the VM resumes operation on the same VMS
• Committing or aborting the written VM images based on

the success of the snapshot operation
• Copying the VM images to other sites prior to snapshot

restoration
Additionally, if feasible, one can move the VMS’s signaling

functionality entirely into the SS so that in-network snapshot-
ting requires no changes to the VMS.

Figure 1. To provide a live, distributed snapshot capability, GENI-VIOLIN adds several modules to the cloud’s
control plane: a transaction controller (TC) controls the operation of snapshot servers (SSs) to record state
from off-the-shelf VM servers (VMSs), and custom OpenFlow controllers (OFCs) manage the flow tables of
OpenFlow switches (OFSs). Besides using OFSs, no changes to the data plane are required, and snapshot tak-
ing only minimally perturbs VM computation and communication.

VM VM

VMM
VM VM

VMM

VM VM

VMM

VM VM

VMM

VM VM

VMM

Control plane

Data plane

VM
server

Snapshot
server

Snapshot
server

OpenFlow
controller

OpenFlow
switch

OpenFlow
switch

OpenFlow
switch

OpenFlow
switch

OpenFlow
controllerVM

server
VM

server
VM

server

Transaction
controller

KANGARLOU LAYOUT 7/7/11 11:59 AM Page 13

IEEE Network • July/August 201114

Transaction Controller
A TC orchestrates the distributed snapshot operation and
manages the interactions among different components of
GENI-VIOLIN. A TC is aware of all the VMs that belong to
a certain service and can initiate a distributed snapshot opera-
tion on demand or periodically. A TC’s main responsibilities
can be summarized as follows:
• It initiates VM migration from a VMS to an SS and moni-

tors all the interactions between the VMS and the SS so
that it knows whether a VM is in the pre-snapshot or post-
snapshot state.

• Based on the snapshot state of the VM, the TC instructs the
OFC to update routing configurations in the networking
hardware (i.e., OpenFlow switches), so that consistency of
the distributed snapshot state is guaranteed (to be discussed
in the next section).

• The TC instructs an SS to commit VM snapshots when the
snapshot operation is successful; otherwise, the VM snap-
shots are discarded.

OpenFlow Switch
Each OFS is an off-the-shelf switch compliant with the Open-
Flow specification [7] and supports network virtualization in
hardware. The key characteristic of an OpenFlow switch that
distinguishes it from a traditional network switch is that the
flow table in the switch can be managed by an OpenFlow Con-
troller (OFC). Each flow can be defined based on a subset of
header fields in the network packet. For example, a flow can
be identified based on the VLAN ID, source/destination
MAC address, source/destination IP address, or a combina-
tion of different fields. Additionally, for each flow in the flow
table, there is an associated action that determines the fate of
packets in that flow. A few examples of such actions are drop-
ping packets, forwarding packets to a specific port, forwarding
packets to the OFC (the default action), and packet encapsu-
lation/decapsulation. These actions are determined by the
OFC and are communicated to an OFS via the OpenFlow
protocol.

OpenFlow Controller
An OFC manages the flow table of an OFS. GENI-VIOLIN
incorporates a custom controller that updates flow tables
based on the pre-snapshot or post-snapshot status of sender
and destination VMs. More specifically, our custom OFC
communicates with the TC during the snapshot operation and
updates egress OpenFlow switches on the path from the

source VM to destination VM to specify actions such as drop-
ping, buffering, and injecting packets. In the next two sections,
we briefly describe the distributed snapshot algorithm and
then proceed with describing how these different components
come together to provide an in-network, distributed, live
snapshot service.

Mattern’s Distributed Snapshot Algorithm
In a distributed system where VMs communicate with each
other and maintain state as a result of that communication,
some VMs may take longer than others to record a check-
point. As a result, it is critical to preserve causal consistency
during the distributed snapshot operation so that the global
snapshot can be safely restored. In this light, the sole purpose
of a snapshot algorithm is to guarantee such consistency
despite the asynchronous nature of distributed snapshots.
Over the years different distributed snapshot solutions have
been proposed in the literature [3, 10–13]. VNsnap [3] is one
such system that demonstrates applicability of Mattern’s snap-
shot algorithm [14] to the VIOLIN virtual networked infras-
tructure [5]. To enable taking snapshots of unmodified VMs,
VNsnap implemented this distributed snapshot algorithm
within the virtual networking layer of a VMS.

Similar to VNsnap, GENI-VIOLIN adopts Mattern’s dis-
tributed snapshot algorithm [14] to achieve a consistent, glob-
al snapshot. However, by leveraging programmability of
OpenFlow networking hardware, GENI-VIOLIN moves the
implementation of the distributed snapshot algorithm from
the VMSs into the network. In this section, we only briefly
describe Mattern’s snapshot algorithm to set up the back-
ground for the GENI-VIOLIN implementation in the next
section. We therefore encourage readers to refer to [3] for a
more thorough discussion of the snapshot algorithm and the
proof of its applicability.

Figure 2 presents scenarios that can arise during an asyn-
chronous system snapshot and shows the way Mattern’s snap-
shot algorithm copes with each. This figure shows a service
composed of four communicating VMs. The TC instructs each
virtual machine VMi to start a snapshot at time Si, and the
VMs complete their snapshot at time Ti. As described earlier,
just before Ti, VMi is paused, and its final memory state is
transferred to a snapshot server (SS) as the snapshot image.
Based on this figure, VMi can be in one of the three possible
states at a given time t:
• Pre-snapshot, where the VM did not start the snapshot

operation (i.e., t < Si)
• Snapshot, where the VM has started the snapshot operation

but not completed it (i.e., Si ≤ t < Ti)
• Post-snapshot, where the VM has finished the snapshot

(i.e., t ≥ Ti)
Additionally, the packets exchanged between VMs can be
classified into one of three types:
• Type-1: These packets are sent from VMs in pre-snapshot

or snapshot states to VMs in pre-snapshot or snapshot
states. Also, packets from post-snapshot VMs to other post-
snapshot VMs are Type-1 packets.

• Type-2: These packets are sent from VMs in pre-snapshot
or snapshot state to VMs in post-snapshot state.

• Type-3: These packets are sent from VMs in post-snapshot
state to VMs in the pre-snapshot or snapshot state.
In Fig. 2, Type-1, Type-2, and Type-3 packets are labeled as

1, 2, and 3 respectively. A close examination of each type
reveals the following: Type-1 packets do not violate consisten-
cy of distributed snapshots as the snapshot image of both the
sender and receiver VMs agree whether a packet was sent and
received before snapshot (e.g., a packet from a pre-

Figure 2. An illustration of Mattern’s snapshot algorithm [3] and
handling of different types of messages. The snapshot of VMi
begins at time Si and ends at Ti.

S1

VM1

T1

S2

VM2

T2

S3
1

11

12

3

VM3

T3

S4

VM4

T4 Time

Consistent cut

KANGARLOU LAYOUT 7/7/11 11:59 AM Page 14

IEEE Network • July/August 2011 15

snapshot/snapshot VM to another pre-snapshot/ snapshot
VM) or not (e.g., a packet from a post-snapshot VM to
another post-snapshot VM). Type-2 packets are only included
in the snapshot of sending VMs. Thus, when the system is
restored from a given snapshot, Type-2 packets result in a sce-
nario that is equivalent to the case where these packets are
lost in the network. Hence, these packets do not result in any
conflicting state between sender and receiver VMs.

Type-3 packets, on the other hand, violate causal consisten-
cy and should not be included in the distributed snapshot. To
illustrate this point, we can assume the Type-3 packet in Fig. 2
is included in the global snapshot. As a result, when the dis-
tributed snapshot is restored, VM4’s snapshot state indicates
receiving a packet from VM3 whereas VM3’s snapshot has no
notion of sending that packet. Delivering Type-3 packets
results in either discarding such packets and stalling a connec-
tion (e.g., for TCP connections) or duplicate processing (e.g.,
for UDP connections) after snapshot restoration.

To preserve consistency and avoid the two undesirable sce-
narios just described, Type-3 packets should not be delivered
to destination VMs before their snapshot is finalized. One
way to ensure that is to simply drop Type-3 packets in the net-
work. This, however, could incur a significant loss rate (for
UDP connections) or transmission slowdown (for TCP con-
nections) depending on the rate of communication and the
degree of skew between the snapshot completion times of the
VMs. While our live VM snapshot implementation reduces
individual VM downtime during the snapshot operation to
less than a second, dropping Type-3 packets would result in
repetitive bursty losses and transmission slowdowns that can
last a few seconds. To alleviate this problem, one option is to
hold and buffer Type-3 packets in the network and inject
them as soon as the destination VM completes its snapshot.
Our GENI-VIOLIN implementation supports both options.

GENI-VIOLIN Snapshot Algorithm
Implementation
In the GENI-VIOLIN implementation, the distributed snap-
shot algorithm is implemented in the network via the Open-
Flow controller (OFC) and OpenFlow switches (OFSs).

Figure 3 illustrates the interactions among different compo-
nents of the GENI-VIOLIN architecture to achieve a causally
consistent snapshot image. The interactions during the snap-
shot operation can be summarized as follows:
1 The transaction controller (TC) starts the snapshot opera-

tion for a service by sending a START_SNAPSHOT message
to all the VMSs that host VMs constituting that service.

2 Upon receiving a START_SNAPSHOT message, a VMS
starts transferring the VM state to an SS. At the final stage
of transfer (i.e., the last iteration of migration) where the
VM is paused and all dirty pages are transmitted to the SS,
the VMS informs the TC by sending a VM_PAUSED mes-
sage.

3 After receiving VM_PAUSED, the TC instructs the OFC via
an ADVANCE_EPOCH message to update the flow table in
the egress OFS so that the packet delivery rules for a VM
reflect the snapshot algorithm described earlier (more
details later).

4 Once the OFC finishes updating the OFS for a particular
VM, it notifies the TC to unpause the VM with a
VM_UNPAUSE message. This message in turn results in the
TC sending a request to the VMS to unpause the VM and
a REINJECT_PACKETS request to the OFC so that the
buffered packets can be injected. Additionally, based on the
success or failure of the snapshot operation, the TC
instructs the SS to commit or abort the snapshot images.
Hereafter, we focus on the main contribution of GENI-

VIOLIN: the use of programmable networking hardware to
implement the snapshot algorithm in the network. As alluded
to earlier, packet forwarding and the snapshot algorithm in
GENI-VIOLIN are done via OFSs under the control of the
OFC. While our design can support multiple OFCs and ser-
vice domains, for the sake of ease in description we assume
one OFC manages all OFSs that provide network connectivity
for one service. Figure 4 presents simplified pseudocode for
the OFC, and captures the sequence of steps that take place
when a service is started and when its snapshot is taken.

Initially, when a service is started, the OFC and OFSs have
no state about the VMs that make up the service. Therefore,
when VMi sends a packet, the egress OFS sends a PACKET_IN
message to the OFC to query how it should treat that packet.
This message prompts the OFC to update the flow table of

Figure 3. Interactions between different components of the GENI-VIOLIN architecture.

Update
delivery rules

Rules
updated

Reinject
packets

Advance
epoch

Epoch
advanced

Reinject
packets

VM
unpaused

VM
is paused

(VM state)

Commit
snapshot

Start
snapshot

Unpause
VM

Snapshot
server

Transaction
controller

OpenFlow
controller

OpenFlow
switchVM server

KANGARLOU LAYOUT 7/7/11 11:59 AM Page 15

IEEE Network • July/August 201116

the egress OFS so that VMi’s packets can be forwarded. This
message also sets VMi’s state in the OFC to pre-snapshot. Dur-
ing the course of the snapshot operation, when the OFC
receives the ADVANCE_EPOCH message, the OFC sets VMi’s
state to post-snapshot and deletes all forwarding rules for VMi
in the egress OFS. The removal of the forwarding rules again
prompts outgoing packets from VMi to trigger PACKET_IN
message to the OFC. At this moment, the OFC can enforce
the snapshot algorithm by not allowing forwarding of packets
from a post-snapshot VM to a pre-snapshot VM (i.e., Type-3
packets). More precisely, the OFC instructs the OFS to buffer
Type-3 packets and inject them back in the network when the
receiver VM transitions to the post-snapshot state. Since the
delivery of Type-1 and Type-2 packets does not violate the
consistency of the global snapshot, the OFC can safely insert
forwarding rules upon receiving PACKET_IN messages for
these type of packets.

GENI-VIOLIN Evaluation
This section describes two sets of experiments involving GENI-
VIOLIN. We demonstrate applicability of GENI-VIOLIN to
taking a snapshot of a GENI slice that runs a distributed MPI-
based application. Additionally, we present a few microbench-
mark results on the performance of GENI-VIOLIN.

POV-Ray Distributed Snapshot
We have evaluated GENI-VIOLIN using two GENI sites, one
at the University of Utah (ProtoGENI Utah) and the other
one at the GENI Project Office (ProtoGENI GPO) in Cam-
bridge, Massachusetts. At each site, the hardware for our
experiments consisted of eight Dell servers with one 2.4 GHz
64-bit Quad Core Xeon, 12 Gbytes of RAM, and six Broad-
com NetXtreme II BCM5709 GbE network interface cards
(NICs) connected via an OFS. Figure 5 illustrates our setup at
both sites. We dedicated four servers as VM Servers (VMS)
at each site (Utah-A, Utah-B, Utah-C, and Utah-D at Proto-
GENI Utah, and GPO-A, GPO-B, GPO-C, and GPO-D at
ProtoGENI GPO); each VMS runs one VM with 256 Mbytes
of RAM. We used two servers at ProtoGENI Utah as SSs,
denoted Utah-E and Utah-F in Fig. 5. Each SS serves two
VMSs in our configuration. Additionally, we used one server

for running the transaction controller (TC) and
the GENI-VIOLIN user interface (UI) and one
for running the OFC. The two GENI sites were
connected using an Internet2 link.

Our experiment involved taking a snapshot of
POV-Ray [15], a distributed MPI-based render-
ing application, at ProtoGENI Utah (Fig. 5a),
simulating a hardware failure at ProtoGENI
Utah by abruptly killing all four VMs running
POV-Ray (Fig. 5b), and restoring the snapshot at
ProtoGENI GPO (Fig. 5c). Figure 5 also demon-
strates various aspects of the GENI-VIOLIN
operation, such as the GENI-VIOLIN UI, the
output of POV-Ray (the rendered bonsais) when
the snapshot is taken and restored, the network
activity on the SS during the snapshot operation
(spikes at Utah-E and Utah-F), and the network
activity on the Internet2 link when the distributed
snapshot is transferred from ProtoGENI Utah to
ProtoGENI GPO. GENI-VIOLIN was success-
fully demonstrated at the 9th GENI Engineering
Conference (GEC-9) in November 2010, and a
demo of GENI-VIOLIN can be viewed at [16].

The measurements we obtained suggest that
on average it took 10 s to snapshot a 256-Mbyte

VM running POV-Ray when one SS is serving two VMSs.
However, the VM downtime during the snapshot did not
exceed 200 ms. Our measurements show that on average it
took 28 ms for the OFC to update the flow table in the OFS
and notify other components. It also took slightly more than a
minute to transfer the four VM snapshot images from Proto-
GENI Utah to ProtoGENI GPO across the Internet2 link.

Microbenchmark Experiments
In this section, we describe some microbenchmark experi-
ments to illustrate the effectiveness and limitations of packet
buffering. For these experiments, our testbed environment
consisted of several HP Proliant BL460c G6 blades, one NEC
IP8800/S3640-48T2WX OpenFlow switch with 48 1-Gb/s
interfaces, and four Lenovo ThinkPad X200s laptops. All the
blades and laptops are directly connected to the OpenFlow
switch through standard Ethernet cables or USB-Ethernet
interfaces. The laptops host VMs that run Iperf [17], and the
blades run the OFC, TC, and SS.

Recall earlier we said that for asynchronous distributed
snapshots, dropping Type-3 packets results in transmission
slowdown for TCP packets. This overhead can be particularly
significant when there is a large skew between completion
times of VM snapshots. For the experiments in this section, we
study scenarios where we have two VMs and the sending VM
completes its snapshot a few seconds before the receiving VM.
As a result, all the packets transmitted by the sender during
the snapshot skew period become Type-3 packets. Figure 6b
shows multiple network traces obtained through Tcpdump
when we take a snapshot 2 s into the experiment and set the
length of skew to 1, 2, and 4 s as represented by red, green,
and blue traces, respectively. Comparing Figs. 6a and 6b sug-
gests that buffering packets at the switch greatly reduces the
length of TCP backoff where the sender exponentially reduces
its transmission rate until it receives an acknowledgment from
the receiver. When buffering is enabled, the receiving VM
does not have to wait for a TCP timeout and retransmission to
receive the Type-3 packets, which results in the reduced over-
head (i.e., the shorter length for the flat “no-progress” period
in the network trace) shown in Fig. 6b. Our experiments with
UDP transfers at low rates also suggested that packet buffer-
ing and injection helps reduce packet loss during a snapshot.

Table 1. Simplified pseudocode for the OFC.

def init():
for vm in vms:

post_snapshot[vm] = False
for switch in switches:

switch.delete_all_forwarding_rules ()

def packet_in (switch, inport, src, dst, packet):
if is_access_port (switch, inport):

egress_switch[inport] = src
if post_snapshot (src) and not post_snapshot(dst):

buffer[dst].append ((packet, switch))
else:

switch.install_forwarding_rule (src, dst)
switch.forward (packet)

def advance_epoch (src):
post_snapshot[src] = True
egress_switch[src].delete_forwarding_rules_from (src)

def reinject_packets (dst):
assert (post_snapshot[dst])
for packet, switch in buffer[dst];

switch.forward (packet)
buffer[dst] = {}

KANGARLOU LAYOUT 7/7/11 11:59 AM Page 16

IEEE Network • July/August 2011 17

Figure 5. A sequence of screenshots displaying the operations of GENI-VIOLIN: a) a snapshot of POV-Ray
at ProtoGENI Utah; b) hardware failure at ProtoGENI Utah; c) snapshot restoration at ProtoGENI GPO.

(a)

(c)

(b)

KANGARLOU LAYOUT 7/7/11 11:59 AM Page 17

IEEE Network • July/August 201118

Discussion
This section focuses on three aspects of GENI-VIOLIN that
require further study and improvement. First, as discussed
earlier, the skew in completion time of VM snapshots can
potentially result in many buffered packets. For homoge-
neous setups where all VMs have the same memory size,
the skew is usually not significant. However, in heteroge-
neous setups where VMs can have different memory alloca-
tions, it is inevitable that some VMs complete their
snapshots much earlier than others. Since the VM size,
rather than the application workload, is the main determin-
er of the length of the snapshot operation for a given VM,
one way to alleviate this problem is to profile the duration
of snapshots for VMs of different sizes. Using this profile
information, GENI-VIOLIN could then delay starting snap-
shots for smaller VMs so that all VMs would finish their
snapshots at about the same time.

Second, one direct consequence of asynchrony in comple-
tion time of snapshots is the buffering that takes place in
GENI-VIOLIN. While delaying the start of snapshot for
smaller VMs could reduce the skew and buffering require-
ments, it is unlikely that buffering can be eliminated. The
main issue with buffering is its overhead in terms of the
number of PACKET_IN and PACKET_OUT messages sent
to/from the OFC and the memory requirement to store the
buffered packets. Our initial investigation suggests that for
very low transfer rates (e.g., 1 Mb/s), buffering can be done
at the OFS without any problems. However, for higher sus-
tained transfer rates (e.g., 10 Mb/s and higher) resources at
the switch and controller can quickly become exhausted. The
problem is further exacerbated by transport protocols such
as UDP that do not employ flow or congestion control. We
are currently investigating alternative methods of buffering
by performing buffering and injection using middleboxes
(e.g., dedicated servers for buffering) that can store a large
number of packets and process them at line rate. We believe
such middleboxes along with reasonable ratios of OFCs rela-
tive to OFS’s and SS’s relative to VMS’s can result in a very
scalable solution.

Third, GENI-VIOLIN’s unique in-network snapshot capa-
bility allows capturing the network state (e.g., the flow tables
of switches, routers, etc.) in addition to capturing the CPU,
memory, and storage states. Such saved state could be used by
the OFC during snapshot restoration to proactively set up
flow tables in an OFS. This capability could result in preserv-
ing the network topology of a service (e.g., the topology of a
networking experiment in the cloud), resulting in lower over-
head compared to reactive flow table setup during snapshot
restoration.

Conclusion
We present GENI-VIOLIN, an in-network live distributed
snapshot solution for services hosted over public and private
clouds. GENI-VIOLIN differs from previous distributed snap-
shot solutions as it relies on the capabilities of modern net-
working hardware. Given that the snapshot algorithm is
implemented entirely using programmable networking hard-
ware, GENI-VIOLIN requires minimal modifications to VM
servers irrespective of the platform virtualization technology
used by the cloud provider. Our prototype implementation
and evaluation results using real-world distributed infrastruc-
ture and applications demonstrate the suitability of GENI-
VIOLIN for services that primarily use TCP connections. We
also propose alternative implementations to reduce the over-
head of GENI-VIOLIN and improve its applicability to a
wider range of cloud services.

References
[1] J. Dean, “Underneath the Covers at Google: Current Systems and Future

Directions,” 2008 Google I/O, San Francisco, CA, May 2008,
http://sites.google.com/site/io/underneath-the-covers-at-google-current-sys-
tems-and-future-directions.

[2] G. DeCandia et al., “Dynamo: Amazon’s Highly Available Key-value Store,”
Proc. SOSP’07, Stevenson, Washington, Oc. 2007.

[3] A. Kangarlou, P. Eugster, and D. Xu, “VNsnap: Taking Snapshots of Virtual
Networked Environments with Minimal Downtime,” Proc. 39th IEEE/IFIP Int’l.
Conf. Dependable Systems and Networks (DSN-DCCS 2009), Estoril, Portu-
gal, June 2009.

[4] B. Cully et al., “Remus: High Availability via Asynchronous Virtual Machine
Replication,” Proc. NSDI’08, San Francisco, CA, Apr. 2008.

[5] X. Jiang and D. Xu, “VIOLIN: Virtual Internetworking on Overlay INfrastruc-
ture,” Technical Report CSD TR 03-027, Purdue University, 2003.

[6] A. Burtsev et al., “Transparent Checkpoints of Closed Distributed Systems in
Emulab,” ACM EuroSys 2009.

[7] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Networks,”
ACM SIGCOMM Comp. Commun. Review, Mar. 2008.

[8] The Global Environment for Network Innovations (GENI),
http://www.geni.net/.

[9] P. Barham et al., “Xen and the Art of Virtualization,” ACM SOSP, 2003.
[10] O. Laadan, D. Phung, and J. Nieh, “Transparent Checkpoint/Restart of Dis-

tributed Applications on Commodity Clusters,” IEEE Int’l. Conf. Cluster Com-
puting, 2005.

[11] J. F. Ruscio, M. A. Heffner, and S. Varadarajan, “DejaVu: Transparent
User-Level Checkpointing, Migration, and Recovery for Distributed Systems,”
IPDPS 2007.

[12] S. Sankaran et al., “The LAM/MPI Checkpoint/Restart Framework: System
Initiated Checkpointing,” Proc. LACSI Symp., Sante Fe, 2003.

[13] D. P. Scarpazza et al., “Transparent System-Level Migration of PGAS Appli-
cations using Xen on Infiniband,” Proc. IEEE Int’l. Conf. Cluster Computing,
2007.

[14] F. Mattern, “Efficient Algorithms for Distributed Snapshots and Global Virtu-
al Time Approximation,” J. Parallel and Distributed Computing, 1993.

[15] Persistence of Vision Raytracer (POV-Ray), http://www.povray.org/.
[16] GENI-VIOLIN GEC9 Demo, http://vimeo.com/16535013/.
[17] Iperf, http://sourceforge.net/projects/iperf/.

Figure 6. Effectiveness of buffering in reducing TCP backoff: a) dropping Type-3 packets; b) buffering and injecting Type-3 packets at the
switch.

Time (s)
10

2000

0

M
eg

ab
it

s
re

ce
iv

ed
 (

cu
m

ul
at

iv
e)

1000

3000

4000

5000

6000

7000

8000

9000

2 3 4 5 6 7 8 9 10

Time (s)
10

2000

0

M
eg

ab
it

s
re

ce
iv

ed
 (

cu
m

ul
at

iv
e)

1000

3000

4000

5000

6000

7000

8000

9000

2 3 4 5 6 7 8 9 10

KANGARLOU LAYOUT 7/7/11 11:59 AM Page 18

IEEE Network • July/August 2011 19

Biographies
ARDALAN KANGARLOU [M] (ardalan@cs.purdue.edu) is a Ph.D. candidate in the
Department of Computer Science at Purdue University. He received a B.S. degree
from the University of Southern Mississippi in 2004 and an M.S. in computer sci-
ence from Purdue University in 2006. His current research areas include virtual-
ization, cloud computing, and distributed systems. He is a member of the ACM
and USENIX.

ULAS C. KOZAT [SM] (kozat@docomolabs-usa.com) is currently serving as princi-
pal researcher at DOCOMO USA Laboratories, Palo Alto, California, where he
heads the network architecture team. He received his Ph.D., M.S., and B.S.
degrees, all in electrical engineering from the University of Maryland, College
Park, George Washington University, Washington, DC, and Bilkent University,
Ankara, Turkey, in 2004, 1999, and 1997, respectively. He worked at HRL Lab-
oratories and Telcordia Technologies Applied Research as a research intern.

PRADEEP PADALA (ppadala@docomolabs-usa.com) is a research engineer at
DOCOMO USA Laboratories working on virtualization and cloud computing
with a special focus on mobile computing. He received his B.E. from the Nation-
al Institute of Technology, Allahabad, India, his M.S. from the University of Flori-
da, and his Ph.D. from the University of Michigan in 2000, 2003, and 2009,

respectively. He received the best paper award at the USENIX Annual Technical
Conference in 2010. More about his research can be found at http://ppadala.net.

BOB LANTZ (rlantz@cs.stanford.edu) founded the Mininet (openflow.org/mininet)
project for rapid prototyping of software-defined networks, and encourages
everyone to experiment with it. In addition to work on GENI-VIOLIN at DOCO-
MO Laboratories, he has contributed to OpenFlow and related efforts at Stan-
ford and Arista Networks. He completed his Ph.D. at Stanford in 2007,
developing Parallel SimOS, a full-system simulator for large multiprocessors.

KEN IGARASHI (igarashi@docomolabs-usa.com) has been with NTT DOCOMO
since 2000 and with DOCOMO USA Laboratories, Palo Alto, California, since
2007. He has expertise in cloud computing, server virtualization, noSQL
database systems, and TCP/IP.

DONGYAN XU (dxu@cs.purdue.edu) is an associate professor of computer science
and electrical and computer engineering (by courtesy) at Purdue University. He
received a B.S. degree from Zhongshan (Sun Yat-Sen) University in 1994 and a
Ph.D. in computer science from the University of Illinois at Urbana-Champaign in
2001. His current research areas include virtualization technologies, computer
malware defense, and cloud computing. He is a recipient of a U.S. National Sci-
ence Foundation CAREER Award.

KANGARLOU LAYOUT 7/7/11 11:59 AM Page 19

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

