
0018-9162/05/$20.00 © 2005 IEEE May 2005 63

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Virtual Distributed
Environments in a
Shared Infrastructure

S panning multiple domains, the Grid pro-
vides for the federation, allocation, and
management of heterogeneous networked
resources and makes them available to a
large number of users. Advances in Grid

computing technology have contributed to the
formation of a wide-area shared cyber infrastruc-
ture that provides opportunities for a broad spec-
trum of distributed and parallel computing appli-
cations to take advantage of the massive aggregate
computational power available across the Internet.
However, realizing the full potential of such a
shared infrastructure presents significant research
challenges.

Many Grid users are familiar with the traditional
job submission and execution model as well as the
service-oriented access model as defined by the
Open Grid Services Architecture (OGSA).1 Powered
by key enabling technologies such as Globus’ Grid
Resource Allocation and Management (GRAM),2

the Grid provides a single detail-hiding interface for
requesting and using networked resources to exe-
cute jobs that users submit. The widely used job and
service models define an appropriate paradigm for
resource sharing and program execution.

However, some applications are operational
rather than functional, making it difficult to map
them to independent jobs or services. Examples of
these applications include the fine-grained emula-
tion of real-world systems such as airport opera-
tions and antiterrorism exercises, each of which
involves numerous dynamic and diverse objects,
contexts, and object-interaction patterns.

Furthermore, some applications require specially
configured and customized execution environ-
ments, including operating systems, network-level
services, and application-level services, packages,
and libraries. For example, many scientific applica-
tions require mathematical and communication
libraries such as basic linear algebra subprograms
and a message-passing interface (MPI), and a Java
application might insist on a specific version of Java
virtual machine. It might not always be possible to
satisfy such requirements in a shared infrastructure.
Moreover, requirements could conflict with each
other—for example, the applications might require
different versions of the same library.

Finally, it isn’t possible to prevent users from
running potentially untrustworthy or malfunction-
ing applications. Developers can introduce bugs
or vulnerabilities into an application either inad-
vertently or deliberately. Well-known applications
such as SETI@Home (www.securityfocus.com/
bid/7292), for example, have exhibited security
vulnerabilities that could be exploited to launch
a malicious attack against any machine on the
Internet.

As a result, containing the impact of a network
attack on an application is critical to prevent any
cascading effect on other applications or the under-
lying shared infrastructure.

We propose a paradigm to accommodate distrib-
uted applications that are hard to map to jobs or
service instances, require customized execution and
network environments, or require strong contain-
ment of security risk and impact.

A middleware system that integrates and elevates virtual machine and
virtual network technologies facilitates the creation of virtual distributed
environments in a shared infrastructure.

Paul Ruth
Xuxian Jiang
Dongyan Xu
Sebastien
Goasguen
Purdue University

64 Computer

We’ve developed a middleware system
that integrates and extends virtual machine
and virtual network technologies to support
mutually isolated virtual distributed environ-
ments in shared infrastructures like the Grid
and the PlanetLab overlay infrastructure
(www.planet-lab.org).3

VIRTUALIZATION MIDDLEWARE
Clearly, a shared infrastructure needs to

enable mutually isolated distributed environ-
ments to complement the job and service-ori-
ented sharing model. Mutually isolated

distributed environments should support

• on-demand creation,
• customizability and configurability,
• binary compatibility for applications, and
• containment of negative impact of malicious

or malfunctioning applications.

Virtualization is emerging as a promising solu-
tion. It introduces a level of indirection between
applications and the shared infrastructure.
Developers have introduced technologies for the
virtualization of machines and networks.

Examples of virtual machine technologies include
VMware (www.vmware.com), User-Mode Linux
(UML, http://user-mode-linux.sourceforge.net),
and Xen.4 Although their implementations differ,
each of these systems offers virtual machines that
achieve binary compatibility and networking capa-
bility like real machines. Examples of virtual net-
work technologies include VNET5 and Virtual
Internetworking on Overlay Infrastructures
(Violin),6 which both create virtual IP networks for
virtual machine communications.

Renato Figueiredo and coauthors first proposed
applying virtual machine technology to Grid com-
puting.7 They identified major advantages of vir-
tual machines for the Grid, including security,
isolation, customization, legacy support, adminis-
trator privileges, resource control, and site inde-
pendence. Their In-VIGO8 and Virtuoso9 projects
are among the first to address Grid resource virtu-
alization and heterogeneity masking. With In-
VIGO’s VMPlants architecture,10 the system can
automatically create customized virtual machines in
a shared execution environment that adhere to the
traditional job submission and execution model.

We’ve taken virtualization to the next level by
developing middleware that creates virtual distrib-
uted environments in a shared infrastructure such
as the Grid and PlanetLab. Our goal is to provide

customized and consistent runtime and network-
ing environments for a wide spectrum of distrib-
uted applications.

FROM VIRTUAL MACHINES TO VIRTUAL
DISTRIBUTED ENVIRONMENTS

In previous work,11 we extended virtual machine
technologies to create virtual private servers. These
servers are UML-enabled virtual machines3 re-
quested and instantiated on demand, each with a
regular IP address and a customized installation of
OS and application services. Enhancing the under-
lying host OS guarantees each virtual machine a
portion of the physical host’s CPU, memory, and
bandwidth.

However, virtual machine technologies only
achieve isolation between individual virtual
machines. A set of virtual machines does not create
an isolated virtual network because the machines
are addressable to and from other Internet hosts.
Moreover, creating multiple virtual networks is dif-
ficult because all the virtual machines share the
same IP address space, and conflict can occur
between the virtual networks.

Virtual network technologies such as Violin and
VNET solve this problem by creating high-order
virtual IP networks that offer the following fea-
tures:

• Each virtual network has its own IP address
space. The address spaces of different virtual
networks can safely overlap.

• Virtual machines in a virtual network aren’t
visible on the Internet, preventing attacks both
from the virtual machines to the Internet and
from the Internet directly to the virtual
machines.

• Within a virtual network, users can specify and
enforce selected (rather than complete) con-
nectivity between virtual machines based on
the application’s communication pattern.

• A user-specified threshold bounds the traffic
volume on each virtual machine interconnec-
tion, preventing ill-behaving virtual machines
from generating excessive traffic. Furthermore,
it isn’t possible to tamper with enforcement of
the virtual network topology and traffic vol-
ume from inside the virtual machines.

Violin achieves network virtualization by intro-
ducing user-level communication indirection
between the virtual machines and the underlying
infrastructure. Virtual network-enabling entities—
Violin daemons—are located at this communica-

Virtualization
introduces a level

of indirection
between

applications and
the shared

infrastructure.

May 2005 65

tion-indirection level. These daemons form a user-
level overlay network that serves as the underlying
virtual network traffic carrier.

Inside the virtual network, the virtual machines
use standard IP services to communicate with each
other. Below the virtual network, the Violin dae-
mons emulate these services via application-level
mechanisms such as User Datagram Protocol
(UDP) tunneling. An important benefit of this
design is that the daemons can emulate network
services that are not widely deployed in the Internet
(for example, IP multicast) and enable them in a
virtual network.

In VNET, because network virtualization is not
completely realized at the user level, host kernel-
level devices have to be created to tunnel network
traffic. An advanced feature of VNET is its dynamic
topology adaptation capability:9 The virtual net-
work’s topology adapts to the virtual machine com-
munication pattern that the application running in
the virtual network exhibits, thus dynamically
improving the application’s runtime communica-
tion performance.

Integrating virtual network and on-demand vir-
tual machine creation and customization11 tech-
nologies makes virtual distributed environments a
reality. The Violin-based middleware system inte-
grates and enhances such technologies to create vir-
tual distributed environments. For simplicity, we
call these environments Violins when there’s no
ambiguity.

Violins offer the four desirable features of a vir-
tual distributed environment:

• on-demand creation of both virtual machines
and the virtual IP network connecting them;

• customization of the virtual network topology
and services, OS services, and application ser-
vices, packages, and libraries;

• achieving binary compatibility by creating the
same runtime and network environment under
which an application was originally developed;

• containment of negative impact by isolating
virtual network address space, limiting both
virtual machine resources and inter-virtual-
machine traffic rates, and granting users vir-
tual administrator privileges valid only within
Violins.

Figure 1 shows a multilayer overview of two
Violins on top of a shared infrastructure. In the bot-
tom layer, the physical infrastructure, with hetero-
geneous networked resources, spans multiple
network domains. In the middle layer, middleware

systems federate the networked resources to form
a shared infrastructure. We deployed our virtual-
ization middleware at this layer. The top layer con-
sists of two mutually isolated Violins, each with its
own network, OS, and application services cus-
tomized for the application running in it.

VIOLIN DETAILS
Violin realizes the functionalities that connect vir-

tual machines residing on different host machines,
allowing communication across a virtual IP net-
work without having a presence in the underlying
Internet. Although it’s possible to implement
Violin’s features by extending other virtualization
architectures, our implementation takes advantage
of UML’s user-level execution feature and open
source code.

Standard UML virtual machines are instantiated
as processes in a Linux user’s execution space.
Communication outside the host machines occurs
through a virtual network interface, or tap device,
residing in the host’s kernel. The UML virtual
machine contains a virtual network interface that
connects to the host’s tap device, and the host acts
as a router, forwarding packets between the virtual
machine and the physical network. A user will need
root-level privileges to safely create the tap device
and manage the routing table. In addition, the vir-
tual machine needs an IP address that is routable
on the physical network to access the network
through the tap device.

Violin bypasses the need for tap devices and lets
virtual machines exist in an orthogonal IP address
space that is totally decoupled from the Internet. A
Violin-enabled virtual machine contains a virtual
network interface that does not connect to the host;
instead, it connects to a virtual switch (a Violin dae-
mon) running in the host machine’s user space. The
virtual switch behaves like a physical switch,

Internet

Two mutually
isolated
Violins

Virtual
machine

Middleware-
federated

infrastructure

Physical
infrastructure

Physical
machines

Figure 1. Multilayer
overview of two
virtual distributed
environments
(Violins) on top
of a shared
infrastructure.

66 Computer

accepting and forwarding virtual layer-2 frames
between virtual machines.

For efficiency, the virtual switches mimic physi-
cal network links by tunneling the network frames
via the lightweight but unreliable UDP. Using trans-
port protocols (such as TCP) inside the virtual
domain can achieve end-to-end reliability between
virtual machines. By tunneling virtual network traf-
fic through user-level connections instead of rout-
ing the traffic directly through the underlying
network, Violin creates a virtual network of virtual
machines with only user-level privileges.

EXPERIMENTAL RESULTS
We have successfully deployed the Violin-based

middleware system for virtual distributed environ-
ments in PlanetLab and in local cluster platforms.

Earlier work demonstrated Violin’s communica-
tion performance using PlanetLab-based measure-
ments.6 In these studies, we measured both TCP
throughput and Internet Control Message Protocol
latency between a pair of virtual machines in a
Violin and between the underlying PlanetLab hosts.
Our results showed that the virtual machines’ per-
formance is constantly within a small degradation
factor (less than 15 percent) of the PlanetLab hosts’
performance.

HPL performance comparison
To compare Violin’s performance with the phys-

ical cluster’s performance, we conducted experi-
ments using the High-Performance Linpack (HPL)
benchmark. Our experiments’ methodology was
to stress Violin to its limit and find the maximum
number of floating-point operations per second
(flops) it can achieve relative to the flops achievable
in the physical cluster without virtualization.

Each host in the cluster consisted of dual 1.2-
GHz Athlon processors and 1-Gbyte RAM running
Debian Linux 3.0. A 100-megabyte-per-second
Ethernet switch connected the hosts.

We ran HPL in an increasing number of proces-
sors in the physical cluster and ran the same
increasing number of virtual machines in a Violin
on top of the same cluster. For a given number of
processors or virtual machines, we tuned HPL
parameters including problem size, block size, and
process grid shape to reach its maximum perfor-
mance level.

We set the HPL problem-size parameter as the
maximum that Violin can handle and used the
same problem size for both the virtual and physi-
cal cases. We separately tuned the other parameters
for maximum performance in each case. Because
a cluster node has dual processors, we created two
MPI processes and two virtual machines in each
cluster node in the physical and virtual cases,
respectively.

Figure 2 shows the experimental results for run-
ning HPL in up to 64 processors or virtual
machines. These results indicate that Violin con-
stantly achieves approximately 80 percent of the
physical cluster’s performance. This trend scales to
at least 64 virtual machines. Such a performance
penalty is small enough to justify Violin’s practical-
ity, and the scaling trend shows promise for its use
in larger infrastructures.

0

5

10

15

20

25

30

35

2 4 8 16 32 64

Gf
lo

ps

Violin
Physical cluster

Number of processors or virtual machines

Figure 2. Performance comparison. Comparison of results achieved running
High-Performance Linpack (HPL) in a physical cluster and in Violin on top of the
same physical cluster nodes shows a 20 percent performance penalty, a scaling
trend that shows promise for using Violins in even larger infrastructures.

Number of Violins/total number of virtual machines

0

1

2

3

4

5

6

7

8

Gf
lo

ps

1/32 2/64 4/128 8/256 16/512

Figure 3. HPL performance with multiple Violins. Each bar represents the
aggregate performance observed during each test, with each bar segment
representing one Violin’s performance. Each Violin consists of 32 virtual
machines; thus, in the 16-Violin test, 512 virtual machines concurrently run
in 32 cluster nodes.

May 2005 67

Sharing among multiple Violins
We also evaluated the performance of multiple

Violins sharing the same set of physical nodes. In
these studies, we used 32 cluster nodes to create
multiple Violins, each with 32 virtual machines. We
increased the number of Violins (from 1 to 16) shar-
ing the physical nodes and measured each Violin’s
performance. In the 16-Violin test, each cluster
node supported 16 virtual machines, limiting each
to 32 Mbytes of memory.

To make the comparison fair, we found the largest
HPL problem size that would run with 32 virtual
machines each limited to 32 Mbytes of memory and
used the same problem size for all tests in this exper-
iment. We tuned other HPL parameters to find each
test’s highest performance. Our virtual network
technology lets all running Violins use the same set
of IP addresses for their virtual machines without
any conflict.

As Figure 3 shows, as more virtual machines
share the same cluster resources, they each receive
a decreasing but equal share of the resources, with
little degradation in their aggregate performance.
In fact, the aggregate performance increased for up
to eight Violins and slightly decreased for the 16-
Violin case. Thus, increasing the number of Violins
incurs very small overhead in terms of loss of aggre-
gate performance.

Violin communication-pattern profiling
Violin provides a convenient facility for moni-

toring and profiling the communication pattern and
traffic rate among virtual machines. Violin’s all-
software user-level implementation allows easy
extension for network monitoring capability.

Figure 4 shows the communication profile gen-

erated by running HPL in an eight-virtual machine
Violin. This communication pattern is more irreg-
ular and complicated than the classic master-work-
ers pattern seen in distributed applications such as
Condor12 and SETI@home. This suggests that the
placement of virtual machines will significantly
impact an application’s communication perfor-
mance when the underlying infrastructure involves
heterogeneous network connections between phys-
ical hosts.

ONGOING WORK
To make virtual distributed environments more

self-adaptive, we’re extending our middleware sys-
tem by adding intelligence to Violins. Each virtual
environment will behave like an active organism
that manages itself with minimum user attention.
Furthermore, a virtual environment will adapt itself
at runtime by adjusting its resource allocation,
scale, and topology driven by the dynamics of the
application running inside. Virtualization technolo-
gies offer great flexibility in attaining these goals.

Figure 5 presents a simplified example illustrat-
ing support for highly dynamic applications in a
next-generation self-adaptive virtual distributed
environment. In this example, the application is an
agent-based emulation of crowds of people. Each

5 Mbps

5 Mbps7 Mbps

7 Mbps

6 Mbps 5 Mbps
3 Mbps

4 Mbps

6 Mbps

6 Mbps6 Mbps
0 4 6 3

5172

Figure 4. Communication profile. Running HPL in a Violin with eight virtual
machines generates an irregular communication pattern. The arrows’ direction
and thickness indicate the traffic flows and rates between virtual machines.

Scale-up Grow Migrate

Time

Figure 5. Next-generation virtual distributed environment. The application is an agent-based emulation of crowds of
people that studies their mobility and interactions in a specific context. The virtual distributed environment adapts
itself to the application’s dynamics.

68 Computer

colored square represents a geographic region with
unique environmental characteristics. The emula-
tion’s goal is to study the mobility of individuals as
well as their interactions with each other and with
the environment in a specific context such as shop-
ping or commuting.

At the beginning of the emulation (the left-most
instance), the few people present are in two of the
four regions. At this point, the virtual environment
consists of two virtual machines emulating the two
regions and the people inside. As time elapses, the
crowd in the green region grows, causing a scale-up
in the capacity of the virtual machine emulating the
green region. Later, more people arrive, and there
are people in the brown region. At this point, the vir-
tual environment grows by creating a new virtual
machine for the brown region. The last (right-most)
instance doesn’t involve a change in the emulated
world, but instead shows a virtual machine’s migra-
tion due to a change in the resource availability of the
underlying physical host. The virtual environment
initiates and performs all the adaptations.

T he concept of a virtual distributed environ-
ment provides a powerful abstraction for the
isolation and customization of runtime and

networking systems for different applications run-
ning in a shared infrastructure. We propose the
integration and elevation of virtualization technolo-
gies to support mutually isolated virtual distributed
environments in shared infrastructures, such as the
Grid and PlanetLab.

Our experimental results using the Violin-based
virtualization middleware support further research
and wider deployment of virtual distributed envi-
ronments as a new paradigm for distributed com-
puting. In particular, next-generation Violins will
possess the intelligence for self-provisioning and
adaptation, providing more agile and accommo-
dating virtual distributed environments for highly
dynamic distributed applications. ■

Acknowledgment
The US National Science Foundation partly

funded this research under grants SCI-0438246 and
SCI-0504261.

References
1. I. Foster et al., “The Physiology of the Grid: An Open

Grid Services Architecture for Distributed Systems
Integration,” Open Grid Service Infrastructure WG,

Global Grid Forum, June 2002; http://www.globus.
org/research/papers/ogsa.pdf.

2. I. Foster and C. Kesselman, “Globus: A Toolkit-
Based Grid Architecture,” The Grid: Blueprint for a
New Computing Infrastructure, Morgan Kaufmann,
1999, pp. 259-278.

3. L. Peterson et al., “A Blueprint for Introducing Dis-
ruptive Technology into the Internet,” Proc. ACM
Workshop on Hot Topics in Networking (HotNets-I),
ACM Press,2003, pp. 59-64.

4. P. Barham et al., “Xen and the Art of Virtualization,”
Proc. ACM Symp. Operating Systems Principles
(SOSP), ACM Press, 2003, pp. 164-177.

5. A. Sundararaj and P. Dinda, “Toward Virtual Net-
works for Virtual Machine Grid Computing,” Proc.
3rd Usenix Virtual Machine Technology Symp.,
Usenix, 2004, pp. 177-190.

6. X. Jiang and D. Xu, “Violin: Virtual Internetwork-
ing on Overlay Infrastructure,” Proc. 2nd Int’l Symp.
Parallel and Distributed Processing and Applications,
LNCS 3358, Springer-Verlag, 2004, pp. 937-946.

7. R. Figueiredo, P. Dinda, and J. Fortes, “A Case for
Grid Computing on Virtual Machines,” Proc. 23rd
Int’l Conf. Distributed Computing Systems (ICDCS),
IEEE CS Press, 2003, pp. 550-559.

8. S. Adaballa et al., “From Virtualized Resources to
Virtualized Computing Grid: The In-VIGO System,”
J. Future-Generation Computing System, to appear.

9. A. Sundararaj, A. Gupta, and P. Dinda, “Dynamic
Topology Adaptation of Virtual Networks of Virtual
Machines,” Proc. 7th Workshop Languages, Compil-
ers, and Runtime Support for Scalable Systems, 2004,
http://www.tlc2.uh.edu/lcr2004/Final_Proceedings/
Sundararaj.pdf.

10. I. Krsul et al., “VMPlants: Providing and Managing
Virtual Machine Execution Environments for Grid
Computing,” Proc. IEEE/ACM Supercomputing,
IEEE CS Press, 2004, p. 7.

11. X. Jiang and D. Xu, “SODA: A Service-on-Demand
Architecture for Application Service Hosting Utility
Platforms,” Proc. 12th IEEE Int’l Symp. High-Per-
formance Distributed Computing (HPDC-12), IEEE
CS Press, 2003, pp. 174-183.

12. D.H.J Epema et al., “A Worldwide Flock of Condors:
Load-Sharing among Workstation Clusters,” J.
Future-Generation Computer Systems, vol. 12, no.
1, 1996, pp. 53-65.

Paul Ruth is a PhD candidate in the Department of
Computer Science at Purdue University and a
member of the Laboratory for Research in Emerg-
ing Network and Distributed Services (Friends).
His research interests include virtualization, high-

May 2005 69

performance computing, and Grid computing.
Ruth received a BS in computer science and math-
ematics from Baker University, Kansas. He is a
member of the IEEE. Contact him at ruth@cs.pur-
due.edu.

Xuxian Jiang is a PhD candidate in the Depart-
ment of Computer Science at Purdue University
and a member of the Laboratory for Research
in Emerging Network and Distributed Services
(Friends). His research interest is in virtualization-
based system security and distributed computing.
Jiang received an MS in computer science from
Xi’an Jiaotong University, China. He is a member
of the IEEE, the ACM, and Usenix. Contact him at
jiangx@cs.purdue.edu.

Dongyan Xu is an assistant professor in the Depart-
ment of Computer Science at Purdue University

and director of the Laboratory for Research in
Emerging Network and Distributed Services
(Friends). His research interest is in virtualization-
based distributed computing and system security.
Xu received a PhD in computer science from the
University of Illinois at Urbana-Champaign. He is
a member of the IEEE, the ACM, and Usenix. Con-
tact him at dxu@cs.purdue.edu.

Sebastien Goasguen is a research scientist and
director of the Grid and Distributed Computing
Group within the Department of Information
Technology at Purdue University. His research
interests include applied computational science,
parallel programming, virtual machines, and Grid
computing. Goasguen received a PhD in electrical
engineering from Arizona State University. He is a
member of the IEEE. Contact him at sebgoa@
purdue.edu.

