
Autonomic Live Adaptation of Virtual Computational Enviro nments in a
Multi-Domain Infrastructure

Paul Ruth, Junghwan Rhee, Dongyan Xu
Department of Computer Science

Purdue University
West Lafayette, IN 47907, USA
{ruth, rhee, dxu}@cs.purdue.edu

Rick Kennell, Sebastien Goasguen
Rosen Center for Advanced Computing

Purdue University
West Lafayette, IN 47907, USA
{linux, sebgoa}@purdue.edu

Abstract

A shared distributed infrastructure is formed by fed-
erating computation resources from multiple domains.
Such shared infrastructures are increasing in popularity
and are providing massive amounts of aggregated com-
putation resources to large numbers of users. Mean-
while, virtualization technologies, at machine and net-
work levels, are maturing and enabling mutually iso-
lated virtual computation environments for executing ar-
bitrary parallel/distributed applications on top of such a
shared physical infrastructure. In this paper, we go one
step further by supporting autonomic adaptation of vir-
tual computation environments as active, integrated en-
tities. More specifically, driven by both dynamic avail-
ability of infrastructure resources and dynamic applica-
tion resource demand, a virtual computation environ-
ment is able to automatically relocate itself across the
infrastructure and scale its share of infrastructural re-
sources. Such autonomic adaptation is transparent to
both users of virtual environments and administrators of
infrastructures, maintaining the look and feel of a sta-
ble, dedicated environment for the user. As our proof-
of-concept, we present the design, implementation, and
evaluation of a system called VIOLIN, which is com-
posed of a virtual network of virtual machines capable
of live migration across a multi-domain physical infras-
tructure.

1 Introduction

We have seen the emergence of shared distributed
infrastructures that federate, allocate, and manage het-
erogeneous resources across multiple network domains,

most notably PlanetLab [2] and the Grid [9, 8]. The
growth of these infrastructures has led to the availabil-
ity of unprecedented computational power to a large
community of users. Meanwhile, virtual machine tech-
nology [1, 5, 20] has been increasingly adopted on
top of such shared physical infrastructures [6], and has
greatly elevated customization, isolation, and adminis-
trator privilege for users running applications inside in-
dividual virtual machines.

Going beyond individual virtual machines, our pre-
vious work proposed techniques for the creation of vir-
tual distributed computation environments [10, 14, 15]
on top of a shared distributed infrastructure. Our vir-
tual computation environment, called a VIOLIN, is com-
posed of virtual machines connected by a virtual net-
work, which provides a layer separating the owner-
ship, configuration, and administration of the VIOLIN
from those of the underlying infrastructure. Mutually
isolated VIOLINs can be created for different users
as their “own” private distributed computation environ-
ment bearing the same look and feel of customized phys-
ical environments with administrative privilege (e.g.,
their own private cluster). Within VIOLIN, the user
is able to execute and interact with unmodified paral-
lel/distributed applications, and can expect strong con-
finement of potentially untrusted applications.

It is possible to realize VIOLIN environments as in-
tegrated, autonomic entities that dynamically adapt and
relocate themselves for better performance of the ap-
plications running inside. This all software virtualiza-
tion of distributed computation environments presents a
unique opportunity to advance the possibilities of auto-
nomic computing [21, 18]. The autonomic adaptation of
virtual computation environments is driven by two main
factors: (1) the dynamic, heterogeneous availability of
infrastructure resources and (2) the dynamic resource

needs of the applications running inside VIOLIN envi-
ronments. Dynamic resource availability may cause the
VIOLIN environment to relocate its virtual machines to
new physical hosts when current physical hosts experi-
ence increased workloads. At the same time, dynamic
applications may require different amounts of resources
throughout their execution. The changing requirements
can trigger the VIOLIN to adapt its resource capacity in
response to the application’s needs. Furthermore, the au-
tonomic adaptation (including relocation) of the virtual
computation environment istransparentto the applica-
tion and the user, giving the latter the illusion of a well-
provisioned, private, networked run-time environment.
To realize the vision of autonomic virtual environments
we address the following challenges:

First, we must provide the mechanisms for
application-transparent virtual environment adapta-
tion. In order to provide a consistent environment,
adaptation must occur without affecting the application
or the user. Currently, work has be done to enable
resource reallocation and migration within a local-area
network [4] and most current machine virtualization
platforms support migration. However, we still need
to determine how to migrate virtual machines across
a multi-domain environment without affecting the
application. The solution must keep the virtual machine
alive throughout the migration. Computation must
continue and network connections must remain open.
The necessary cross-domain migration facility requires
two features not yet provided by current virtualization
techniques. First, virtual machines need to retain the
same IP addresses and remain accessible through the
network when physical routers will not know where
they were migrated. Second, cross-domain migration
cannot rely on NFS to maintain a consistent view of the
large virtual machine image files. These files must be
transferred quickly across the network. Clearly, current
solutions are not yet adequate for multi-domain.

The second challenge is to defineallocation policies.
Our goal is to move beyond the limits of static alloca-
tion and provide autonomic environments that have the
intelligence to scale resource allocations without user in-
tervention. As such, we need to determine when a vir-
tual machine needs more CPU, which virtual machine
should be migrated, and where to migrate the virtual
machine when a host can no longer support the mem-
ory demands of its guests. Consequently, we must be
able to recognize the best destination could either be the
one to which we can quickly migrate or one with a long
migration time but more adequate resources.

The main contribution of this paper is the auto-

nomic adaptation capabilities of VIOLIN environments.
These environments retain the customization and iso-
lation properties of existing static VIOLINs, however,
they may be migrated to another host domain during
run-time. In this way we can make efficient use of avail-
able resources across multiple domains.

We have built a prototype adaptive VIOLIN system
using Xen [1] virtual machines and have deployed it over
the nanoHUB (www.nanohub.org) infrastructure. The
evaluation of the system shows that we are able to pro-
vide increased performance to several concurrently run-
ning virtual environments. To the best of our knowledge,
this is the first demonstration of an autonomic adaptive
virtual environment, using live application-transparent
migration with real-world parallel applications.

The remainder of this paper is organized as follows:
Section 2 describes the design of VIOLIN autonomic
virtual environments, Section 3 presents their real-world
deployment, Section 4 describes the experiments and
presents performance results, Section 5 compares our
study to related works, and Section 6 presents the pa-
per’s conclusions.

2 Autonomic Virtual Environments

In the VIOLIN system, each user is presented with an
isolated virtual computation environment of virtual ma-
chines connected by a virtual network. From the user’s
point of view, a virtual computation environment is a pri-
vate cluster of machines dedicated to that user. The user
does not know where the virtual machines reside. On
the other hand, the infrastructure sees the environments
as dynamic entities that can move through the infrastruc-
ture utilizing as much or as little resources as needed.

The components of the VIOLIN system can be seen
in Figure 1 and are described below:

• Enabling Mechanisms: The enabling mechanisms
include the VIOLIN virtual environments as well as
the monitoring daemonrunning on each physical
host. The VIOLIN environments provide an inter-
face to the user and applications, while themonitor-
ing daemonsmonitor the CPU and memory on each
host by querying the localvirtual machine moni-
tor (VMM) for resource availability and utilization
levels. In addition, the monitors can manipulate the
allocation of resources to local virtual machines.

• Adaptation Manager: The adaptation manager
queries themonitoring daemonsto form a global
view of all host resources available as well as the
utilization level of the allocated resources. With

Figure 1. Multiple VIOLIN environments sharing two hosts. Daemons on each host assist the
Adaptation Manager in monitoring and controlling resource allocation.

this information, theadaptation managercan dic-
tate resource reallocation including fine-grained
per-host CPU and memory adjustments, as well
as coarse-grained migration of virtual machines or
whole virtual environments without any user or ad-
ministrator involvement.

2.1 Enabling Mechanisms

Local Adaptation Mechanism. The adaptation
managercontrols all virtual machines through themon-
itoring daemons. VIOLIN environments use both mem-
ory ballooning and weighted CPU scheduling to achieve
fine-grained control over per-host memory and CPU al-
location. Both VMware [20] and Xen [1] enable mem-
ory ballooningwhich allows the VMM to change the
amount of memory allocated to each virtual machine
while the machine is running. At run-time, theadap-
tation managermay decide to modify the memory foot-
print and percentage of CPU allocated through the mon-
itoring daemons.

Multi-domain Adaptation Mechanism A key con-
tribution of VIOLIN to autonomic adaptation is the abil-
ity to reallocate resources to virtual machines by mi-
grating them live across networks. Live virtual machine
migration is the transfer of a virtual machine from one
host to another without pausing the virtual machine or
checkpointing the applications running within the vir-
tual machine. One of the major challenges of live migra-

tion is maintaining any network connections the virtual
machine may have open. Modern machine virtualiza-
tion mechanisms provide live virtual machine migration
within layer-2 networks [4]. VIOLIN lifts this limita-
tion by creating a virtual layer-2 network that tunnels
network traffic end-to-end between remote virtual ma-
chines. The virtual network appears to be an isolated
physical Ethernet LAN through which migration is pos-
sible. As the virtual machines move through the infras-
tructure, they will remain connected to their original vir-
tual network.

2.2 Adaptation Manager

The adaptation manageris the intelligent agent, or
“puppeteer” acting on behalf of the users and admin-
istrators and making autonomic reallocation decisions.
It is appointed two tasks: to compile a global system-
view of the available resources and to use this view to
transparently adapt the allocation of global resources to
virtual environments.

2.2.1 Infrastructure Resource Monitoring

The adaptation managermonitors the entire infras-
tructure by querying themonitoring daemonson each
host. Via the monitors, it maintains knowledge of all
available hosts in addition to the demands of applica-
tions running within the VIOLINs. Overtime both the

resources available in the shared infrastructure and the
VIOLIN’s utilization of resources will change. Hosts
may be added or removed and VIOLINs can be created,
destroyed, or enter periods of high or low CPU, memory,
or network usage.

2.2.2 Resource Reallocation Policy

The adaptation manager’sreallocation policy is
based on observed host resource availability and virtual
machine resource utilization. It uses a heuristic that aims
to dynamically migrate overloaded virtual machines be-
tween hosts within each domain, and, if that is not pos-
sible, migrate overloaded VIOLINs between domains in
the infrastructure. We do not attempt to find the optimal
allocation of resources to virtual machines. Instead, we
aim at incrementally increasing the performance of the
system while minimizing the number of virtual machine
migrations and the resulting overhead.

Intuitively, the policy determines a desired resource
level for each virtual machine and attempts to assign that
amount of resources to a virtual machine. If adequate
resources cannot be obtained locally, the virtual machine
may be migrated to another host or the whole VIOLIN
may be migrated to another domain.

Thedesired resource levelof each virtual machine is
determined by the amount of allocated CPU and mem-
ory as well as the amount of resources that are actually
being utilized. We wish to keep each virtual machine’s
resource utilization within a certain (predefined and con-
figurable) range. A utilization level outside of the ex-
pected range will cause theadaptation managerto in-
crease or decrease the virtual machine’s resource alloca-
tion.

The heuristic finds over- and under-utilized virtual
machines and attempts to adjust their allocations using
first the local host’s resources. If the local host cannot
support all of its currently hosted virtual machines, an
attempt is made to find another host within the domain
to which one or more virtual machines can be migrated.
The heuristic first looks at the hosts within the domain
that have the lowest utilization level. If no hosts can sup-
port the over-utilized virtual machine, the whole domain
is considered overloaded and an attempt is made to find
another domain which can support the resource needs of
one or more of the overloaded domain’s VIOLINs. If a
destination domain is found, VIOLINs will be migrated
live to hosts in that domain.

3 Implementation

We have implemented an adaptive VIOLIN sys-
tem prototype and have deployed the system on the
nanoHUB’s (www.nanohub.org) infrastructure. The
nanoHUB is an e-Science infrastructure running online
and on-demand Nanotechnology applications, and is our
“living lab”. Part of the nanoHUB allows students and
researchers to execute computational Nanotechnology
applications, including distributed and parallel simula-
tions, through either a web-based GUI or a VNC desk-
top session. The unique property of the nanoHUB is
that the back-end processing is heavily reliant on vir-
tualization. Users of the nanoHUB may, unknowingly,
be using VIOLIN environments that have the ability to
adapt resource allocation to the changing needs of their
simulations.

3.1 Deployment Details

Toward a full deployment, we have deployed multi-
ple adaptive VIOLINs on the nanoHUB’s multi-domain
infrastructure on the campus of Purdue University.

Host Infrastructure. The virtual machines are
hosted on two independent clusters on separate subnets.
One cluster is composed of 24 Dell 1750s each with
2GB of RAM and two hyper-threaded Pentium 4 pro-
cessors running at 3.06 GHz, while the other is 22 Dell
1425s each with 2GB of RAM and two hyper-threaded
Pentium 4 processors running at 3.00 GHz. Both clus-
ters support Xen 3.0 virtual machines and VIOLIN vir-
tual networking.

Virtual Environment Configuration. Each virtual
computation environment is composed of Xen virtual
machines connected by a VIOLIN network. Amongst
the virtual machines, one is a head node and the rest
are compute nodes. The head node provides users with
access to the VIOLIN environment and, as such, must
remain statically located within its original host domain.
However, all compute nodes are free to move through-
out the infrastructure as they remain connected via the
VIOLIN virtual network.

User accounts are managed by a shared Lightweight
Directory Access Protocol (LDAP) server and users
home directories are mounted to the local NFS server
with the head node acting as a NAT router for the iso-
lated compute nodes, giving a consistent system view to
all virtual machines regardless of the physical locations
of the virtual machines.

In order to migrate a virtual machine, the following
must be transferred to the destination host: a snapshot

of the root file system image, a snapshot of the current
memory, and the thread of control. Xen’s live migration
capability supports efficient transfer of the memory and
thread of control. It performs an iterative process that re-
duces the amount of time the virtual machine is unavail-
able to an almost unnoticeable level. However, Xen does
not support the migration of the root file system image.
Xen assumes that the root file system is available on both
the source and destination hosts -usually through NFS
which can not safely be made available between mul-
tiple domains. The shared infrastructure is composed
of independently administered domains which cannot
safely share NFS servers. In order to perform multi-
domain migrations, our prototype uses read-only root
images that can be distributed without having to be up-
dated. We do this by putting all system files that need
to be written to intmpfsfilesystems. Sincetmpfsfile
systems are resident in memory, Xen will migrate these
files with the memory. Initially, we thought of this so-
lution as a workaround to be fixed later, however, our
experience has demonstrated thattmpfscan be a reason-
able solution for a number of nanoHUB applications. In
addition to usingtmpfsfor system files, users home di-
rectories are NFS-mounted through the virtual network
to the nanoHUB server and do not need to be explicitly
transferred.

4 Experiments

In this section, we present several experiments that
show the feasibility of adaptive VIOLIN environments.
First, we measure the overhead of live migration of VIO-
LIN environments, then we demonstrate application per-
formance improvement due to autonomic live adaptation
of VIOLINs sharing a multi-domain infrastructure. For
all experiments we use the nanoHUB VIOLIN deploy-
ment, anadaptation manageremploying the heuristic
described in section 2.2.2, and the NEMO3D [12] paral-
lel atomic particle simulation as the application running
in the VIOLINs.

4.1 Migration Overhead

Objective. This experiment aims to find the over-
head of migrating an entire VIOLIN that is actively run-
ning a resource intensive application (individual virtual
machine migration overheads have been studied in [4]).
The overhead of live VIOLIN migration includes the ex-
ecution time lost due to the temporary down-time of the
virtual machines during migration, the time needed to
reconfigure the VIOLIN virtual network, and any linger-

 Execution Time
 Execution Time with Migration

 0

 200

 400

 600

 800

 1,000

 1,200

One millionHalf millionQuarter millionEighth million

T
im

e(
s)

NEMO3D problem size

Figure 2. Migration overhead caused by
live migration of entire VIOLIN virtual en-
vironments that are actively executing the
parallel application NEMO3D

ing effects such as network slowdown caused by packet
loss and the resulting TCP back-off.

Configuration. We use a VIOLIN composed of four
virtual machines. We execute NEMO3D with several
different problem sizes between 1/8 and 1 million par-
ticles. For each problem size, we record the execution
time with and without migrating the VIOLIN. During
the no-migration runs, the application is allowed to run
unimpeded. During each run involving migration, all
four virtual machines are simultaneously migrated live
across the network to destination hosts configured iden-
tically to the source hosts. In order to stress the system
and find the worst overhead possible, we choose the mi-
gration to occur at the most resource intensive period of
the application’s execution. During each run, there is no
background load in any of the hosts involved. However,
the network is shared and therefore incurs background
traffic.

Results. Figure 2 shows the results. We find that, re-
gardless of problem size, the run-time of the application
is increased by approximately 20 seconds (ranging from
17-25 seconds) when the VIOLIN is migrated.

Discussion. One requirement of adaptive VIOLIN
environments is that there should be little or no effect
on the applications due to adaptation. The 20 second
penalty would seem impossible considering that Xen
virtual machine migration requires the transfer of the
entire memory footprint (approximately 800MB per vir-
tual machine for an execution of NEMO3D simulating 1
million particles). However, Xen’s live migration mech-
anism hides the migration latency by continuing to run
the application in the virtual machine on the source host
while the bulk of the memory is being transferred. We

Figure 3. VIOLIN Adaptation Scenario 1.

do not measure the actual down-time of our virtual ma-
chines; however, Xen migration of a virtual machine
with 800MB of memory was found to have a 165ms
down-time when migrating within a LAN [4]. The ma-
jor effect on application performance is not due to the
migration itself but the time to reestablish the VIOLIN
virtual network plus application slowdownduring the
migration. This experiment shows that the penalty for
migrating a VIOLIN environment is relatively small and
does not escalate with increased virtual machine mem-
ory size.

4.2 VIOLIN Adaptation Scenario 1

Objective. The purpose of this experiment is to
demonstrate the effectiveness of theadaptation manager
and to show how a small amount of autonomic adapta-
tion can lead to better performance of all VIOLIN envi-
ronments that share the infrastructure.

Configuration. We launch five VIOLIN environ-
ments, each running the NEMO3D application with dif-
ferent input problem sizes (emulating independent VIO-
LINs used by different users). Each VIOLIN starts exe-
cuting the application at a different time. The shared in-
frastructure is comprised of two host domains. Domain
1 has six physical nodes while domain 2 has four physi-
cal nodes. The two domains are subsets of the two phys-
ical clusters in the nanoHUB. We do not yet have admin-
istrative privileges on any machines outside of Purdue’s

campus that can be used for these experiments, there-
fore we cannot experiment with truly wide-area infras-
tructures. However, the two domains that we are using
are on separate subnets.

The experiment compares the execution time of
NEMO3D within each VIOLIN with and without auto-
nomic resource reallocation enabled. When reallocation
is enabled, some VIOLINs will be migrated in accor-
dance with theadaptation manager’sheuristic in order
to balance the load and improve the performance of ap-
plications.

Results. Figure 3 is a time-line showing where each
VIOLIN environment is located at key time instances.
Figure 4 shows recorded NEMO3D execution time of
each VIOLIN with and without adaptation enabled.

Initially, for both runs, VIOLINs 1, 2, and 3 (referred
to as V1, V2, and V3) are executing their applications
and have been allocated significant portions of the host
domains (referred to as D1 and D2). Each virtual ma-
chine is using nearly 100% of its allotted CPU.

V2 is executing a smaller problem size and is running
alone in D2 so it finishes quickly. When V2’s finishes,
a load imbalance between the domains occurs. There
are 10 virtual machines in D1 that expect more CPU al-
location while there is no virtual machine in D2. The
imbalance triggers the migration of V1 to the hosts of
D2. This adaptation balances the load and allows the
virtual machines of both V1 and V3 to be allocated the
full resources of a single host.

No Adaptation
 Adaptation

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

O
ve

ra
ll

tim
e

A
ve

ra
ge

 ti
m

e

V
IO

LI
N

 5

V
IO

LI
N

 4

V
IO

LI
N

 3

V
IO

LI
N

 2

V
IO

LI
N

 1

T
im

e(
s)

Figure 4. VIOLIN Adaptation Scenario 1:
Execution time of applications running
within VIOLIN environments with and with-
out adaptation enabled.

It is important to note that although both remaining
VIOLINs have increased CPU allocation, V1 temporally
slows down during the migration. V3 will surely com-
plete its application sooner, but it remains to be seen if
the increased resource allocation to V1 can compensate
for the cost of migration.

After some time, V4 and V5 start their applications
and require significant resources (100% utilization). We
assume that both of these environments are new and
must be created to allow the non-adaptation case to have
some balance in load. Without this allowance, V4 and
V5 would have to remain where they were (potentially
within D1 creating an even larger advantage for the
adaptation case). In either case, the creation of V4 and
V5 causes both domains to be overloaded, however, the
load is balanced.

Next, V1 and V3 finish their applications. From Fig-
ure 4, we see that the migration of V1 allows V3 to finish
30% sooner than it would have otherwise, while V1 fin-
ishes in approximately the same amount of time due to
the additional cost it pays to migrate. Once V1 and V3
finish, the remaining VIOLINs (V4 and V5) are already
balanced in the adaptation case, while they are not in the
non-adaptation case.

The chart in Figure 4 shows the application execution
in each VIOLIN. For each VIOLIN, the execution time
is reduced by enabling autonomic adaptation. The last
two data points on the chart show theaverage timeand
overall timemetrics of the system. Theaverage timeis
the average execution time for all VIOLINs. In this ex-
ample, adaptation saves on the average 39% of the appli-
cation’s execution time. Theoverall timeis the duration
between the execution of the first VIOLIN and the com-

pletion of the last VIOLIN. Theoverall timegives us a
measure of the efficiency of resource usage. We see a
34% reduction inoverall timewith adaptation.

Discussion. Observe that during this experiment
nearly all of the VIOLINs benefit from adaptation even
though only one is migrated, suggesting that a small
amount of adaptation can lead to a large increase in both
application performance and resource utilization. In ad-
dition, heuristics that aim to balance load while mini-
mizing the cost of migration are likely to achieve satis-
factory performance without having to find the optimal
allocation of resources to virtual machines.

4.3 VIOLIN Adaptation Scenario 2

Objective. Whereas the previous example shows the
typical case where virtual environments are either being
heavily used or completely idle, the next example shows
how adaptation can benefit applications that go through
periods of high and low use during a single execution.
In this situation, we create a VIOLIN that initially uses
a high amount of CPU then moves to a stage in its appli-
cation that uses lower amounts of CPU.

Configuration. The configuration uses the same host
infrastructure as the previous example. However, the VI-
OLINs and their applications have changed. There are
now four VIOLINs, all of which execute the NEMO3D
application except for V1. V1 executes the high demand
NEMO3D followed by a less CPU intensive “dummy”
application. V1 is simulating 100% utilization followed
by a lower utilization that stabilizes within the desired
utilization range after the appropriate reduction in CPU
allocation.

Results. The time-line in Figure 5 and the chart in
Figure 6 show the resulting execution time of the ap-
plications with and without adaptation enabled. Ini-
tially, the load is balanced between the four VIOLINs
which are running on the two domains. After some time,
V3 completes its application and no longer requires re-
sources. Next V1 enters its second, less CPU intensive,
stage of its execution. In the new stage, V1’s utilization
of resources drops well below desired range. Its drop in
CPU allocation results in a load imbalance between the
two domains, forcing theadaptation managerto migrate
V2 to D1. The migration balances the load between do-
mains but causes an imbalance between the hosts of D1.
Since it is now possible for all six virtual machines from
V1 to be supported by only two of the available hosts,
they are migrated to the hosts left vacant by V2.

The results in Figure 6 show that V1 and V2 execute
in approximately the same amount of time while V3 and

Figure 5. VIOLIN Adaptation Scenario 2.

V4 show significantly lower execution time. With auto-
nomic reallocation enabled, theaverage timeandoverall
timeare decreased by 41% and 47%, respectively.

Discussion. From this experiment we see that it is
possible to obtain further improvement of performance
and efficiency by combining the fine-grained resource
reallocation mechanisms with the coarse-grained migra-
tion mechanisms. The adaptation manager is able to
identify virtual environments that experience a signif-
icant reduction in resource requirements. By scaling
down the CPU share allocated to individual virtual ma-
chines of V1, it opens the possibility of migrating V2
thus improving the performance seen by all VIOLINs.

No Adaptation
 Adaptation

 0

 500

 1,000

 1,500

 2,000

 2,500

O
ve

ra
ll

tim
e

A
ve

ra
ge

 ti
m

e

V
IO

LI
N

 4

V
IO

LI
N

 3

V
IO

LI
N

 2

V
IO

LI
N

 1

T
im

e(
s)

Figure 6. VIOLIN Adaptation Scenario 2:
Execution time of applications running
within VIOLIN environments with and with-
out adaptation enabled.

4.4 VIOLIN Adaptation Scenario 3

Objective. The final adaptation scenario shows how
the adaptation managerhandles multi-stage applica-
tions with memory requirements that change during ex-
ecution.

Configuration. In this example, the host infras-
tructure is limited to two domains each containing four
hosts. Again, the VIOLINs execute NEMO3D which
has two main stages, the first of which uses low amounts
of memory while the second uses larger amounts of
memory. During the execution, one of the VIOLINs
(V3) doubles its memory usage from 160MB to 300MB
when it transitions to the second phase of its execution.

Results. Figure 7 shows the time-line. Initially, V3 is
in the first phase of its execution which uses a relatively
low amount of memory (160MB). At this point, it is allo-
cated a sufficient amount of memory (200MB), however
its memory utilization is outside of the defined range.
Theadaptation managerdetermines that it needs to in-
crease the memory allocation to the virtual machines
in V3 in order to bring their utilization within the de-
sired range. Theadaptation managersets the desired
amount of memory to 400MB which cannot be satisfied
by the hosts currently supporting the virtual machines.
Theadaptation manageris forced to move virtual ma-
chines and decides to migrate V1 to D2 allowing for the
increase in V3’s memory allocation. When V3’s appli-
cation reaches its second phase, its memory usage in-
creases from 160MB to 300MB. Due to the adaptation,
V3 has the memory it needs. Without adaptation the
application would have crashed due to lack of available
memory. In addition, when V3’s application completes
its second phase, it returns its excess memory, allowing
V4 to be created.

Figure 7. VIOLIN Adaptation Scenario 3.

Discussion. We recognize that any application can
attempt to allocate an arbitrary amount of memory at any
time and that we cannot predict this without knowledge
of the particular application. For example, if V3’s ap-
plication needed to allocate 1GB of memory we would
not have been able to support its request. The use of
swap space would allow jobs to continue to run without
enough allocated memory. A current limitation of our
implementation is the lack of migration of virtual ma-
chine file systems, including swap partitions. Our future
research will include file system migration which will
allow swap partition migration, allowing us to monitor
and adapt memory usage without any hard limits that
may cause application failure.

5 Related Works

Currently, most techniques for federating and man-
aging wide-area shared computation infrastructures ap-
ply meta-scheduling of Grid resources as in Globus [7],
Condor [19], and In-VIGO [22]. All of these solutions
provide access to large amounts of computational power
without incurring the cost of full ownership. However,
common to all of these systems is that arbitrary paral-
lel/distributed applications cannot run unaltered through
these systems and jobs run on nodes over which the
users do not have administrative control.

In-VIGO is a distributed Grid environment support-
ing multiple applications that share resource pools. The
In-VIGO resources are virtual machines. When a job is

submitted, a virtual workspace is created for the job by
assigning existing virtual machines to execute it. Dur-
ing the execution of the job, the virtual machines are
assigned to the user who has access to his or her unique
workspace through the NFS-based distributed virtual file
system. Provided with In-VIGO is an automatic virtual
machine creation service called VMPlant [13]. VMPlant
is used to automatically create custom root file systems
to be used in In-VIGO workspaces. In-VIGO is part of
the nanoHUB deployment and can be made to use VIO-
LIN environments in the back-end.

Virtual networking is a fundamental component of
VIOLIN. The available machine virtualization tech-
niques do not supply advanced virtual networking facil-
ities. UML, VMware, and Xen all provide networking
services by giving the virtual machines real IP addresses
from the host network. PlanetLab [2] uses a technique
to share a single IP address among all virtual machines
on a host by controlling access to the ports. These tech-
niques allow virtual machines to connect to a network
but do not create a virtual network. Among the network
virtualization techniques are VIOLIN, VNET [16], and
SoftUDC [11], all of which create virtual networks of
virtual machines residing on distributed hosts. Of par-
ticular interest and relevance is VNET, which supports
adaptation of network resources [17].

Cluster-on-Demand (COD) [3] allows dynamic shar-
ing of resources between multiple clusters. COD real-
locates resources by using remote-boot technologies to
reinstall preconfigured disk images from the network.
The disk image that is installed determines which clus-
ter the nodes will belong to upon booting. In this way
COD can redistribute the resources of a cluster among
several logical clusters sharing those resources.

6 Conclusion

We have presented the design and implementation
of adaptive VIOLIN virtual environments on top of a
multi-domain shared infrastructure. Using our adapta-
tion mechanisms and policies, virtual computation envi-
ronments can move through the multi-domain shared in-
frastructure and adapt to the needs of their applications
and availability of infrastructure resources. Theadap-
tation manageracts on behalf of the users and infras-
tructure administrators to dynamically control the allo-
cation of resources to the virtual environments. Our ex-
periments with deployment of VIOLIN in the nanoHUB
have shown significant improvement in application per-
formance and resource utilization.

7 Acknowledgments

We would like to thank the anonymous reviewers for
their constructive comments and suggestions. This work
was supported in part by NSF Grants OCI-0438246,
OCI-0504261, and CNS-0546173.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In
ACM SOSP, 2003.

[2] A. Bavier, M. Bowman, B. Chun, D. Culler,
S. Karlin, S. Muir, L. Peterson, T. Roscoe,
T. Spalink, and M. Wawrzoniak. Operating System
Support for Planetary-Scale Network Services. In
USENIX NSDI, 2004.

[3] J. Chase, D. Irwin, L. Grit, J. Moore, and S. Spren-
kle. Dynamic Virtual Clusters in a Grid Site Man-
ager. InIEEE HPDC, 2003.

[4] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migra-
tion of Virtual Machines. InUSENIX NSDI, 2005.

[5] Jeff Dike. User-Mode Port of the Linux Kernel. In
Proceedings of the USENIX Annual Linux Show-
cases and Conference, 2000.

[6] R. Figueiredo, P. Dinda, and J. Fortes. A Case
for Grid Computing on Virtual Machines. InIEEE
ICDCS, 2003.

[7] I. Foster and C. Kesselman. Globus: A metacom-
puting infrastructure toolkit.International Journal
of Supercomputer Applications, 11(2), 1997.

[8] I. Foster, C. Kesselman, and S. Tuecke. The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations.International Journal of Supercom-
puter Applications, 15(3), 2001.

[9] I. Foster and C. Kesselmann. Globus: A toolkit-
based grid architecture.The Grid: Blueprints for
a New Computing Infrastructure, pages 259–278,
1999.

[10] X. Jiang and D. Xu. VIOLIN: Virtual Internet-
working on OverLay INfrastructure. Technical re-
port, Purdue University, July 2003.

[11] M. Kallahalla, M. Uysal, R. Swaminathan,
D. Lowell, M. Wray, T. Christian, N. Edwards,
C. Dalton, and F. Gittler. SoftUDC: A Software-
Based Data Center for Utility Computing.IEEE
Computer, 37(11):38–46, 2004.

[12] G. Klimeck, F. Oyafuso, T. Boykin, R. Bowen,
and P. von Allmen. Development of a Nanoelec-
tronic 3-D (NEMO 3-D) Simulator for Multimil-
lion Atom Simulations and Its Application to Al-
loyed Quantum Dots.CMES 2002, 3(5):601–642,
2002.

[13] I. Krsul, A. Ganguly, J. Zhang, J. Fortes, and
R. Figueiredo. VMPlants: Providing and Manag-
ing Virtual Machine Execution Environments for
Grid Computing. InSupercomputing, 2004.

[14] P. Ruth, X. Jiang, D. Xu, and S. Goasguen. Virtual
Distributed Environments in a Shared Infrastruc-
ture. IEEE Computer, 38(5):63–69, May 2005.

[15] P. Ruth, P. McGachey, and D. Xu. VioCluster: Vir-
tualization for Dynamic Computational Domains.
In IEEE CLUSTER, 2005.

[16] A. Sundararaj and P. Dinda. Towards Virtual Net-
works for Virtual Machine Grid Computing. In
Virtual Machine Research and Technology Sympo-
sium, pages 177–190, 2004.

[17] A. Sundararaj, A. Gupta, and P. Dinda. Increasing
Application Performance In Virtual Environments
Through Run-time Inference and Adaptation. In
IEEE HPDC, 2005.

[18] G. Tesauroa, D. Chess, W. Walsh, R. Das, A. Se-
gal, I. Whalley, J. Kephart, and S. White. A Multi-
Agent Systems Approach to Autonomic Comput-
ing. In AAMAS, 2004.

[19] D. Thain, T. Tannenbaum, and M. Livny. Dis-
tributed Computing in Practice: The Condor Ex-
perience.Concurrency and Computation: Practice
and Experience, 2004.

[20] VMware. http://www.vmware.com.

[21] S. White, J. Hanson, I. Whalley, D. Chess, and
J. Kephart. An Architectural Approach to Auto-
nomic Computing. InIEEE ICAC, 2004.

[22] J. Xu, S. Adabala, and J. Fortes. Towards Auto-
nomic Virtual Applications in the In-VIGO Sys-
tem. InIEEE ICAC, 2005.

