
vPipe: One Pipe to Connect Them All!
Sahan Gamage, Ramana Kompella, Dongyan Xu

Department of Computer Science, Purdue University
{sgamage,kompella,dxu}@cs.purdue.edu

Abstract

Many enterprises use the cloud to host applications such
as web services, big data analytics and storage. One
common characteristic among these applications is that,
they involve significant I/O activities, moving data from
a source to a sink, often without even any intermediate
processing. However, cloud environments tend to be vir-
tualized in nature with tenants obtaining virtual machines
(VMs) that often share CPU. Virtualization introduces a
significant overhead for I/O activity as data needs to be
moved across several protection boundaries. CPU shar-
ing introduces further delays into the overall I/O process-
ing data flow. In this paper, we propose a simple abstrac-
tion called vPipe to mitigate these problems. vPipe intro-
duces a simple “pipe” that can connect data sources and
sinks, which can be either files or TCP sockets, at the vir-
tual machine monitor (VMM) layer. Shortcutting the I/O
at the VMM layer achieves significant CPU savings and
avoids scheduling latencies that degrade I/O throughput.
Our evaluation of vPipe prototype on Xen shows that
vPipe can improve file transfer throughput significantly
while reducing overall CPU utilization.

1 Introduction
Cloud computing platforms such as Amazon EC2 sup-
port a large number of real businesses hosting a wide va-
riety of applications. For instance, several popular com-
panies (e.g., Pinterest, Yelp, NetFlix) host large-scale
web services and video streaming services on the EC2
cloud. Many enterprises (e.g., Foursquare) also use the
cloud for running analytics and big data applications us-
ing MapReduce framework. Companies such as Drop-
Box also use the cloud for storing customers’ files. While
these applications are quite diverse in their semantics,
they share one common characteristic: They all involve
significant amount of I/O activities, moving data from
one I/O device (source) to another (sink). The source or
sink can be either the network or the disk, and typically
varies across applications as shown in Table 1. Although
an application may sometimes process or modify the data
after it reads from the source and before it writes to the
sink, in many cases, it may merely relay the data without
any processing.

Meanwhile, cloud environments use virtualization to
achieve high resource utilization and strong tenant iso-
lation. Thus, cloud applications/services are executed in
virtual machines that are multiplexed over multiple cores

Application Data Source Data Sink
Web server hosting static files Disk TCP socket

User uploading a file to a service TCP socket Disk

Local file backup service Disk Disk

Web proxy server TCP socket TCP socket

Table 1: I/O sources and sinks for typical cloud applica-
tions.

of physical machines. Further, there is a lot of variety
in the CPU resources offered to individual VMs. For
instance, Amazon EC2 supports small, medium, large
and extra large instances, which are assigned 1, 2, 4 and
8 EC2 units respectively, with each EC2 unit roughly
equivalent to a 1GHz core [1]. Since modern commodity
cores run at 2-3 GHz, a core may be shared by more than
one instance.

Now, imagine running the aforementioned I/O inten-
sive applications in such CPU-sharing instances in the
cloud. For concreteness, let us focus on a simple web
application that receives an HTTP request from a client
which results in reading a file from the disk and then
writing it to a network socket. The flow of data, as shown
in Figure 1(a), involves reading the file’s data blocks into
the application after they cross the VMM and the guest
kernel boundaries, and then writing them into the TCP
socket causing the data to pass again through the same
protection boundaries before reaching the physical NIC.

There are two main problems with this simple data
flow model. First, transferring data across all the pro-
tection layers incurs significant CPU overhead, which
affects the cloud provider (provision more CPU for
hypervisor) as well as the tenant (costs more for the
job). Using zero-copy system calls such as mmap() and
sendfile() in the guest VM, as shown in Figure 1(b),
would clearly reduce the copy overhead to some extent,
but not by much, since the major portion of the overhead
(e.g., interrupts, protection domain switching) is actu-
ally incurred when data crosses the VMM-VM boundary.
Second, and perhaps more importantly, because of CPU
sharing with other VMs, this VM may not always be
scheduled, which will introduce delays in the data flow
resulting in significant degradation of performance.

In this paper, we propose a new abstraction called
vPipe to address both problems, i.e., eliminate CPU
overhead and reduce I/O processing delay, in virtual-
ized clouds with CPU sharing. The key idea of vPipe

VM

NIC
Disk

VMM

User

Kernel

NIC
Disk

VMM

User

Kernel

Web server

VM

NIC
Disk

VMM

User

Kernel

Web server

VM

(a) read-write (b) sendfile (c) vPipe

VM

Web server

Data flow
Command/metadata flow

Data moving operation

Figure 1: I/O data flow for the web server example.

is to empower the VMM to directly “pipe” data from the
source to the sink without involving the guest VM, as
shown in Figure 1(c). As can be observed from the fig-
ure, vPipe incurs fewer copies across protection bound-
aries, and completely eliminates the more costly VMM-
VM data transfer overhead, thereby reducing CPU us-
age significantly which in turn saves money for both the
cloud provider and the tenant. Furthermore, because the
VMM is often running in a dedicated core, any schedul-
ing latencies experienced by the guest VM due to CPU
sharing have virtually no impact on the I/O performance.

While the idea of vPipe makes intuitive sense, real-
izing it is not that straightforward. More specifically,
the meta information regarding the source and sink of
a “vPipe” resides in the VM context; we need to create
a new interface to enable the application to, with support
of the guest kernel, pass this information to the VMM
and instruct it to create the source-sink pipe. For exam-
ple, the VM needs to de-reference the file blocks and es-
tablish the TCP socket which can then be passed down
to the VMM layer for establishing the pipe. For applica-
tions that insert new data into the data stream, there needs
to be sufficient flexibility in vPipe to allow the VMM and
VM to assume control of the pipe. For example, HTTP
responses are typically framed within an HTTP response
header; thus the web server first needs to write the HTTP
response to the sink and then call vPipe to transfer con-
trol to the VMM layer to pipe the file to the TCP socket,
and then transfer the control back (e.g., to keep the con-
nection alive for persistent HTTP).

We address these challenges in a proof-of-concept
implementation of a simple disk-to-network vPipe in
Xen/Linux (though we have not yet addressed chal-
lenges in developing other three types of pipes—disk-
to-disk, network-to-disk and network-to-network). Our
micro-benchmark evaluation, which involves transfer-
ring a 1GB file from a server (VM) to a client, shows that
vPipe achieves up to 2.4× throughput improvement com-
pared with the default file transfer program not leverag-
ing vPipe. Our evaluations also show that vPipe reduces
the overall CPU utilization by 38%. A vPipe-enabled

version of Lighttpd [2] improves throughput by 3.9×
over the baseline implementation when sending static
files to a client.

2 Design
The key idea behind vPipe is to create an I/O data “short-
cut” at the VMM layer when an application needs to
move data from one I/O device to another. We essentially
expose a new library call vpipe file() similar to the
UNIX sendfile() to enable applications to create and
manage this I/O shortcut. Implementing this new sys-
tem call (shown in Figure 2) requires support at the guest
kernel and the VMM layers, which are provided by two
main components: (1) vPipe-vm for support in the guest
kernel; and (2) vPipe-drv for support in the driver domain
(VMM layer). Coordination across the driver domain-
VM boundary is achieved with the help of the standard
inter-domain channels (e.g., Xen uses ring buffers and
event channels) that exist in any virtualized host.

Initially, when we activate vPipe from inside the VM,
the vPipe-vm module registers a special device in the
system, /dev/vpdev, that facilitates communication be-
tween the user-level process and the guest kernel via
ioctl(). This step is designed to prevent introducing
a new system call which would in turn require modi-
fications to the guest kernel. In the driver domain, we
initialize vPipe-drv by interacting with the block device
emulation layer (e.g., loop device) in the driver domain
to locate the VM image files (virtual disks) and then al-
locate a set of block device descriptors corresponding to
them. It also pre-allocates a set of pages for each VM
that are going to be used as a page cache for vPipe oper-
ations. A per-VM kernel thread pool (shown in Figure 2)
is created to carry out different operations concurrently.

The main steps involved in vPipe-enabled I/O are
as follows: First, the application running inside the
VM invokes the vpipe file() call with source and
sink file/socket descriptors and blocks1 until it is com-
pleted. Second, the vPipe-vm component validates the
file/socket descriptors and de-references them to obtain
the corresponding semantic information (e.g., block ids,
socket structures) that is then passed on to the driver do-
main. Third, the vPipe-drv component uses this semantic
information and performs the actual “piping” operation.
Finally, upon completion, the driver domain component
notifies the guest OS with information about the data
transfer through the inter-domain channel. The guest OS
then passes the notification back to the application un-
blocking the call.

While vPipe exposes a single unified system call to
connect between various types of sources and sinks (just
like the UNIX interface), we currently support only TCP
sockets and files on the disk as data sources/sinks.

1We can also implement a non-blocking version of this.

VM

NIC

Driver domain
vPipe channel

Shared
pages

VM TCP
stack

VM file
system

vPipe VM
component

User processes

System call interface

Offloaded
TCP

sockets

Virtual
disk driver
backend

User space

Kernel space

vPipe driver domain component

Per-VM worker threadpools

Disk

Figure 2: vPipe architecture.

2.1 TCP Connection
If the vPipe source/sink is an established TCP connec-
tion, we offload the entire TCP connection to the driver
domain by supplying essential socket details (such as IP
addresses, ports and sequence numbers) and letting the
TCP stack at the driver domain perform TCP processing
as long as vPipe exists. Note that less drastic solutions
such as the guest VM fabricating placeholder TCP pack-
ets ahead of time that are filled with data in the driver do-
main are not that advantageous, since congestion control
and other TCP processing needs to happen at the driver
domain anyway, otherwise the benefit of shortcutting is
completely lost. Thus, it is better to pass down the entire
TCP socket to the driver domain, and then pass it back
up once the vPipe operation is done.

Read/Write on a TCP socket: In preparation for vPipe-
enabled network I/O, we first use the guest OS virtual file
system (VFS) to translate the file descriptor to the socket
structure. We then check whether the VM has any ear-
lier sent packets that have not been acknowledged, and
wait until all of them are acknowledged. This is very im-
portant because, if there is a packet loss, we will not be
able to recover the lost packet once the socket is taken
over by the driver domain. We then collect the socket in-
formation (TCP 4-tuple, sequence numbers and conges-
tion control information) from the corresponding kernel
socket data structure. We reuse congestion control in-
formation from the VM’s socket to initialize the vPipe
socket at the driver domain, instead of re-starting it from
slow start. This information is then passed on to vPipe-
drv.

Upon receiving this information, vPipe-drv creates a
TCP socket using the driver domain’s TCP stack. How-

ever, we do not use system calls such as connect() on
this socket; we instead instantiate the kernel socket struc-
ture of the new socket using the original connection’s
meta-data from vPipe-vm. We then add it to the TCP
hash table to allow look-ups using the TCP 4-tuple of in-
coming packets. There is an additional issue we need to
address: We need to add a static route entry in the driver
domain’s IP routing table to route the packets to local
TCP/IP stack if the packets match the 4-tuple described
above, otherwise they will go directly to the guest VM.
Finally, we mark the socket as “established”, which in-
forms the driver domain’s TCP stack that the socket is
ready to receive packets. vPipe will then perform stan-
dard socket operations and use pages pre-allocated as
buffers to perform socket read/write.

2.2 File on Disk
If the vPipe source/sink is a file, similar to the socket,
we use VM’s file system to obtain meta-data about the
file data blocks and transfer this information to the driver
domain where either the reading or writing of the data
blocks is carried out. Unlike TCP packets, file meta-data
is stored separately from the actual data, in the form of
separate disk blocks (e.g., inode blocks). Once the meta-
data is passed on from the VM level, it is straightforward
for the driver domain to access the corresponding file by
simply following the mapping between the files and their
disk blocks.
Reading from a file When the source is a file, vPipe-vm
will first locate the file’s inode using the file descriptor. It
then uses file system-specific functions and device infor-
mation from the inode to obtain file data block identifiers.
This information is then encapsulated in a vPipe custom
data structure–along with number of bytes to read and
offset of the first byte to transfer–and passed to the driver
domain via the communication channel.

Once vPipe-drv receives this information and the
block device identifier (in case the VM uses several im-
age files), it uses this block device identifier to locate
the block device descriptor it has already opened during
the initialization phase. vPipe-drv then prepares a set of
block I/O operation descriptors using a pre-allocated set
of pages and the block identifiers supplied by vPipe-vm
and submit them to the emulated block device. The batch
size of the block I/O operations depends on the queue
length of the emulated block device. We also supply a
call-back function in this block I/O descriptor, so that
we can send out the data blocks as soon as the emulated
block device completes the read.
Writing to a file This operation involves either creat-
ing a new file or appending to an existing file. In both
cases, the file system needs to manipulate the file map-
ping information. This is done by vPipe-vm requesting
the guest file system to create or update the inode for the

new data blocks, with an empty set of data blocks. This
will generate a new set of block identifiers which will be
transferred to vPipe-drv where the actual writing of the
data blocks will be performed.

2.3 Connecting the Dots
When vPipe-drv receives a vPipe request from the VM,
it creates a “pipe descriptor” associated with that opera-
tion. This descriptor contains meta-data describing each
source/sink and two functions: a read actor which imple-
ments one of the above read strategies and a write actor
which implements one of the write strategies depending
on the source and the sink. A free thread is picked up
from the thread pool and this thread will call the read ac-
tor using the source’s meta-data. As data returns from
the source, the thread will call the write actor to output
the data using the meta-data of the sink.

2.4 Fair Access to Driver Domain
vPipe poses one more challenge: Since the actual I/O op-
erations are performed by vPipe-drv, we should “charge”
the work done by the worker threads in the driver do-
main (Figure 2) to the VMs requesting vPipe-enabled
I/O. Lack of driver domain access accounting and control
will lead to unfairness among the requesting VMs. To
address this problem we propose a simple credit-based
system. Each VM-specific thread pool in the driver do-
main is allocated a certain amount of credits based on
the priority (weight) of the VM. As the threads execute,
they consume the allocated credits based on the amount
of bytes transferred. When the credits run out, the corre-
sponding worker threads will wait for a timer task to add
more credits to them.

3 Implementation
We have implemented a partial prototype of vPipe on
Xen 4.1 as the virtualization platform and Linux 3.2 as
the kernel of VMs and the driver domain. Our prototype
currently does not support file write operations.

vPipe-vm is implemented as a loadable kernel mod-
ule. Since it uses standard Linux VFS functions already
exposed to kernel modules to manipulate file descriptors
and sockets, it requires no changes to the guest kernel.
This makes it very attractive for customers, since no ker-
nel recompilation is required for using vPipe.

We add a similar loadable kernel module in Xen’s
driver domain to implement vPipe-drv. However we
have to make a few small changes in the main kernel code
such as adding special functions to create offloaded sock-
ets and adding static routes (discussed in Section 2). We
implement the driver domain-VM communication chan-
nel as a standard Xen device with a ring buffer and an
event channel.

4 Preliminary Evaluation
Testbed setup We use two identical hosts—one as a
server equipped with vPipe and the other as client in our
experiments. Each host has a 3GHz Intel Xeon quad-
core CPU, 16GB of memory and runs Xen 4.1.2 as the
VMM and Linux 3.2 as the OS for all of the VMs and
driver domain. In the server, we pin the driver domain to
one of the cores. During experiments involving multiple
VMs, we pin all the VMs to another core to demonstrate
CPU sharing. Also, we use lookbusy tool [3] to keep
the CPU utilization of the VMs at specific levels.

 0

 20

 40

 60

 80

 100

 120

1 2 3 4

T
h
ro

u
g
h
p
u
t

(M
B

p
s)

Number of VMs

read−write
sendfile
vPipe

Figure 3: File transfer throughput improvement.

File transfer throughput We use a simple application
that reads from a file on the disk and writes it to a socket
connection with a client. The file transfer is performed in
the three I/O modes shown in Figure 1. Figure 3 shows
the throughput improvements achieved by vPipe trans-
ferring a 1GB file when the VM running the applica-
tion is co-located with 0, 1, 2, and 3 other VMs. When
only the application’s VM is running on the core, all
three modes can reach the full available bandwidth of
the 1Gbps link. As the number of VMs sharing the core
increases, throughput drops for both read-write and send-
file modes. However, since vPipe offloads the processing
of the entire I/O operation to the driver domain, through-
put remains the same regardless of the number of VMs
sharing the core.

CPU utilization Figure 4(a) shows the overall average
CPU utilization of both the driver domain and the VM
when sending the 1GB file. As expected, the VM’s CPU
utilization for read-write mode is the highest since it re-
quires copying data across all layers. The sendfile()
system call eliminates the kernel to user-land copying
and hence, the VM CPU utilization is less compared to
the read-write mode. Finally, vPipe incurs the least CPU
utilization at VM level since there is no work to be done
in the VM context once the operation is offloaded to the
driver domain.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

rea
d−

writ
e

sen
dfil

e
vpipe

C
P

U
 U

ti
li

za
ti

o
n
 (

%
)

VM
dom0

(a) Overall CPU utilization

 0

 10

 20

 30

 40

 50

 60

 70

rea
d−

writ
e

sen
dfil

e
vpipe

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

other
blkback
vpipe_worker
neback
loop

(b) Driver domain CPU utiliza-
tion

Figure 4: CPU utilization.

With vPipe offloading I/O processing task to the driver
domain, we would expect that the driver domain CPU
utilization for vPipe mode be the highest. (Somewhat)
surprisingly, this is not the case as shown in Figure 4(a).
Figure 4(b) shows the breakdown of CPU utilization of
the driver domain kernel threads involved in I/O process-
ing for the VM. We see that the CPU utilization for loop
thread, which is responsible for reading blocks from the
VM image (block device emulation), is similar for all
three modes. The netback thread, which is responsible
for emulating the network device for the VM takes up
about 20% utilization for read-write and sendfile modes.
Also the blkback thread, which emulates the disk for the
VM, takes about 7-9% utilization in these two modes.
Those threads are not a factor in vPipe mode, because
neither the disk data related to the file transfer is read into
the VM nor network packets are sent out from the VM,
thus saving a total of around 29% of CPU. However, the
vPipe worker thread incurs about 19% CPU utilization
because it has to read data blocks from the disk and send
them out using the offloaded socket; the net CPU saving
using vPipe is therefore about 10-12%.

 0

 10

 20

 30

 40

 50

 60

 70

 80

1MB 10MB 100MB 1GB

T
h

ro
u

g
h

p
u

t
(M

B
p

s)

File Size

sendfile
vPipe

(a) 3VMs sharing the core

 0

 10

 20

 30

 40

 50

 60

 70

 80

1MB 10MB 100MB 1GB

T
h

ro
u

g
h

p
u

t
(M

B
p

s)

File Size

sendfile
vPipe

(b) 4VMs sharing the core

Figure 5: Lighttpd throughput.

Lighttpd performance Lighttpd is a highly scal-

able lightweight web server that we adapt to use
vPipe. To do so, we just replace “sendfile()”
with “vpipe file()” in the Lighttpd source code.
Figure 5(a) and Figure 5(b) show the average I/O
throughput reported by httperf for different file sizes,
when the VM running Lighttpd is co-located with 2 and
3 other VMs, respectively. While Lighttpd using vPipe
shows throughput improvement for all file sizes tested,
improvement for larger files tends to be higher (up to
3.4× in 3-VM configuration and up to 3.9× in 4-VM
configuration). For smaller files, the overhead of of-
floading the connection and the file block information to
the driver domain affects the overall time, and hence the
throughput improvement is comparatively less than that
for large files.

5 Related Work
Several prior works focus on reducing the overhead as-
sociated with device virtualization. For instance, Menon
et al. propose several optimizations such as packet co-
alescing, scatter/gather I/O checksum offload, and of-
floading device driver functionality [11, 13, 12]. Sim-
ilarly, Gordon et al. propose exit-less interrupt deliv-
ery mechanisms to alleviate interrupt handling overhead
[6, 8] in virtualized systems, where I/O events are passed
to the VM without exiting to the hypervisor. Ahmed et
al. propose virtual interrupt coalescing for virtual SCSI
controllers [4], based on the number of in-flight com-
mands to the disk controller. Virt-FS [9] presents a para-
virtulized file system, which allows sharing driver do-
main’s (or hosts) file system with VMs causing mini-
mal overhead. While these techniques have been proved
quite effective in reducing the virtualization overhead,
they cannot fundamentally eliminate it. Instead, vPipe
aims at avoiding the overhead by performing I/O at the
VMM layer.

Offloading I/O operations to improve performance is a
very well studied area. In [7] the authors discuss the idea
of offloading common middleware functionality to the
hypervisor layer to reduce the guest/hypervisor switches.
In contrast, vPipe introduces shortcutting at the I/O level
and hence applies to a broader class of cloud applica-
tions. In [14] the authors discuss offloading TCP/IP stack
to a separate core. vSnoop [10] and vFlood [5] miti-
gate the impact of VMs’ CPU access delay on TCP by
offloading acknowledgement generation and congestion
control to the driver domain respectively. They however
only focus on improving TCP send and receive through-
put but not on improving the performance of more gen-
eral I/O.

6 Conclusions and Future Work
We presented vPipe, a new I/O interface for applications
in virtualized clouds. vPipe mitigates virtualization-

related performance penalties by shortcutting I/O opera-
tions at the VMM layer. Our evaluation of a partial vPipe
prototype shows that vPipe can improve file-to-network
I/O throughput while reducing CPU utilization. vPipe
also requires minimal modifications to existing applica-
tions such as web servers and facilitates a simple deploy-
ment.

Our current prototype does not support all four
source/sink combinations shown in Table 1. We are
addressing new challenges in developing a full-fledged
vPipe. Another area vPipe can be improved is to make
use of cached disk pages at the VM-level instead of re-
reading them from the disk when the source is a file. We
are also improving the accounting accuracy of vPipe op-
erations on behalf of hosted VMs. Finally, We will port
more applications such as Hadoop, NFS to show the ease
of using vPipe and to evaluate the performance gain for
those applications.

7 Acknowledgments
We thank the anonymous reviewers for their insightful
comments. This work was supported in part by US NSF
under Awards 0855141, 1054788, and 1219004. Any
opinions, findings, and conclusions or recommendations
in this paper are those of the authors and do not neces-
sarily reflect the views of the NSF.

References
[1] Amazon EC2 instance types. http://aws.amazon.com/ec2/
instance-types/.

[2] Lighttpd web server. http://www.lighttpd.net/.
[3] lookbusy – a synthetic load generator. http://www.devin.
com/lookbusy/.

[4] AHMAD, I., GULATI, A., AND MASHTIZADEH, A. vIC: Inter-
rupt coalescing for virtual machine storage device IO. In USENIX
ATC (2011).

[5] GAMAGE, S., KANGARLOU, A., KOMPELLA, R. R., AND XU,
D. Opportunistic flooding to improve TCP transmit performance
in virtualized clouds. In ACM SOCC (2011).

[6] GORDON, A., AMIT, N., HAR’EL, N., BEN-YEHUDA, M.,
LANDAU, A., SCHUSTER, A., AND TSAFRIR, D. ELI: bare-
metal performance for I/O virtualization. In ACM ASPLOS
(2012).

[7] GORDON, A., BEN-YEHUDA, M., FILIMONOV, D., AND DA-
HAN, M. VAMOS: virtualization aware middleware. In WIOV
(2011).

[8] GORDON, A., HAR’EL, N., LANDAU, A., BEN-YEHUDA, M.,
AND TRAEGER, A. Towards exitless and efficient paravirtual
I/O. In SYSTOR (2012).

[9] JUJJURI, V., HENSBERGEN, E. V., AND LIGUORI, A. VirtFSa
virtualization aware file system pass-through. In OLS (2010).

[10] KANGARLOU, A., GAMAGE, S., KOMPELLA, R. R., AND XU,
D. vSnoop: Improving TCP throughput in virtualized environ-
ments via acknowledgement offload. In ACM/IEEE SC (2010).

[11] MENON, A., COX, A. L., AND ZWAENEPOEL, W. Optimizing
network virtualization in Xen. In USENIX ATC (2006).

[12] MENON, A., SCHUBERT, S., AND ZWAENEPOEL, W. Twin-
Drivers: semi-automatic derivation of fast and safe hypervisor
network drivers from guest OS drivers. In ACM ASPLOS (2009).

[13] MENON, A., AND ZWAENEPOEL, W. Optimizing TCP receive
performance. In USENIX ATC (2008).

[14] SHALEV, L., SATRAN, J., BOROVIK, E., AND BEN-YEHUDA,
M. IsoStack: Highly efficient network processing on dedicated
cores. In USENIX ATC (2010).

