
BusMonitor: A Hypervisor-Based Solution for
Memory Bus Covert Channels

Brendan Saltaformaggio, Dongyan Xu, Xiangyu Zhang
Department of Computer Science, Purdue University

West Lafayette, Indiana 47907, USA
{bsaltafo, dxu, xyzhang}@cs.purdue.edu

ABSTRACT
Researchers continue to find side channels present in cloud
infrastructure which threaten virtual machine (VM) isola-
tion. Specifically, the memory bus on virtualized x86 sys-
tems has been targeted as one such channel. Due to its
connection to multiple processors, ease of control, and im-
portance to system stability the memory bus could be one of
the most powerful cross-VM side channels present in a cloud
environment. To ensure that this critical component cannot
be misused by an attacker, we have developed BusMonitor,
a hypervisor-based protection which prevents a malicious
tenant from abusing the memory bus’s operation. In this
paper we investigate the dangers of previously known and
possible future memory bus based side channel attacks. We
then show that BusMonitor is able to fully prevent these
attacks with negligible impact to the performance of guest
applications.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Design, Experimentation, Security

Keywords
Covert channel, security, virtualization

1. INTRODUCTION
Recent research has show that on virtualized x86 plat-

forms many cross-VM side channels exist and can be read-
ily exploited by malicious tenants. The x86 architecture’s
processor to main memory communication bus, known as
the memory bus, has become the medium of one such side
channel. In this paper, we analyze the dangers posed by al-
lowing tenant VMs to control the memory bus’s operation.
We study the performance and security implications of a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSec’13 April 14 2013, Prague, Czech Republic
Copyright 2013 ACM 978-1-4503-2120-4 ...$15.00.

malicious tenant’s abuse of the memory bus, and during our
experimentation we find that these attacks are severe enough
to justify the development of a defensive countermeasure.

To this end, we have designed BusMonitor, a hypervisor-
based protection which prohibits a malicious tenant from
using the memory bus as a cross-VM side channel. Based
on the knowledge gained from our attack investigation, Bus-
Monitor is designed to effectively partition the memory bus’s
operation between VMs. This prevents any misuse of the
memory bus to form a cross-VM side channel. By mitigating
this powerful side channel, BusMonitor also protects against
covert channels which use the memory bus for communica-
tion. Further, we show that BusMonitor is customizable and
introduces negligible overhead to real world applications.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the motivation behind this work and surveys
related work. We then analyze the dangers of the memory
bus side channel attacks in Section 3. Section 4 describes
the design of BusMonitor and how it achieves the desired
protection. In Section 5 we evaluate the correctness of Bus-
Monitor’s design, how effectively it protects against our pre-
vious attacks, and any overhead that BusMonitor induces.
Finally, in Section 6 we discuss future work and conclude.

2. RELATED WORK AND MOTIVATION
This work was originally motivated by the discovery made

by Wu et al. [14] that the memory bus on virtualized x86
systems is an ideal candidate for transmitting data between
VMs covertly. Previous research had shown that covert
channels could exist in a cloud environment [8] [15] [16], but
the covert channel in [14] was the first to achieve bit-rates
above the threshold suggested by the Trusted Computer Sys-
tem Evaluation Criteria [1]. We believe that this discovery
(and resulting covert channel) is both extremely dangerous
to cloud computing security but also easily solvable.

Previous work on cross-VM side channels has heavily tar-
geted the processor’s cache. Zhang et al. [17] were able to
extract portions of cryptographic keys from a coresident VM
by measuring the processor’s L1 cache. Ristenpart et al. [8]
developed a cache-based side channel which could detect
coarse-grained information about a coresident VM. Later,
Zhang et al. [16] used the processor cache to detect cores-
idency in a hosted cloud. More relevant to this work, Xu
et al. [15] demonstrated that the L2 cache could be used to
establish a covert channel between VMs.

To defend against these cache-based channels, Page [7]
and Kong et al. [4] both proposed cache partitioning tech-
niques to disallow VM cache line sharing. This is most rel-

evant to our work because it attempts to deny VMs access
to the “physical layer” of the communication channel. Wang
and Lee proposed two methods of cache randomization to
prevent cache-based side hannels [11] [12]. NoHype [3] tries
to prevent side channel attacks by assigning only one VM
per CPU core. However, since the memory bus is shared
among all CPUs in a system, this cannot protect against
the attacks shown in this paper. The sHype architecture [9]
supports assigning only certain VMs to an entire hypervi-
sor. This would prevent hardware based side channels, but
a cloud provider cannot know a priori if one VM poses a
threat to coresident customers.

We consider these defenses complimentary to the research
presented here. Since side channels are often highly hard-
ware and architecture specific, no single defensive measure
will secure a cloud environment from all or most forms of
side channel attack. To the best of our knowledge, this pa-
per represents the first attempt to defend against memory
bus based cross-VM attacks.

3. DANGERS OF MEMORY BUS ABUSE
The memory bus on the x86 platform is the main com-

munication channel between the processors and main mem-
ory. Because this connection is shared among all processors,
contention over its use can negatively affect the performance
of an entire system. To minimize this bottleneck, modern
CPUs rely heavily on local data caches in an attempt to
handle data locally as often as possible. In most cases, this
drastically improves the performance of the system because
the access times for data fetches from a local cache are sig-
nificantly faster than from main memory.

Besides the initial fetch to fill a cache line, there is only one
reason that a processor would intentionally perform opera-
tions against main memory: an atomic instruction. Atomic
instructions are assembler directives which instruct a proces-
sor to perform an operation with“exclusive use of any shared
memory” [2]. These instructions are most often used to im-
plement semaphores or other parallel computing primitives
(e.g. bit test and set). Further, these operations must be
performed against main memory - ignoring the processor’s
local caches and temporarily locking access to the memory
bus.1

Since memory bus contention is pivotal to overall system
performance, one may assume that any instruction which
monopolizes its use must be a privileged instruction. Unfor-
tunately, this is not the case. On all modern x86 systems
atomic instructions are executable from any privilege level,
thus allowing an attacker with minimal privileges to induce
system-wide memory access latency. This small oversight in
privilege requirement has now led to a very real security risk.
In the remainder of this section we investigate how danger-
ous an attacker’s malicious misuse of atomic instructions can
be.

3.1 The Covert Agent
Wu et al. originally discovered in [14] that memory access

latency caused by locking the memory bus could be lever-
aged to form a high bit-rate covert channel. The sender

1The implementation of the memory bus locking feature is
architecture specific and has changed drastically over various
versions of Intel processors. Wu et al. performed a detailed
analysis of these changes and documented the important
differences in [14].

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 10 20 30 40 50 60 70 80 90 100

T
ic

ks
 p

er
 M

ea
su

re
m

en
t (

S
ig

na
l)

Measurement

Without BusMonitor
With BusMonitor

Figure 1: Covert Channel Receiver Measurements.

transmits bits by locking the memory bus and causing la-
tency to assert a “high” signal or allowing latency to stay
low. The receiver then measures the memory access latency
to detect the signal. The authors also chose to implement
three key link layer features which influence the bit-rate
and reliability of their covert channel: receiving confirma-
tion, clock synchronization, and error correction. In order
to fully understand the severity and practicality of such a
covert channel, we had to recreate it.

We chose to simplify the channel design by only imple-
menting clock synchronization. To help lower error rates we
encode each data packet as opposed to the entire bit string.
This localizes the effect of bit errors (i.e. channel noise caus-
ing an erroneous change in signal assertion) to only a single
packet.

Our channel transmits an input bit string S as follows. S
is partitioned into packets and each is encoded using Differ-
ential Manchester coding [13]. To transmit the signal over
the physical layer the sender performs atomic instructions
repeatedly for a set period of time t. The receiver then mea-
sures the signal being asserted (i.e. delay when accessing
main memory) by counting the number of atomic instruc-
tions (α) that can be performed in t time. If α is below the
observed threshold then the receiver can assume that the
channel’s signal is being asserted high. Figure 1 shows the
memory access delay (signal) observed by the receiver dur-
ing one of our experiments. The link layer on the receiver’s
side then decodes the signal and reassembles the packets.
More detail on the construction and operation of the covert
channel can be found in [14].

3.2 Channel Performance
Using this channel design, we were able to recreate, verify,

and partially surpass the results reported in [14]. Our ex-
perimental setup consists of two Ubuntu 12.04 VMs running
on an Ubuntu 12.04 KVM hypervisor [5]. One of these VMs
serves as the attacker controlled VM which listens on the
covert channel for data transmission. The other VM serves
as the victim VM which the attacker infiltrates and executes
the transmitting side of the channel. Like the covert chan-
nels presented in [14], [15], and others, our attacker only
needs to execute code as an unprivileged user in either VM
to successfully perform the data exfiltration.

We find that when choosing a packet size that keeps the
error rate in an acceptable range, our channel is nearly 1.5
times as fast as the channel in [14]. This is mainly due to
our choice not to implement error correction, which requires
sacrificing up to 50% of channel bandwidth to parity bits.
In turn, we experience higher error rates than the channel

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 8 16 24 32 40 48 56 64
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
an

dw
id

th
 (

B
ps

)

E
rr

or
 R

at
e

Packet Size (bytes)

Bandwidth
Error Rate

Figure 2: Covert Channel Experimentation Results.

presented in [14], specifically when packet size is chosen to
be very large.

Among all configurations we tested, we consider the op-
timal packet size to be 15 bytes which yields a bandwidth
of 146 bytes per second with only an 11% error rate, but
this parameter should be configured depending on the use
case. With this setup, our channel has a bandwidth 56%
higher than the optimal case (i.e. in-house noiseless) covert
channel experiments in [14]. Our error rates are higher, but
not unacceptable for most applications. Further, we could
still choose to apply Forward Error Correction coding to our
channel and due to our higher bandwidth, maintain a higher
data throughput than achieved in [14]. The average metrics
that were observed over 100 experimental runs are shown in
Figure 2.

3.3 A Performance Degradation Attack
Besides the covert channel, we found that the memory

bus can be misused to perform an additional cross-VM at-
tack: Performance degradation. As we have seen, the covert
channel induces a noticeable slow down in memory access
time in coresident VMs. Intuitively, an attacker could also
induce this slow down to drastically impair the memory ac-
cess times of coresident VMs and degrade the performance
of all VMs sharing the physical server.

We again take on the role of an attacker to show the ex-
treme danger posed by allowing an unprivileged guest VM to
abuse the memory bus’s operation. To perform this attack,
we modified the covert channel design to lock the memory
bus as frequently as possible. Again this requires no special
permissions, only unprivileged code execution in an attacker
owned VM. By constantly locking the memory bus, the at-
tacker can cause all coresident VMs to experience prolonged
delays when accessing physical memory.

To measure how locking the memory bus could degrade
system-wide performance we conducted memory bandwidth
benchmarking on our experimental setup from Section 3.2.
In these experiments one VM serves as the attacker con-
trolled VM which runs the memory bus locking attack code.
In the victim VM we run the memory bandwidth bench-
marking suite bandwidth [10]. bandwidth is configured to
perform random 128-bit memory reads to fill a buffer of
varying sizes. Figure 3a shows the resulting memory band-
width seen by the victim VM with and without an attacker
present. From this we observe that the attack degrades
memory bandwidth by over 70%.

3.4 The More You Move, The Faster You Sink
The degree to which a coresident VM feels the effects

of this attack depends on the workload of the victim VM.
Since modern processors strive to perform memory opera-
tions against a local cache, the victim may only use the
memory bus occasionally to fill the cache. However if the
victim is frequently performing operations which invalidate,
overwrite, or bypass the processor’s cache - such as the ran-
dom memory reads performed by bandwidth - then poor
memory bus performance will lead to poor overall system
performance.

We analyze the practicality of this attack and its effects
by repurposing the same experimental setup from before.
For these experiments we use the same attacker controlled
VM and install a web-server on the victim VM. In experi-
ments one and two the victim serves requests for a 750 KB
file (e.g. a static web-page) and a 3 MB PDF file for down-
load respectively. In our third experiment, the victim web-
server serves requests for a website that performs 1000 local
MySQL queries to generate an 800 KB webpage file. This
third experiment models a webpage with dynamic content
such as a blog or social media.

Table 1 shows the average results over 200 iterations of
these three experiments. Most notably in experiment three
the attacker is able to degrade the victim web-server’s re-
sponse time by up to 21%. Intuitively, the more work the
web-server has to perform per request the more detrimental
the memory bus contention is. Specifically in experiment
three the web-server employs multiple programs to service
a single request which requires repeatedly filling the proces-
sor’s local cache from physical memory. Not surprisingly,
experiment three shows the greatest vulnerability to this at-
tack. Further, it is not hard to imagine a targeted attack
situation where a 20% decrease in server responsiveness may
be very costly for a company or organization.

This result is more concerning because this experiment is
favorable for the victim. As mentioned previously, one of the
main reasons a processor will be forced to use the memory
bus is to fill its local cache. In our experiment we ran only
two VMs but in a production environment there would be
many more VMs sharing a physical server. More VMs being
scheduled on a server means more opportunity for the cache
to be invalidated - causing many more fetches from main
memory over the memory bus. This would only cause more
contention and delays for VMs attempting to access main
memory and being blocked by our attacker.

4. BUSMONITOR
As our investigation in Section 3 shows, in virtualized x86

systems the misuse of atomic instructions has introduced an
extreme security risk. We feel that fault lies in processor
design and the only complete solution is to require elevated
privilege to execute atomic instructions. Indeed it is not
uncommon for operating systems to export semaphore func-
tionality via system calls, and since this is the primary use of
atomic instructions most applications should be unaffected
by the change. In the case of virtualization, we envision a
trap to the hypervisor being implemented to prevent (pos-
sibly malicious) guest VMs from locking the memory bus.

4.1 Design
BusMonitor is a hypervisor based module which both pre-

vents a malicious tenant from abusing the memory bus’s op-
eration and protects the memory bandwidth of the system
as a whole. It is necessary for the entire BusMonitor mod-

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 2 4 8 16 32 64 128

M
em

or
y

B
an

dw
id

th
 (

G
B

/s
)

Fill Buffer Size (MB)

No Attacker
With Attacker

(a) Without BusMonitor.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 2 4 8 16 32 64 128

M
em

or
y

B
an

dw
id

th
 (

G
B

/s
)

Fill Buffer Size (MB)

No Attacker
With Attacker

(b) With BusMonitor.

Figure 3: Memory Bandwidth Degradation.

ule to reside in the hypervisor to ensure that it cannot be
tampered with by a malicious guest VM. In this section we
describe the design of BusMonitor and how it achieves the
desired memory bus protection described above.

BusMonitor is built on the notion that an atomic instruc-
tion in one guest VM should not lock all guest VMs out of
memory. The Intel SDM states that an atomic instruction
has “exclusive use of any shared memory” [2], and modern
processors enforce this by locking the system-wide memory
bus. However in a virtualized system the entire main mem-
ory bank is not shared. Like processes in an operating sys-
tem, the hypervisor ensures that each guest VM is given
an isolated partition of the memory space. In the pres-
ence of memory deduplication, an atomic instrucion modifies
writeable data pages which will not be marked for cross-VM
sharing. This means that the memory address being ma-
nipulated by an atomic instruction is only valid and reach-
able by a single VM. Therefore only the processors/cores
belonging to that VM must be locked from memory when
an atomic instruction is executed. BusMonitor implements
this relaxation of the hardware specification from within the
hypervisor.

BusMonitor is designed to intercept atomic instructions
performed within the guest VMs. To do this we first lo-
cate and replace each atomic instruction with a trap to the
hypervisor. This is done with the help of KVM’s shadow
paging. With shadow paging, the guest cannot directly add
page table entries. Guest updates are made to fake guest
page tables then propagated to KVM’s shadow page tables
during page faults. The processor uses the shadow page ta-
bles during guest execution. Since the hypervisor must be
invoked to add or change page table entries, we use this
opportunity to scan pages for atomic instructions. These
instructions are then replaced with traps to the hypervisor.

When the hypervisor intercepts this trap, it pauses the
guest’s virtual CPU cores (vCPUs) and executes the original
instruction without asserting the memory bus lock. Since
the guest’s vCPUs are paused, no other memory operations
can be performed by this guest while the hypervisor is em-
ulating the atomic instruction. This preserves the expected
semantics of the original atomic instruction. This also pro-
vides that the memory bus is not locked by the atomic in-
struction and thus cannot be used as a side channel.

4.2 Implementation
BusMonitor consists of two components: A page fault

hook and a trap handler. We chose KVM [5] as our hyper-

visor platform, but BusMonitor’s design is generic enough
to be easily implemented as a module for any existing hy-
pervisor that supports shadow paging. The components re-
quire no modification to the underlying hypervisor code-base
other than the insertion of function calls to invoke BusMon-
itor’s execution.

The page fault hook component is responsible for remov-
ing atomic instructions from guest code. In virtualized x86
systems, the hypervisor intercepts all page faults generated
by the guest VMs. The use of shadow page tables ensures
that a page fault is generated whenever guest page tables
are changed. We leverage this ability to “prescreen” pages
from the hypervisor in our page fault hook component. On
each page fault that the guest generates, our hook code as-
sesses the cause of the page fault using a configurable list
of policies.2 If the page fault meets the current set of poli-
cies then BusMonitor disassembles the page’s content and
replaces every atomic instruction with a trap to the hyper-
visor. The replaced atomic instructions are then registered
with the trap handler component and our hook returns ex-
ecution to the hypervisor.

The guest then executes normally until it encounters one
of our inserted traps. This allows the hypervisor to inter-
cept execution and invoke our trap handler component. The
trap handler first checks if the guest is trying to execute a
previously registered atomic instruction. If so, the trap han-
dler acquires a guest specific semaphore, pauses any running
vCPUs assigned to that guest, and executes the instruc-
tion without asserting the memory bus lock. When the in-
struction completes, the vCPUs are restarted, semaphore
released, and execution is returned to the guest VM.

5. EVALUATION
The evaluation of BusMonitor in this section is threefold.

First, we are interested in the correctness of our implemen-
tation. This is because we are emulating a very specific
function which is normally performed entirely by hardware

2For our experiments these policies include “Page fault
caused by an instruction fetch” and “Address is not in ker-
nel space”. The policy “Page fault caused by an instruc-
tion fetch” restricts BusMonitor to only operate on guest
code pages. Additionally, we ignore atomic instructions in
the guest’s kernel because the system calls which export
semaphore and lock functionality are composed of many in-
structions. Thus an attacker repeatedly calling these system
calls could not lock the memory bus rapidly enough to per-
form any of the attacks from Section 3.

Table 1: Web-server Performance Degradation Experiment
No Attacker, No BusMonitor With Attacker, No BusMonitor Attacker With BusMonitor

Serves Transfer Rate Avg. Time Transfer Rate Avg. Time Degradation Transfer Rate Avg. Time Degradation
750KB Static Webpage 50 MB/s 15 ms 46 MB/s 17 ms 8% 50 MB/s 15 ms 0%
3MB PDF Download 72 MB/s 44 ms 63 MB/s 50 ms 14.2% 72 MB/s 45 ms 2%
800KB Dynamic Webpage 50 MB/s 850 ms 45 MB/s 1031 ms 21% 50 MB/s 854 ms <1%

- processor instructions are assumed to be correct and so
our implementation must meet that standard. Second, we
must show that our design completely protects against the
attacks demonstrated in Section 3. Finally, we will show
that any performance penalty introduced by BusMonitor is
negligible and only experienced in very rare situations in the
real world.

5.1 Semantic Correctness
Before evaluating the usual benchmarks (protection effec-

tiveness, performance overhead, etc.), we first need to show
that BusMonitor correctly emulates the atomicity of the re-
placed atomic instructions. If BusMonitor did not correctly
implement exclusive access to the guest VM’s memory then
it would introduce a very non-obvious race condition: The
execution of two vCPUs interleaving within BusMonitor’s
emulation code. To ensure that this is not the case, we need
to evaluate the correctness of our atomic instruction emula-
tion.

BusMonitor allocates a semaphore for each guest VM.
When a guest atomic instruction is intercepted, this semaphore
is acquired before pausing the guest’s other vCPUs and em-
ulating the atomic instruction. This ensures that only one
vCPU of that VM can be executing BusMonitor’s emulation
code at a time. Further, since the guest vCPUs are paused
after acquiring the guest’s semaphore this ensures that the
emulated atomic instruction is given exclusive access to the
guest’s memory.

To perform a more empirical evaluation, we designed a
race condition inducing application and ran it inside a guest
VM. This application used a locked increment instruction
to update a shared semaphore (written entirely in assem-
bler directives) between as many vCPUs as available. If
BusMonitor’s atomic instruction emulation was faulty then
this code would suffer from the typical read-update-rewrite
race condition. Over millions of iterations of the application
locking and unlocking the semaphore, never were two vCPUs
inside the protected code section at the same time. Further,
we used hardware debug registers to guarantee that Bus-
Monitor’s traps were executed concurrently from multiple
vCPUs. In this case as well, BusMonitor paused the guest’s
vCPUs, emulated the atomic instruction, and resumed the
guest sequentially for every trap it handled. The result is
that only one atomic instruction per guest VM can update
memory at a time.

5.2 Protection
With the correctness of our emulation demonstrated, we

returned to our previous memory bandwidth test to deter-
mine the effectiveness of BusMonitor’s protection. The key
security advantage that BusMonitor provides is that when
one guest VM executes an atomic instruction no measurable
effects can be seen in coresident VMs. With BusMonitor’s
protection now in place, this attack should be able to affect
the system’s memory bandwidth.

We reran the evaluation presented in Section 3.3, using
bandwidth to measure the victim VM’s memory bandwidth.
The only difference between this test and our previous runs
of this experiment is that now BusMonitor is intercepting all
atomic instructions. As Figure 3b shows, the attack had no
effect on the (no longer) victim VM’s memory bandwidth.
This is because the victim VM’s memory transactions are
not suspended due to a locked memory bus. The attacker
VM continues to attempt to execute atomic instructions but
now BusMonitor is intercepting and emulating them without
asserting the memory bus lock.

Not surprisingly, BusMonitor also prevented the covert
channel from transmitting any data. Despite no modifica-
tion, the sending side of the covert channel cannot cause a
measurable difference in the receiver’s memory access time.
As Figure 1 shows, with BusMonitor enabled the receiver is
no longer able to detect a signal. While BusMonitor does
perform the expected atomic operation correctly, it renders
the covert channel useless because no signal can be asserted
or detected.

5.3 Performance Overhead
Finally, we assert that the performance overhead induced

by BusMonitor is negligible for real world applications. This
is because the amount of overhead that BusMonitor intro-
duces is specific to each guest application and not the system
as a whole. Thus one application being heavily instrumented
by BusMonitor causes no additional overhead for coresident
VMs. This is shown in our experiment with bandwidth from
Section 5.2. The attacker’s memory bus locking process
is being constantly intercepted by BusMonitor’s replaced
atomic instruction traps. However, this causes no distur-
bance to the victim VM as it tests the memory bus band-
width. A guest VM will experience overhead proportional to
the number of atomic instructions that only it performs.

Overhead caused by BusMonitor’s trap handler is entirely
application dependent. If an application does not use atomic
instructions then the trap handler will never be invoked.
Naturally, compared to executing only a single (dangerous)
instruction, BusMonitor’s trap handler does incur a signif-
icant performance penalty. However, in real-world appli-
cations we find that the use of atomic instructions is quite
infrequent. We performed a scripted disassembly and search
of our development workstation’s /bin directory and found
only 106 out of 1916 applications containing any occurrences
of atomic instructions. Again, this is because atomic instruc-
tions are primarily used only to implement semaphores and
shared variables.

The overhead from BusMonitor’s page fault hook compo-
nent is both configurable and application specific. Its execu-
tion is regulated via the configurable policy list to only run
when necessary. When a page does need to be“screened”the
little overhead caused by the page fault hook is amortized
over the lifetime of the application.

To illustrate the amortization of BusMonitor’s overhead

on a real world application (and further demonstrate its ef-
fective protection) we revisit the victim web-server test case
from Section 3.4. As Table 1 shows, the attacker is now un-
able to degrade the victim web-server’s response time. Like
before, this is because the attacker’s atomic instructions are
unable to lock the memory bus with BusMonitor installed.
Also, we see that BusMonitor causes very little overhead to
any of the three test setups. For test case three, the victim
web-server shows less than a 1% slowdown. This is due to
the fact that test three requires much more time to process
each request. Thus the one-time overhead of BusMonitor’s
page fault hook component is much less noticeable.

6. CONCLUSION
As we have shown, the memory bus can be misused as a

dangerous cross-VM side channel. The covert channel pre-
sented in Section 3 is capable of transmitting data “under
the radar” of any current protection measures. Further we
have shown that memory bus misuse can significantly de-
grade the performance of coresident VMs. Together these
attacks justify the need for BusMonitor. The experiments
in Section 5 proved that BusMonitor is able to prevent the
attacks which exploited the memory bus side channel. Addi-
tionally, it was shown that BusMonitor introduced negligible
overhead to the guest VMs.

However, BusMonitor is not a complete solution. As men-
tioned previously, the memory-bus based side channel is a
result of an oversight in processor design. We believe that
a more complete solution would be to partition the memory
bus’s operation via hardware by improving the architecture’s
design. Such a hardware based solution would introduce
less overhead than BusMonitor and provide a finer-grained
protection which is not possible in a purely software-based
solution.

The authors admit that a known limitation of BusMon-
itor is the identification of atomic instructions in memory.
Currently, BusMonitor does not handle obfuscated or self-
modifying binaries. We leave the addition of a more complex
conservative disassembler [6] as future work on this project.

As cross-VM side channels gain more attention from the
research community, it will become imperative that cloud
vendors adopt defensive measures to protect clients. The
attacks in this paper are both practical and relatively sim-
ple to implement, which leads to the concern that unknown
side channels may still exist. In the future, we hope that hy-
pervisor and processor designs will incorporate protections
against such attacks.

Acknowledgment
We thank the anonymous reviewers for their insightful com-
ments. This research was supported, in part, by the US
NSF under award 0855141 and by DARPA under Contract
12011593. Any opinions, findings, and conclusions in this
paper are those of the authors only and do not necessarily
reflect the views of NSF or DARPA.

7. REFERENCES
[1] Department of Defense. TCSEC: Trusted computer

system evaluation criteria. Technical Report
5200.28-STD, 1985.

[2] Intel Corporation. Intel architecture software
developer manual. http:

//www.intel.com/content/www/us/en/processors/

architectures-software-developer-manuals.html,
2012.

[3] E. Keller, J. Szefer, J. Rexford, and R. Lee. Nohype:
virtualized cloud infrastructure without the
virtualization. In Proc. 37th ACM International
Symposium on Computer Architecture, pages 350–361,
2010.

[4] J. Kong, O. Aciicmez, J. Seifert, and H. Zhou.
Hardware-software integrated approaches to defend
against software cache-based side channel attacks. In
Proc. IEEE 15th International Symposium on High
Performance Computer Architecture, pages 393–404,
2009.

[5] KVM. http://www.linux-kvm.org, 2012.

[6] S. Nanda, W. Li, L.-C. Lam, and T.-c. Chiueh. Bird:
Binary interpretation using runtime disassembly. In
Proc. 2006 Symposium on Code Generation and
Optimization, 2006.

[7] D. Page. Partitioned cache architecture as a
side-channel defence mechanism. IACR Cryptology
ePrint Archive Report, 280, 2005.

[8] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds. In Proc. 16th
ACM Conference on Computer and Communications
Security, pages 199–212, 2009.

[9] R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. Perez,
S. Berger, J. L. Griffin, and L. van Doorn. Building a
mac-based security architecture for the xen
open-source hypervisor. In 21st Annual Computer
Security Applications Conference, 2005.

[10] Z. Smith. Bandwidth: a memory bandwidth
benchmark. http://zsmith.co/bandwidth.html.

[11] Z. Wang and R. Lee. Covert and side channels due to
processor architecture. In Proc. 22nd Annual
Computer Security Applications Conference, pages
473–482, 2006.

[12] Z. Wang and R. Lee. A novel cache architecture with
enhanced performance and security. In Proc. 41st
IEEE/ACM International Symposium on
Microarchitecture, pages 83–93, 2008.

[13] J. Winkler and J. Munn. Standards and architecture
for token-ring local area networks. In Proc. 1986 ACM
Fall Joint Computer Conference, pages 479–488, 1986.

[14] Z. Wu, Z. Xu, and H. Wang. Whispers in the
hyper-space: High-speed covert channel attacks in the
cloud. In Proc. 21st USENIX Security Symposium,
2012.

[15] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen,
and R. Schlichting. An exploration of l2 cache covert
channels in virtualized environments. In Proc. 3rd
ACM Workshop on Cloud Computing Security, pages
29–40, 2011.

[16] Y. Zhang, A. Juels, A. Oprea, and M. Reiter.
Homealone: Co-residency detection in the cloud via
side-channel analysis. In Proc. 2011 IEEE Symposium
on Security and Privacy, pages 313–328, 2011.

[17] Y. Zhang, A. Juels, M. Reiter, and T. Ristenpart.
Cross-vm side channels and their use to extract private
keys. In Proc. 2012 ACM Conference on Computer
and Communications Security, pages 305–316, 2012.

