
FACE-CHANGE: Application-Driven Dynamic Kernel View Switching
in a Virtual Machine

Zhongshu Gu, Brendan Saltaformaggio, Xiangyu Zhang, Dongyan Xu

Department of Computer Science and CERIAS, Purdue University, West Lafayette, IN, USA, 47907-2107
{gu16, bsaltafo, xyzhang, dxu}@cs.purdue.edu

Abstract—Kernel minimization has already been established
as a practical approach to reducing the trusted computing
base. Existing solutions have largely focused on whole-system
profiling – generating a globally minimum kernel image that
is being shared by all applications. However, since different
applications use only part of the kernel’s code base, the
minimized kernel still includes an unnecessarily large attack
surface. Furthermore, once the static minimized kernel is
generated, it is not flexible enough to adapt to an altered
execution environment (e.g., new workload). FACE-CHANGE
is a virtualization-based system to facilitate dynamic switching
at runtime among multiple minimized kernels, each customized
for an individual application. Based on precedent profiling
results, FACE-CHANGE transparently presents a customized
kernel view for each application to confine its reachability
of kernel code. In the event that the application exceeds this
boundary, FACE-CHANGE is able to recover the missing code
and backtrace its attack/exception provenance to analyze the
anomalous behavior.

Keywords-Attack Surface Minimization; Attack Provenance;
Virtualization;

I. INTRODUCTION

Modern operating systems strive to shrink the size of the

trusted computing base (TCB) to ease code verification and

minimize trust assumptions. For a general-purpose operating

system (OS) like Linux, kernel minimization has already

been established as a practical approach to reducing attack

surface. But existing approaches [1]–[4] have a number of

problems:
Coarse-Grained Profiling: In order to eliminate unnec-

essary code from the kernel, one must identify the kernel

code that is required to support the multiple applications

within a system. The conventional approach is to generate

typical workloads and measure all active kernel code in

a training session. Profiling is performed on the whole

system and does not distinguish between the requirements

of different applications [1]. This approach is well suited for

generating a customized kernel for a static, special-purpose

system (e.g., an appliance or embedded system). But for

a general-purpose operating system supporting a variety of

applications, whole-system profiling unnecessarily enlarges

the kernel attack surface of the system.

In practice, we observe that kernel code executed under

different application contexts varies drastically. Our experi-

ments show that two distinct applications may share as little

as 33.6% of their executed kernel code – thus system-wide

kernel minimization would over-approximate both applica-

tions’ kernel requirements. For example, the kernel function-

ality needed by task manager top is to read statistics data

from the memory-based proc file system and write to the tty

device. In sharp contrast, the Apache web server primarily

requires network I/O services from the kernel. If we profile

a system running top and Apache simultaneously, we will

expose the kernel’s networking code to top simply because

Apache is in the same environment. Further, assume top is

the target of a malicious attack, the compromised top may

be implanted with a parasite network server as a backdoor

without violating the minimized kernel’s constraint.

Flexibility to Adapt to Runtime Changes: The output of

traditional kernel minimization approaches is a static kernel

image customized for a specific workload. However, it is

nearly impossible to cover all execution paths within an

application’s code to trigger every possible kernel request.

Even when leveraging automatic test case generation tech-

niques [5]–[7], profiling may still suffer from the path cover-

age problem for large programs. Insufficient profiling may

lead to an underestimation of the kernel code required to

support some application(s) at runtime. Further, the required

kernel code may change when running a new application that

was not profiled before or when the workload of an existing

application suddenly changes. If this newly requested kernel

code is not included in the customized image, the violation

may crash the application or even panic the kernel.

To address these problems of whole-system-based ker-

nel minimization, we have developed FACE-CHANGE, a

virtualization-based system to support dynamic switching
among multiple minimized kernels, each for an individual
application. Throughout this paper, we use the term ker-
nel view to refer to the in-memory kernel code presented

to an individual application. In conventional kernels, all

concurrently running user-level processes share the same

kernel view containing the entire kernel code section, which

we refer to as a full kernel view. FACE-CHANGE aims to

present each process with a different, customized kernel

view, which is prepared individually in advance by profiling

the application’s needs. Any unnecessary kernel code is

eliminated to minimize the attack surface accessible to this

specific application. At runtime, FACE-CHANGE identifies

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-2233-8/14 $31.00 © 2014 IEEE

DOI 10.1109/DSN.2014.52

491

the current process context and dynamically switches to its

customized kernel view.

To support applications that were not previously profiled,

we are able to profile them in independent (off-line) sessions

to generate their kernel views. We then load the kernel view

for a new application dynamically without interrupting the

system’s execution. This removes the burden of re-compiling

and/or installing a new customized kernel upon the addition

of a new application.

Furthermore, we include a kernel code recovery mecha-

nism for the event that an application tries to reach code

outside of the boundary of its kernel view. This may be

due to incomplete profiling (e.g., interrupt handler’s code

with no attachment to any process or some workload not

completely exercised) or malicious tampering (e.g., some

injected logic requests new/different kernel features). We

are able to recover the missing code and backtrack its

provenance to identify the anomalous execution paths. Such

capability can be leveraged by administrators to analyze the

attack patterns of both user-level and kernel-level malware.

This paper makes the following contributions:

• A quantitative study of per-application kernel require-

ments in a multi-programming system.

• A virtualization-based dynamic kernel view switching

technique. FACE-CHANGE is transparent to the guest

virtual machine (VM) and requires no patching or

recompilation of the guest OS kernel.

• A kernel code recovery mechanism to recover requested

but missing code and backtrack the provenance of such

an anomaly/exception.

The rest of this paper is organized as follows. Section II

presents the motivation, goals and assumptions of FACE-

CHANGE. Section III provides the detailed design of FACE-

CHANGE. Section IV gives case studies on the effective-

ness of FACE-CHANGE on user/kernel malware attacks and

evaluates its performance. Section V discusses limitations

and future work. Section VI describes related work and we

conclude in Section VII.

II. SYSTEM OVERVIEW

In this section, we introduce a quantitative method to mea-

sure the kernel code requirements of a specific application.

We then use these measurements to evaluate the similarity of

kernel code requirements between applications. The result of

this quantitative study motivates the development of FACE-

CHANGE. Finally, we present the goals and assumptions of

our design.

A. Motivation

Each application, including both the base program and any

libraries loaded into the user address space, interacts with the

OS through system calls to request services (e.g., manipulat-

ing files, spawning threads, IPC, etc.). The set of system calls

utilized by an application varies substantially across different

application types and workloads, and intuitively, different

system calls will reach different parts of the kernel’s code.

Further, different values passed as parameters to the same

system calls may lead to totally different execution paths

within the kernel. For example, because of Linux’s virtual
file system (vfs) interface, a read system call for disk-based

files in ext4-fs and memory-based files in procfs will be

dispatched to entirely different portions of the kernel’s code.

To accurately measure a target application’s kernel code

requirements, we monitor the system execution at the basic

block level. We briefly describe the profiling tool here and

will present the detailed design in Section III-A. We record

any executed basic blocks which satisfy the following two

criteria:

1) The basic block belongs to the kernel, i.e., its memory

address is in kernel space.

2) The basic block is executed in the target application’s

context.

After merging any adjacent blocks, we get a range list K[app]

for a target application (denoted by subscript [app]) in the

form:

K[app] = {([B1,E1],T1), · · · , ([Bi,Ei],Ti)}
Bi and Ei denote the beginning and end addresses for the

i-th in-memory code segment. Ti indicates the type for this

memory segment, where Ti can be either “base kernel” or

the name of a kernel module. For kernel modules, we record

addresses relative to the module’s base address because a

module’s loading addresses may change at runtime.

We introduce three definitions for comparing two distinct

application’s kernel code requirements:

1) K[app1] ∩K[app2]

The intersection of two range lists outputs the overlap-

ping address ranges between them. The result is still

a range list.

2) LEN(K[app])
The LEN of a range list outputs the number of elements

in this list.

3) SIZE(K[app]) =
∑

i∈[1,LEN(K[app])]
(Ei − Bi)

The SIZE of a range list outputs the size of kernel code

in this range list.

We use Equation (1) below to define the similarity index

S between K[app1] and K[app2]:

S =
SIZE(K[app1] ∩K[app2])

MAX(SIZE(K[app1]), SIZE(K[app2]))
(1)

A similarity index S indicates the proportion of the over-

lapping of kernel code required between two applications.

Besides common system call execution paths, the over-

lapping kernel code also consists of functionality needed

by every application, e.g., process scheduler and interrupt

handling code. Through the profiling of well-known Linux

applications, we find that similarity indices range from

492

33.6% for applications that are orthogonal in type (such as

top vs. Firefox) to 86.5% for similar applications (such as

Apache vs. vsftpd). Table I (Section IV) shows the similarity

indices for all profiled applications. These measurements

support our earlier hypothesis that kernel code execution

paths vary substantially across different application types.

This also indicates that application-specific kernel views can

minimize the kernel attack surface far beyond that of system-

wide kernel minimization.

B. Goals and Assumptions

We state the goals for our system in four aspects: strict-

ness, robustness, transparency and flexibility.

Strictness: The kernel view generated for a specific appli-

cation should only contain the kernel code that is necessary

for the correct execution of this application under a normal

usage scenario. We should eliminate all other excessive code

from the kernel view to avoid enlarging the kernel’s attack

surface. If an application reaches kernel code that does not

belong to its kernel view, we should record the access in

detail for later analysis.

Robustness: If an application is running under the same

workload and same usage scenario as during profiling, the

behavior of this application running with a customized

kernel view should be no different than with a full kernel

view. If the application accesses any kernel code that is not

included in the customized kernel view, we should recover

the missing code and record this violation silently without

being detected by the application.

Transparency: There is no need to change any code in the

applications or operating system. The hypervisor controls all

FACE-CHANGE operations, which remain transparent to the

guest VM.

Flexibility: Administrators can dynamically load, unload,

and switch the kernel view for a specific application at any

time. This should neither jeopardize the functionality of the

currently running application nor the system as a whole.

We assume that, when we generate customized kernel

views in the profiling phase, the environment, including both

the applications and the kernel, should not be tampered with

by malware.

III. DESIGN AND IMPLEMENTATION

In this section, we give a detailed description of the overall

design of FACE-CHANGE, highlight the challenges we face

and the solutions we propose. Then we discuss the detailed

implementation of our prototype system.

We divide the whole system into two phases in chrono-

logical order: the profiling phase and the runtime phase.

The profiling phase monitors a target program’s execution

and, based on the active kernel code in this process’ con-

text, generates a configuration file describing the applica-

tion’s customized kernel view. In the runtime phase, FACE-

CHANGE builds a new customized kernel view based on

each application’s configuration file and forces the process

to use this customized kernel view whenever the guest OS

schedules it.

Figure 1 shows a high-level example of these two phases.

Assume we want to profile Process 1 in the profiling phase.

When the kernel schedules Process 1 to run, we start to

record all the kernel code executed in its context. When

Process 1 is scheduled out, we pause the recording until the

process is re-scheduled. This procedure also applies to Pro-
cesses 2 and 3. At last we generate three configuration files

for the kernel views of these three processes respectively. In

the runtime phase, we load each customized kernel view for

the corresponding process. For example, Process 1 can only

access [Process 1] kernel view when it is running.

A. Profiling Phase

1) Design of the Profiler: We implemented our profiler

as a component of the QEMU [8] 1.6.0 full system emulator.

This enables the profiler to track an application’s execution

at the granularity of a basic block, and we use virtual

machine introspection (VMI) techniques to track context

switches within the guest OS. When the guest OS schedules

the target application, the profiler records any address ranges

of kernel code executed in this process’ context. For code

within a kernel module, we record addresses relative to

the module’s base address. Once the application has been

sufficiently profiled, the profiler exports all recorded kernel

code segments to a kernel view configuration file.

2) Test Suite Selection: For each application to be pro-

filed, the user should choose a test suite to simulate the

expected real-world workload for this application. For in-

stance, when profiling a server application, the user may

deploy it in the real environment to handle requests, or for an

interactive application, one may simulate the I/O operations

of a typical user. To give a specific example, when profiling

a mysql server, we set up a RUBiS1 [9] server and used its

own simulated client to generate workloads for the mysql
database.

It is difficult to ensure that all code paths through an

application are executed during profiling, and thus it is

possible that at runtime the application may access some

kernel code missed by the profiling phase. One alternative

to a test suite driven profiler is to use symbolic execution

to generate high-coverage test cases, but this approach may

not scale to large applications. To address this problem, we

employ a kernel code recovery mechanism in the runtime

phase to recover any missing kernel code. We explain this

mechanism in detail in Section III-B3.

3) Interrupt Context: In modern OS kernels, hardware

triggered asynchronous interrupts can happen at any time,

and thus interrupt handler code is not attached to any

single process’ context. We choose to include the interrupt

1RUBiS is an ebay-like auction service that heavily uses mysql.

493

Process 1

Kernel

Process 2 Process 3 Process 1 Process 2 Process 3

Profiling Phase Runtime Phase

{user space} {user space}

{kernel space} {kernel space}[Process 1]
kernel view

[Process 2]
kernel view

[Process 3]
kernel view

[Process 1]
kernel view

[Process 2]
kernel view

[Process 3]
kernel view

Figure 1: Overview of FACE-CHANGE

handler’s code in every application’s kernel view to avoid

having to repeatedly recover this code at runtime. Our

profiler leverages QEMU to identify the occurrence of an

interrupt. If this interrupt is not a software interrupt (such

as system call), we can infer that the system has entered

interrupt context. At this point, we record all kernel code

addresses accessed in the interrupt’s context for use in all

applications’ customized kernel view.

B. Runtime Phase
We describe the general design of the runtime phase in

Algorithm 1 and discuss some interesting features below in

detail.
1) Kernel View Initialization: When loading a new kernel

view configuration, FACE-CHANGE allocates memory pages

for both the base kernel code and any kernel modules’ code

and fills them with undefined instruction (UD2) “0xf 0xb”

(UD2 will raise an invalid opcode exception when executed).

FACE-CHANGE then loads the kernel code specified in the

kernel view configuration into it’s appropriate locations in

the new pages. Recall that during profiling, we track the

kernel control flow at the basic block level. However, rather

than loading individual basic blocks, we slightly relax the

condition to load the entire kernel function which contains

the valid basic blocks. The rationales for this relaxation are:

(1) The adjacent code within the same kernel function is

more likely to be accessed at runtime. Thus, we can reduce

the frequency of kernel code recovery by loading the whole

kernel function. (2) UD2 is a 2-byte instruction. If an address

range in the kernel view configuration starts from an odd-

numbered address, only the first byte of UD2 will be in

the kernel view, and the processor may misinterpret the

fragmented UD2 as a different instruction. Loading entire

kernel functions avoids this problem because the boundaries

of kernel functions are aligned on powers-of-two2.
To identify function boundaries, we search for a func-

tion header signature backwards and forwards from the

2Linux kernel is by default compiled with -O2 that contains optimization
flag -falign-functions

Algorithm 1 Kernel View Switching/Kernel Code Recovery

Input: modulelist ← kernel module list
context switch addr ← Address of context switch function
resume userspace addr ← Address of resume userspace function
full kernel view index ← Index of full kernel view

1: - - - - - - - - Kernel Code Recovery - - - - - - - - - -
2: procedure BACK TRACE(rip, rbp)
3: iter rbp := rbp
4: prev rip := rip
5: while IS VALID(prev rip) do
6: DUMP BACKTRACE(prev rip)
7: prev rip := READ PREV RIP(iter rbp)
8: prev rbp := READ PREV RBP(iter rbp)
9: if PREV RIP = ’0B 0F’ then

10: RECOVER BACKTRACE(prev rip)

11: iter rbp := prev rbp

12: procedure HANDLE INVALID OPCODE(vcpu)
13: BACK TRACE(vcpu.rip, vcpu.rbp)
14: mem page := GET MEMORY PAGE(vcpu.rip)
15: start addr := SEARCH BACKWARDS(vcpu.rip)
16: end addr := SEARCH FORWARDS(vcpu.rip)
17: FETCH FILL CODE(page, start addr, end addr)

18:
19: - - - - - - - - Kernel View Switching - - - - - - - - - -
20: procedure SWITCH BASE KERNEL(index)
21: kernel range := GET KERNEL RANGE()
22: LOAD KERNEL VIEW EPT(kernel range, index)

23: procedure SWITCH KERNEL MODULES(index)
24: for all mod in modulelist do
25: module range := GET MODULE RANGE(mod)
26: LOAD MODULE VIEW EPT(module range, index)

27: procedure SWITCH KERNEL VIEW(index)
28: SWITCH BASE KERNEL(index)
29: SWITCH KERNEL MODULES(index)

30: procedure HANDLE KERNEL VIEW TRAP(vcpu)
31: if vcpu.rip = context switch addr then
32: procinfo := READ PROC INFO(vcpu)
33: index := KERNEL VIEW SELECTOR(procinfo)
34: if index = full kernel view index then
35: CLEAR RESUME USERSPACE TRAP()
36: SWITCH KERNEL VIEW(index)
37: else
38: ENABLE RESUME SPACE TRAP()
39: lastindex := index
40: else if vcpu.rip = resume userspace addr then
41: CLEAR RESUME USERSPACE TRAP()
42: SWITCH KERNEL VIEW(lastindex)

494

basic blocks marked in the kernel view configuration. For

example, a common function header signature in the x86

Linux kernel is “push ebp; mov ebp, esp”(binary opcodes

“0x55 0x89 0xe5”). There is a possibility that one kernel

function may cross two memory pages and further, one

single instruction may split across pages. In this case, we

continue searching from the head of the next page or the tail

of the previous page to locate the complete kernel function.

After all of the kernel view’s code is identified and loaded

into the new pages, FACE-CHANGE redirects any kernel

code access made by this application to the customized

kernel view. We implement our FACE-CHANGE runtime

component within a KVM hypervisor (i.e., kvm-kmod-3.6

and qemu-kvm-1.2.0) and leverage Extended Page Tables

(EPT) to manipulate kernel code mappings. When using

EPT, the guest VM maintains its own page table to translate

guest virtual addresses to guest physical addresses. The

hypervisor then uses EPT to transparently map the guest

physical addresses to host physical addresses. During guest

OS context switches, FACE-CHANGE changes the page table

entries in the EPT to direct any kernel code accesses to the

customized kernel view for the application (instead of the

original kernel’s code). This procedure is explained in the

Section III-B2.

Again, FACE-CHANGE must take care when handling

kernel modules’ code in a customized kernel view. Recall

that kernel modules are dynamically loaded at runtime in the

kernel’s heap, and thus, during the profiling phase, we record

these addresses relative to the module’s base address. Before

we load modules’ code into a kernel view, we traverse the

kernel’s module list to identify the loading addresses for any

modules marked in the kernel view configuration. Then we

load the valid kernel code in the code pages for the kernel

modules.

2) Kernel View Switching: Figure 2 illustrates each step

of the kernel view switching procedure. In step 1, the guest

OS chooses a process to run and prepares to context switch

to the new process. In step 2, using VMI, we intercept this

context switch and determine which customized kernel view

is needed for the new application. In step 3A and 3B, we

modify the pointers to the page directory (level 2 in the

EPT) corresponding to the base kernel code and all kernel

modules’ code respectively. Because kernel modules’ code

pages are scattered in the kernel heap, we reuse any entries in

the page directory that point to kernel data and only modify

the entries pointing to the modules’ code.

We also develop a set of optimizations to improve perfor-

mance. Through our experimentation, we find that switching

kernel views immediately at context switches may cause

the application to miss interrupts, and thus jeopardize I/O

performance. We choose instead to switch kernel views

when the code resumes user space execution after the context

switch. This will still satisfy the strictness goal (minimize

the attack surface) and mitigate the performance degradation

caused by missed interrupts. We also check whether the

previous process and the next process use the same kernel

view, and if so, we can avoid one additional kernel view

switch.

3) Kernel Code Recovery: There are two situations where

FACE-CHANGE may need to recover missing kernel code:

(i) An incomplete kernel view generated during profiling:
Testing in a controlled runtime environment without

introducing any attacks, we find that the majority of

the benign kernel recoveries are triggered due to miss-

ing code for handling interrupts. For example, KVM
provides a para-virtualized clock device to the guest

VM. This KVM specific code cannot be included in the

kernel view during the profiling in QEMU. Thus, at

runtime, FACE-CHANGE needs to recover the missing

kernel functions shown below in chronological order:

kvm clock get cycles→ kvm clock read
→ pvclock clocksource read→ native read tsc
In addition, interrupt handling code is not bound

to any process and can be triggered by hardware

interrupts at any time. In the profiling phase, we may

not observe all possible interrupts for this application.

Before missing code recovery, we inspect the current

call stack to determine whether the current execution is

in interrupt context (through backtracking the current

function traces). Thereafter we recover the missing

kernel code to correctly handle those interrupts.

All other benign kernel code recoveries due to in-

complete profiling of the application’s execution paths

are recorded as a reference for the administrator to

ameliorate the profiling test suite.

(ii) Anomalous execution caused by malicious attacks:
User level malware may hijack a normal process to

execute shellcode which requests kernel services that

are not in the customized kernel view. Additionally,

kernel level rootkits can detour the kernel’s execution

path to their payload’s malicious code, and obviously,

this malicious payload will not be in any application’s

kernel view. FACE-CHANGE is designed to report the

suspicious execution traces, but still recover the kernel

code in this case. In order to track the provenance of

the attack, we not only record any recovered functions,

but also backtrack the anomalous execution’s call
stack to find the origin of the invocation chain for

later analysis.

As we mentioned in Section III-B1, we fill any kernel

code space that is not in the kernel view with UD2 “0xf 0xb”.

When executed, UD2 raises an invalid opcode exception

which causes a trap to the hypervisor. We illustrate this as

step 4 invalid opcode trap in Figure 2. After intercepting

the trap, we check the faulting address and try to fetch the

missing kernel function from the original kernel code pages

(step 5 in Figure 2).

495

user
 address space

 0 ~ 3G

Process Process Process

kernel
address space

3G ~ 4G

{Base Kernel Code}

{Kernel Module Code}

Guest VM Hypervisor

Process Scheduler

Extended Page Tables

Guest Page Tables

Context Switch Trap

Invalid Opcode Trap

2

4

5

1

Original Code
Profiled Code
Invalid Code

3A

3B

Code Recovery

Figure 2: The Procedure of Dynamic Kernel View Switching and Kernel Code Recovery

During our implementation of the kernel code recovery

mechanism, we fixed an interesting cross-view bug in FACE-

CHANGE that is worth mentioning here. If no customized

kernel view is enabled for a specific process, it will have

a full kernel view. When executing this process, its kernel

execution may be interrupted or the process may voluntarily

give up the CPU. If we enable a customized kernel view for

that process at this time and the process is re-scheduled by

the kernel, some functions in the process’ execution stack

may not be in the new kernel view. We give an example of

this situation in Figure 3.

In this case, the process was re-scheduled while executing

pipe poll at address 0xc0211370. The invocation chain in

the stack is as follows:

syscall call→ sys poll→ do sys poll
We find that because sys poll and do sys poll are not in

the new customized kernel view, their code regions are filled

with UD2 (shown in red). If we recover pipe poll and return

to its caller (do sys poll), the process will execute undefined

instructions. For do sys poll this is not a problem because

the return address (0xc021a526) is an even number. Exe-

cution will return to the “0xf 0xb” opcode (UD2), causing

an invalid opcode trap, and we can recover do sys poll as

normal. We call this as a lazy recovery. But for sys poll,
the return address (0xc021a759) is an odd number, and the

opcode starting at address 0xc021a759 is “0xb 0xf.” This

|--Backtrace: 0xc021a526 <do_sys_poll+0x136>
 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb

|--Backtrace: 0xc021a759 <sys_poll+0x59>
 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf 0xb 0xf

|--Backtrace: 0xc01033ec <syscall_call+0x7>
 0x89 0x44 0x24 0x18 0xfa 0x8d 0xb6 0x0 0x0 0x0

Recover 0xc0211370 <pipe_poll+0x0> for kernel[top] do_sys_poll:
...
c021a521: e8 4a f4 ff ff call 0xc0219970 <do_poll>
c021a526: 89 85 8c fc ff ff mov %eax,-0x374(%ebp)

sys_poll:
...
c021a754: e8 97 fc ff ff call 0xc021a3f0 <do_sys_poll>
c021a759: 83 f8 fc cmp $0xfffffffc,%eax

syscall_call:
...
c01033e5: ff 14 85 50 81 59 c0 call *-0x3fa67eb0(,%eax,4)
c01033ec: 89 44 24 18 mov %eax,0x18(%esp)

'0xf 0xb' can trap => Lazy recovery

'0xb 0xf' cannot trap => Instant recovery

1

2

Figure 3: Cross-View Kernel Code Recovery

opcode will be misinterpreted by the processor and not cause

a trap. Our solution is, during code recovery, to backtrack

the stack and recover any caller whose return-target opcode

starts with “0xb 0xf ” in the new kernel view. We call this

instant recovery. In this example, when we recover the code

for pipe poll, we recover sys poll instantly.

4) Disable Customized Kernel View: We can load/unload

customized kernel views dynamically at runtime to satisfy

our flexibility goal. When we disable a kernel view, FACE-

CHANGE de-allocates all memory pages for that kernel view

and switches the EPT back to a full kernel view without

interrupting the running application. This enables us to adapt

to an altered environment smoothly by “hot-plugging” kernel

views.

IV. EVALUATION

In this section, we present the evaluation of our system

in two aspects: security and performance. For the security

496

evaluation, we first use the similarity index to measure

the similarities of kernel views among applications. Then

we demonstrate the effectiveness of our system to track

attack provenance of both user-level malware and kernel-

level rootkits. For the performance evaluation, we measure

the overall system performance with FACE-CHANGE en-

abled and the I/O performance for an Apache web server

with a minimized kernel view. The hardware configuration

of our testing platform is a Lenovo Ideapad U410 with

Intel R© CoreTM i7 3.10GHz and 8GB memory. We run

FACE-CHANGE on Linux Mint 13 x86 64 (Linux kernel

version 3.5.0). We test our prototype with a guest VM

using Ubuntu 10.04 (Linux kernel version 2.6.32) i386

LTS release3, further since FACE-CHANGE requires minimal

domain knowledge, it will be convenient to extend our

current system to support more Linux kernel versions with

only minor changes to the implementation. The guest VM’s

memory is 2GB and it uses bridged networking.

A. Security Evaluation

1) Kernel View Variation among Applications: We use

the similarity index defined in Section II to measure the

difference of kernel views among 12 well-known Linux

applications from different categories. For example, Apache
and vsftpd are server applications that handle network re-

quests. Firefox and gvim are interactive applications that

respond to user input. We present the profiling results as

a square matrix in Table I. The main diagonal(↘) of the

matrix is marked with gray cells. Each cell on the main

diagonal presents the size of the kernel view for this specific

application (e.g., vsftpd executes 341KB kernel code in

the profiling phase). We compare the kernel code address

ranges between every two applications to get the overlapping

size. All entries above the main diagonal represent the

overlapping size between two applications’ kernel views

(e.g., tcpdump and Firefox have 218KB overlapping kernel

code). Entries below the main diagonal represent the simi-

larity index calculated using Equation (1) in Section II. The

similarity index demonstrates the similarity of kernel attack

surface between different applications. For applications of

different types, lower percentages are better as this ensures

a distinct minimized kernel in both cases, and for similar

applications high percentages are expected since both require

similar kernel services. As Table I shows, the similarity

indices range from 33.6% for dissimilar applications to

86.5% for applications with common kernel requirements.

This proves our intuition that if two applications are from

different categories they have relatively low similarity index

and leverage different parts of the kernel.

2) Attack Detection and Provenance: Because the kernel

attack surface for each individual application is reduced

3We use Ubuntu 10.04 because the kernel rootkit samples we use in the
evaluation do not support newer Linux kernel yet.

 // create socket
 sock = socket(AF_INET, SOCK_DGRAM, 0);

 ...
 // bind to the specified port
 server.sin_family = AF_INET;
 server.sin_addr.s_addr = htonl(INADDR_ANY);
 server.sin_port = htons(port);
 err = bind(sock, (struct sockaddr *) &server, sizeof(server));
 ...

 // receive data loop
 while (1) {
 memset(buffer, 0, BUFF_LEN);
 // receive data
 err = recvfrom(sock, buffer, BUFF_LEN, 0, NULL, 0);
 ...
 }

B. Kernel code recovery logA. UDP server payload code snippet

socket:

bind:

recvfrom:

0xc051c950 <inet_create+0x0>

0xc04b80c0 <sys_bind+0x0>
0xc02f8900 <security_socket_bind+0x0>
0xc0324470 <apparmor_socket_bind+0x0>
0xc051c6a0 <inet_bind+0x0>
0xc0522460 <inet_addr_type+0x0>
0xc04ba450 <lock_sock_nested+0x0>
0xc05148c0 <udp_v4_get_port+0x0>
0xc0514680 <udp_lib_get_port+0x0>
0xc0512890 <udp_lib_lport_inuse+0x0>
0xc04ba3a0 <release_sock+0x0>

0xc04b86d0 <sys_recvfrom+0x0>
0xc04b8560 <sock_recvmsg+0x0>
0xc02f89a0 <security_socket_recvmsg+0x0>
0xc03243d0 <apparmor_socket_recvmsg+0x0>
0xc04b9be0 <sock_common_recvmsg+0x0>
0xc0514b50 <udp_recvmsg+0x0>
0xc04c1d80 <__skb_recv_datagram+0x0>
0xc0168830 <prepare_to_wait_exclusive+0x0>

Figure 4: Attack Pattern of Injectso’s Payload

according to the profiling results, we can reveal malicious

attack patterns whenever a process goes beyond the bound-

ary of its kernel view. Further, we backtrack the requested

kernel code to identify the exact attack provenance.

This result is a step further than traditional system-

wide kernel minimization techniques [1]–[4] because FACE-

CHANGE is able to detect anomalous execution based on

an individual application’s kernel view. To demonstrate that

FACE-CHANGE can reveal attack evidences that may go

unnoticed under traditional system-wide minimization tech-

niques, we also create a “union” kernel view (the union of all

kernel views from the applications we have profiled) as the

system-wide minimized kernel. System-wide minimization

may fail to detect an attack if the attack utilizes kernel code

required by any application in the system. FACE-CHANGE

greatly reduces this “blind spot” because it is able to detect

kernel execution anomalies specific to a single application.

In this paper, we evaluate the effectiveness of attack

detection with 13 user-level malware (8 of them use online

runtime infection and 5 use offline binary infection) and 3

kernel-level rootkits. This data is presented in Table II. We

highlight four of these attack case studies in detail.

Case Study I – Injectso: Injectso [10] is a well-

known hot-patching tool used to modify the behavior of a

running process by injecting a dynamic shared object into

its address space. It detours the current instruction pointer

to libc dlopen mode and builds a fake stack to invoke

the shared object’s code. The shellcode’s payload is a UDP

server, and the target program is top. Obviously, the kernel

view for top does not contain any kernel code needed to run

a UDP server (even if the kernel views of other co-existing

applications do), and thus Injectso’s payload triggered the

kernel code recovery mechanism.

From the kernel code recovery log, we can precisely iden-

tify the anomalous execution caused by Injectso in the top
process. In Figure 4, we present the UDP server payload’s

code and the corresponding kernel code recovery log. The

UDP server will create a socket, bind to an address/port,

and receive data using the C library calls socket, bind
and recvfrom respectively. It is straightforward to identify

which library functions correspond to the recovered kernel

497

firefox totem gvim apache vsftpd top tcpdump mysqld bash sshd gzip eog
firefox 443KB 275KB 251KB 302KB 284KB 149KB 218KB 305KB 221KB 316KB 213KB 286KB
totem 62.1% 286KB 239KB 210KB 217KB 140KB 166KB 228KB 196KB 220KB 174KB 257KB
gvim 56.7% 83.6% 262KB 206KB 206KB 142KB 160KB 220KB 190KB 211KB 166KB 247KB
apache 68.2% 62.7% 61.5% 335KB 284KB 141KB 210KB 265KB 203KB 292KB 200KB 215KB
vsftpd 67.9% 63.6% 60.5% 83.5% 341KB 145KB 208KB 272KB 205KB 293KB 206KB 222KB
top 33.6% 49.2% 54.2% 42.2% 42.7% 167KB 135KB 138KB 147KB 153KB 121KB 143KB
tcpdump 49.2% 58.0% 61.1% 62.6% 61.0% 57.6% 234KB 203KB 165KB 216KB 169KB 168KB
mysqld 68.7% 68.1% 65.4% 78.9% 79.8% 41.1% 60.5% 336KB 186KB 260KB 212KB 230KB
bash 50.0% 68.7% 72.6% 60.6% 60.1% 60.8% 68.3% 55.5% 242KB 223KB 158KB 215KB
sshd 71.3% 58.4% 55.9% 77.5% 77.7% 40.5% 57.3% 68.9% 59.0% 378KB 216KB 233KB
gzip 48.1% 60.9% 63.4% 59.6% 60.4% 49.5% 69.0% 63.2% 64.6% 57.1% 245KB 177KB
eog 64.6% 86.5% 83.2% 64.2% 65.2% 48.1% 56.5% 68.7% 72.4% 61.7% 59.7% 297KB

Table I: Similarity Matrix for Applications’ Kernel Views

Name Infection Method Payload Note
Injectso Online infection: Shared object injection UDP server Case study I
Cymothoa v1 Online infection: Fork process Bind /bin/sh to TCP port and fork shell Recover sys fork and TCP server
Cymothoa v2 Online infection: Clone thread Bind /bin/sh to TCP port and fork shell Recover sys clone and TCP server
Cymothoa v3 Online infection: Settimer parasite Remote file sniffer Recover sys settimer and signal handler
Cymothoa v4 Online infection: Signal/Alarm parasite Single process backdoor Case study II
Hotpatch Online infection: Library injection File writing of injecting timestamp Recover injection and file writing procedure
Xlibtrace Online infection: $LD PRELOAD linker Tracking function invocation Recover tty procedures on terminal
Hijacker Online infection: Global offset table poisoning Redirection of library function Recover the procedure of hijacking
Infelf v1 Offline binary infection Remote shell server Recover remote shell socket operations
Infelf v2 Offline binary infection Register dumping Case study III
Arches Offline binary infection Register dumping Recover register dumping operations on terminal
Elf-infector Offline binary infection Register dumping Same as above
ERESI Offline binary infection UDP server Recover creation of udp server
KBeast Kernel rootkit File/Process hiding, keystroke sniffer Case study IV
Sebek Kernel rootkit Confidential data collection Recover kernel code in sebek module
Adore-ng Kernel rootkit File/Process hiding Recover kernel code in adore-ng module

Table II: Results of Security Evaluation Against a Spectrum of User/Kernel Malware

code sections (e.g., bind executes a kernel code path from

sys bind to release sock 4 in chronological order).

We test the system again and apply the “union” kernel

view, which includes both top and some network applica-

tions (such as Firefox and Apache) – to represent a system-

wide minimization technique. These network applications

require the same kernel networking code as the UDP server

payload, and thus this case results in no UDP related kernel

functions being recovered. Due to the enlarged attack surface

of the system-wide minimized kernel, this attack would

achieve its goal with the available kernel code and thus go

undetected.

Case Study II – Cymothoa: Cymothoa [11] is a shell-

code injection framework that uses different infection meth-

ods and payload types. The parasite executable coexists with

the host process stealthily while the host process continues to

work properly. We test all four working parasites introduced

in the article “Single Process Parasite” [12] in Phrack issue

68 and successfully reveal all four attack behaviors. The

parasite uses the sys fork and sys clone system calls to

create a child process/thread to execute its payload. Later

variants are more stealthy, utilizing settimer and signal to

schedule the shellcode inside the host process. Here, we give

a detailed description of the most stealthy (variant 4) para-

site’s control flow. This variant creates a backdoor parasite

4Symbols of kernel functions are not necessary for backtracking. We use
them here for clear demonstration.

living within another process (bash is the target program

in this case). First the shellcode registers a signal handler

for the SIGALRM signal. Then it opens a nonblocking I/O

socket, binds it to a specific port, and sets the SIGALRM
timer. When the SIGALRM signal is handled, the parasite

accepts any connection on the socket and launches a remote

shell. The parent then sets the timer again and resumes

execution of the host process.

Again, the kernel code executed by the shellcode’s ac-

tions, e.g., setting the signal handler, creating the TCP

server, and setting the alarm clock are recorded in the kernel

recovery log. This reveals both the infection method and

payload behaviors of the stealthy parasite. Also, like before,

existing kernel minimization techniques may fail to detect

this attack entirely because other applications will likely add

these kernel regions into the union-based minimized kernel.

Case Study III – Infelf: In addition to runtime infection

malware, we also apply our techniques to detect compro-

mised applications. Infelf [13] is an offline binary infection

tool that is able to implant trojan code into an existing

binary program. It splits trojan code into multiple instruction

blocks, inserts them into free alignment areas between

functions, and concatenates their execution path with jump

instructions. We use this tool to implant a hardware register

printing function into the gvim binary and redirect gvim’s
entry function to this shellcode. During gvim’s startup,

FACE-CHANGE recovers numerous TTY kernel functions

498

0xc03566d0 <strnlen+0x0>
|-- 0xc0355ce6 <vsnprintf+0x206>
|-- 0xc0355f7a <snprintf+0x1a>
|-- 0xf8078bbe <UNKNOWN>
|-- 0xc01033ec <syscall_call+0x7>

0xc03566d0 <strnlen+0x0>
|-- 0xc0355ce6 <vsnprintf+0x206>
|-- 0xc0355f7a <snprintf+0x1a>
|-- 0xf8078bbe <UNKNOWN>
|-- 0xc01033ec <syscall_call+0x7>

0xc02173d0 <filp_open+0x0>
|-- 0xf8078edc <UNKNOWN>
|-- 0xc01033ec <syscall_call+0x7>

0xc02173d0 <filp_open+0x0>
|-- 0xf8078edc <UNKNOWN>
|-- 0xc01033ec <syscall_call+0x7>

0xc02cdfa0 <____ j__ bd2_log_start_commit+0x0>
|-- 0xc02a5f8c <____ ext4_j__ ournal_stop+0x5c>
|-- 0xc028d3f0 <ext4_dirty_inode+0x40>
|-- 0xc0228db1 <____ mark_inode_dirty+0x31>
|-- 0xc021e575 <file_update_time+0xb5>
|-- 0xc01cd908 <____ generic_file_aio_write+0x1b8>
|-- 0xc01cdcb7 <generic_file_aio_write+0x57>
|-- 0xc0287401 <ext4_file_write+0x41>
|-- 0xc020a014 <do_sync_write+0xc4>
|-- 0xf80787a5 <UNKNOWN>
|-- 0xf8078edc <UNKNOWN>
|-- 0xc01033ec <syscall_call+0x7>

0xc02cdfa0 <__jbd2_log_start_commit+0x0>
|-- 0xc02a5f8c <__ext4_journal_stop+0x5c>
|-- 0xc028d3f0 <ext4_dirty_inode+0x40>
|-- 0xc0228db1 <__mark_inode_dirty+0x31>
|-- 0xc021e575 <file_update_time+0xb5>
|-- 0xc01cd908 <__generic_file_aio_write+0x1b8>
|-- 0xc01cdcb7 <generic_file_aio_write+0x57>
|-- 0xc0287401 <ext4_file_write+0x41>
|-- 0xc020a014 <do_sync_write+0xc4>
|-- 0xf80787a5 <UNKNOWN>
|-- 0xf8078edc <UNKNOWN>
|-- 0xc01033ec <syscall_call+0x7>

1

2

3

Figure 5: Attack Pattern of KBeast Rootkit

which are not included in gvim’s kernel view. Again, in this

case, a whole-system kernel minimization technique would

be unable to detect this attack on a system containing both

gvim and terminal applications that require the kernel’s TTY

functions (such as tcpdump or bash).

Case Study IV – KBeast Rootkit: In addition to user-

level attacks, our system is also able to detect rootkit attacks

at the kernel level. Because rootkit attacks originate from

shellcode in kernel space, the interpretation of kernel re-

covery logs is different from user-level attacks. Kernel-level

attacks aim to hide their malicious behavior by detouring

the kernel’s control flow during execution of certain kernel

routines (e.g., listing kernel modules, network connections,

etc.). Again, we assume that no rootkit is present during

the initial profiling phase, and so no rootkit code can be

included in the kernel view configuration files. When FACE-

CHANGE allocates a new kernel view, if a rootkit has

already been installed in the runtime system’s kernel, the

rootkit’s code will not be loaded into the new view and

will be filled with UD2 by default. If the application later

triggers FACE-CHANGE’S code recovery, the log will allow

us to clearly see where the hijack took place. A more

complicated scenario that FACE-CHANGE can detect is a

rootkit which is installed while FACE-CHANGE is enforcing

an application’s kernel view. In this scenario, the rootkit will

be detected in the same way as user-level malware: by the

kernel functionality that it requests to perform its malicious

functionalities. Again, this code will be recovered and we

can backtrace recovered kernel code to reveal the anomalous

execution.

We use the KBeast [14] rootkit as an example to show

this process in detail. KBeast is a new rootkit that inherits

many features from traditional Linux kernel rootkits (e.g.,

file/process/socket/module hiding, keystroke sniffer) and it

supports recent kernel versions. We use the kernel view for

the bash program to detect the existence of KBeast. All

the keystrokes typed in bash are processed by the keyboard

event handler. KBeast is able to intercept and read the

keystrokes and store this data into a hidden file, and it

will hide its existence by removing itself from the kernel

module list. In Figure 5, by backtracking the recovered

kernel functions, we find code addresses with an UNKNOWN
tag. This indicates that these memory addresses are not in

any identified memory regions. We also find that KBeast’s

Figure 6: Normalized System Performance Results from

UnixBench

code hijacks the entries of some system calls and invokes

strnlen to check the length of the keystroke buffer, filp open
to open the hidden file, and do sync write to write the

keystroke data into this file.

B. Performance Evaluation

1) System Performance: We use the UnixBench bench-

mark suite to measure and evaluate system performance.

Specifically, we take three different measurements:

(i) We run UnixBench without enabling FACE-CHANGE

to get a baseline result.

(ii) We enable FACE-CHANGE, load one kernel view

(Apache), and run the benchmark. This tests whole-

system performance overhead after enabling our sys-

tem.

(iii) Next, we launch the applications5 from Table I and

load their kernel views one at a time. After each

kernel view is loaded, we rerun the benchmark. This

measures any performance influence on the whole

system after loading multiple kernel views.

In Figure 6, we normalize the performance scores of the

UnixBench (higher performance score indicates better per-

formance) based on the baseline score from step 1. The

X axis represents the number of kernel views we enabled

simultaneously. We find that, compared to the baseline

result, enabling our system incurs 5%∼7% performance

overhead on the whole system. Adding multiple kernel views

incurs trivial impact on the system performance. We find

that the only performance degradation occurs during the

subtest Pipe-based Context Switching of UnixBench. This

is not surprising because FACE-CHANGE triggers additional

traps for each context switch. We could largely minimize

the performance overhead with optimization of the context

switch handler’s code.

5We exclude gzip here because it is not a long running application
(i.e. it is difficult to ensure it executes during the entire benchmarking
measurement).

499

Figure 7: I/O Performance Results for Apache Web Server

2) I/O Performance for Apache: In addition to measur-

ing overall system performance, we also evaluate FACE-

CHANGE’s influence on application’s I/O performance.

Specifically, we use httperf to compare Apache’s perfor-

mance before and after enabling FACE-CHANGE. In this test,

we increase the request rate from 5 to 60 requests per second

(100 connections in total) to test the I/O performance. We

present the ratio of the I/O throughput after enabling FACE-

CHANGE to before in Figure 7. From Figure 7, we find

that I/O throughput will not be affected below the threshold

rate of 55 reqs/second but may begin to degrade afterwards.

This indicates that our system has no influence on the

network throughput before the CPU becomes a bottleneck.

The reason is that the bursts of network traffic cause frequent

kernel view switching in a short period of time. One solution

is to measure the rate of requests for an expected workload

of the server before enabling FACE-CHANGE. If the rate is

below the threshold rate, the application’s I/O throughput

should be unaffected by FACE-CHANGE. If the rate is far

over the threshold rate, FACE-CHANGE may require a more

powerful CPU to handle any traffic peaks in the network

without slow-down.

V. DISCUSSION

In this section, we discuss the limitations of our current

approach and propose some potential directions for future

work.

A. Malicious Attack within the Application-specific Mini-
mized Kernel Attack Surface

Our approach aims to minimize the kernel attack surface

for each specific application. If a malicious attack breaks

the boundary of the kernel view generated in the profiling

phase, we can detect and report the violations. Compared to

system-wide minimization techniques, FACE-CHANGE en-

forces stricter constraints on kernel code visibility. It is still

possible, however, that the kernel code used by the malicious

attack is within the subset of the application’s kernel view.

For example, suppose a web server is compromised and

a parasite command-and-control(C&C) server is installed.

If this C&C server uses only kernel functionalities that

are within the kernel view of the host web server, FACE-

CHANGE does not need to recover any missing kernel code

and it would be impossible for us to detect its existence in

this case. This problem may require a deeper understanding

and finer-grained profiling of the semantic behaviors of

each application. In addition to recording an application’s

kernel usage in the profiling phase, we also need to profile

the application’s behavior, specifically its interactions with

the kernel. Thereby we can classify the malicious behavior

during the runtime phase if it violates the application’s

known behaviors.

B. Non-persistent/DKOM Kernel Rootkit

Non-persistent kernel rootkits perform a one-time attack

on the kernel and attempt to remove any traces of the

incident. If such an attack happens before enabling FACE-

CHANGE, then we have already missed the opportunity to

capture the attack.

For DKOM rootkits [15], which only manipulate kernel

data, FACE-CHANGE is unable to identify the attack because

it only monitors anomalies in kernel code execution. In order

to detect this kind of attack, we could integrate some existing

works [16], [17] into our system to check the kernel’s data

integrity. We leave this effort as future work.

C. Multiple-vCPU Support for Guest VM

Our current prototype supports guest VMs with a single

vCPU. In order to support multiple vCPUs per guest VM,

FACE-CHANGE will need to identify context switches on

every vCPU. Each process has its own page table and is

pinned to one CPU during execution, likewise each vCPU

has its own EPT maintained by the hypervisor. Like before,

FACE-CHANGE should manipulate each vCPU’s EPT to

perform per-vCPU kernel view switching. Extending FACE-

CHANGE to support multiple vCPUs per guest VM is our

future work.

VI. RELATED WORK

This work was inspired by two broad categories of related

works: kernel minimization and sandboxing. In this section,

we describe some representative works from each category

in detail.

A. Kernel Minimization

Earlier research on kernel minimization was not specif-

ically security oriented. The primary goal of these works

was to shrink the kernel’s in-memory size to adapt to the

limited hardware resources of embedded systems. Lee et

al. [2] used a call graph approach to eliminate redundant

code from the Linux kernel. Chanet et al. [4] applied link-

time compaction and specialization techniques to reduce the

500

kernel memory. He et al. [3] reduced the memory footprint

by keeping infrequently executed code on disk and loading

it on demand.

Recent research has focused on minimizing the OS kernel

to reduce the attack surface exposed to applications. Kurmus

et al. [1] proposed a kernel reduction approach which

automatically generates kernel build configurations based

on profiling results of expected workloads. DRIP [18] is an

offline approach to purify trojaned kernel drivers via binary

rewriting. It leverages a functional test suite to profile a

driver and reserve the minimal required set of kernel function

invocations.

Compared to previous kernel minimization works, FACE-

CHANGE dynamically presents a customized kernel view to

each individual application to minimize the kernel’s exposed

attack surface. In addition, our system is more flexible and

can adapt to changes in the execution environment and

support new applications without rebooting the system.

B. Sandboxing

Sandboxing is a general security mechanism that provides

a secure execution environment for running untrusted code.

One category of sandboxing works is to constrain the

untrusted code’s capabilities via predefined security policies.

Janus [19] is a filtering approach to perform system call

interposition based on the predefined policy. Ostia [20]

proposed a delegating architecture to virtualize the system

call interface and provides a user level sandbox to control the

access of resources. Capsicum [21] extends the Unix API to

allow an application to perform self-compartmentalization,

i.e., confining itself in a sandbox that only allows essen-

tial capabilities. Seccomp [22] is a sandboxing mechanism

implemented in the Linux kernel to constrain the system

call interface of process. If the process attempts to issue

the system call that is not allowed, it will be terminated by

the kernel. SELinux [23] is a security module in the Linux

kernel that enforces mandatory access-control policies on

applications. Similar to SELinux, AppArmor [24] restricts

the capabilities of a program through binding a security

profile. TxBox [25] is based on system transactions to

speculatively execute an untrusted application and recover

from harmful effects. Process Firewalls [26] is a kernel-

base protection mechanism to avoid resource access attacks

through examining the internal state of a process and en-

forcing invariants on each system call.

Another category of sandboxing approaches is to enforce

access control through recompilation, binary rewriting and

instrumentation: PittSFIeld [27] extends software fault isola-

tion [28] (SFI) to x86. It checks unsafe memory writes and

constrains jump targets to aligned addresses. Vx32 [29] is a

sandbox that confines the system calls and data accesses of

guest plugins without kernel modification. NaCl [30] lever-

ages SFI to provide a constrained execution environment for

the native binary code of browser-based application. TRuE

[31] replaces the standard loader with a security-hardened

loader and leverages SFI to run untrusted code. Program

shepherding [32] enforces security policies by monitoring

control flow transfers during the execution of a program.

In the virtualization/emulation environment, a full system

is considered to be confined in a sandbox and the protection

is provided at hypervisor level: Secvisor [33] ensures that

only approved code can be executed in kernel mode to

protect the kernel against code injection attacks. NICKLE

[34] enforces that only authorized kernel code can be fetched

for execution in kernel space. To guarantee the integrity of

kernel hooks, HookSafe [35] relocates hooks to a page-

aligned memory space and regulates accesses to them via

page-level protection. HUKO [36] is a hypervisor-based

approach to enforce mandatory access control policies on

untrusted kernel extensions. Gateway [37] isolates kernel

drivers in a different address space from the base kernel

and monitors their kernel API invocations.

FACE-CHANGE can also be considered a type of sandbox-

ing approach. The difference from these previous works is

that we sandbox each individual application by constraining

its reachability of kernel code. We also enforce our approach

at the hypervisor level to be transparent to the guest system.

VII. CONCLUSION

We make a key observation that the kernel code re-

quired by applications of different types varies tremen-

dously. Thus, generating a single system-wide minimized

kernel will enlarge the attack surface for all applications

involved. We develop FACE-CHANGE, a virtualization-based

system to facilitate dynamic kernel view switching among

individual applications executed in a VM. FACE-CHANGE

transparently presents a customized kernel view to each

application to confine its reachability of kernel code and

switch this view upon context switches. In the event that a

process breaks its kernel view boundary, FACE-CHANGE is

able to recover the missing kernel code and backtrack this

anomaly via analysis of the execution history. Our evaluation

demonstrates the drastic difference in the size of kernel

views of multiple applications, the effectiveness of FACE-

CHANGE in revealing the attack patterns of both user and

kernel attacks, and the potential of enabling FACE-CHANGE

for production VMs.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for

their insightful comments. This research has been supported

in part by the AFOSR under award FA9550-10-1-0099,

DARPA under Contract 12011593, and NSF under award

0855141. Any opinions, findings, and conclusions in this

paper are those of the authors only and do not necessarily

reflect the views of the sponsors above.

501

REFERENCES

[1] A. Kurmus, R. Tartler, D. Dorneanu, B. Heinloth, V. Roth-
berg, A. Ruprecht, W. Schröder-Preikschat, D. Lohmann, and
R. Kapitza, “Attack surface metrics and automated compile-
time os kernel tailoring,” in Proceedings of the 20th Network
and Distributed System Security Symposium, 2013.

[2] C. tai Lee, J. min Lin, Z. wei Hong, and W. tsong Lee, “An
application-oriented linux kernel customization for embedded
systems,” Journal of Information Science and Engineering,
1995.

[3] H. He, S. K. Debray, and G. R. Andrews, “The revenge of
the overlay: automatic compaction of os kernel code via on-
demand code loading,” in Proceedings of the 7th ACM &
IEEE international conference on Embedded software, 2007.

[4] D. Chanet, B. De Sutter, B. De Bus, L. Van Put, and
K. De Bosschere, “System-wide compaction and specializa-
tion of the linux kernel,” in Proceedings of the 2005 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems, 2005.

[5] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted
and automatic generation of high-coverage tests for complex
systems programs,” in Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Implementation,
2008.

[6] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed
automated random testing,” in Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2005.

[7] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit
testing engine for c,” in Proceedings of the 10th European
Software Engineering Conference Held Jointly with 13th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2005.

[8] F. Bellard, “Qemu, a fast and portable dynamic translator,”
in Proceedings of the Annual Conference on USENIX Annual
Technical Conference, 2005.

[9] “RUBiS,” http://rubis.ow2.org/.

[10] “injectso: Modifying and spying on running processes under
linux,” http://www.blackhat.com/presentations/bh-europe-01/
shaun-clowes/bh-europe-01-clowes.ppt.

[11] “Cymothoa - Stealth backdooring tool,” http://cymothoa.
sourceforge.net/.

[12] “Single Process Parasite,” http://www.phrack.org/issues.html?
issue=68&id=9#article.

[13] “Injected Evil(executable files infection),” http://z0mbie.host.
sk/infelf.html.

[14] “kbeast-v1,” http://core.ipsecs.com/rootkit/kernel-rootkit/
kbeast-v1/.

[15] J. Butler, “DKOM (Direct Kernel Object Manipulation).”

[16] J. Rhee, R. Riley, D. Xu, and X. Jiang, “Kernel malware
analysis with un-tampered and temporal views of dynamic
kernel memory,” in Proceedings of the 13th International
Conference on Recent Advances in Intrusion Detection, 2010.

[17] J. Rhee, R. Riley, D. Xu, and X. Jiang, “Defeating dynamic
data kernel rootkit attacks via vmm-based guest-transparent
monitoring,” in Availability, Reliability and Security, 2009.
ARES ’09. International Conference on, 2009.

[18] Z. Gu, W. N. Sumner, Z. Deng, X. Zhang, and D. Xu,
“Drip: A framework for purifying trojaned kernel drivers,”
in Proceedings of the 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks(DSN),
2013.

[19] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, “A
secure environment for untrusted helper applications: Confin-
ing the wily hacker,” in Proceedings of the Sixth USENIX
Security Symposium, 1996.

[20] T. Garfinkel, B. Pfaff, and M. Rosenblum, “Ostia: A dele-
gating architecture for secure system call interposition.” in
Proceedings of the 11th Annual Network and Distributed
System Security Symposium, 2004.

[21] R. N. Watson, J. Anderson, B. Laurie, and K. Kennaway,
“Capsicum: Practical capabilities for unix.” in Proceedings
of the 19th USENIX Security Symposium, 2010.

[22] “Seccomp and sandboxing,” http://lwn.net/Articles/332974/.
[23] P. Loscocco and S. Smalley, “Integrating flexible support

for security policies into the linux operating system,” in
Proceedings of the FREENIX Track: 2001 USENIX Annual
Technical Conference, 2001.

[24] M. Bauer, “Paranoid penguin: An introduction to novell
apparmor,” Linux Journal, 2006.

[25] S. Jana, D. Porter, and V. Shmatikov, “Txbox: Building
secure, efficient sandboxes with system transactions,” in Se-
curity and Privacy (SP), 2011 IEEE Symposium on, 2011.

[26] H. Vijayakumar, J. Schiffman, and T. Jaeger, “Process fire-
walls: Protecting processes during resource access,” in Pro-
ceedings of the 8th ACM European Conference on Computer
Systems, 2013.

[27] S. McCamant and G. Morrisett, “Evaluating sfi for a cisc
architecture,” in Proceedings of the 15th USENIX Security
Symposium, 2006.

[28] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,
“Efficient software-based fault isolation,” in Proceedings of
the 14th ACM Symposium on Operating Systems Principles,
1993.

[29] B. Ford and R. Cox, “Vx32: Lightweight user-level sand-
boxing on the x86,” in USENIX 2008 Annual Technical
Conference on Annual Technical Conference, 2008.

[30] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A
sandbox for portable, untrusted x86 native code,” in Security
and Privacy, 2009 30th IEEE Symposium on, 2009.

[31] M. Payer, T. Hartmann, and T. R. Gross, “Safe loading-a
foundation for secure execution of untrusted programs,” in
Security and Privacy (SP), 2012 IEEE Symposium on, 2012.

[32] V. Kiriansky, D. Bruening, and S. P. Amarasinghe, “Secure
execution via program shepherding,” in Proceedings of the
11th USENIX Security Symposium, 2002.

[33] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor:
A tiny hypervisor to provide lifetime kernel code integrity
for commodity OSes,” in Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles, 2007.

[34] R. Riley, X. Jiang, and D. Xu, “Guest-transparent prevention
of kernel rootkits with vmm-based memory shadowing,” in
Proceedings of the 11th International Symposium on Recent
Advances in Intrusion Detection, 2008.

[35] Z. Wang, X. Jiang, W. Cui, and P. Ning, “Countering kernel
rootkits with lightweight hook protection,” in Proceedings of
the 16th ACM conference on Computer and communications
security, 2009.

[36] X. Xiong, D. Tian, and P. Liu, “Practical Protection of Kernel
Integrity for Commodity OS from Untrusted Extensions,” in
Proceedings of the 18th Annual Network and Distributed
System Security Symposium, 2011.

[37] A. Srivastava and J. Giffin, “Efficient Monitoring of Untrusted
Kernel-Mode Execution,” in Proceedings of the 18th Annual
Network and Distributed Systems Security Symposium, 2011.

502

