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Abstract—Kernel drivers are usually provided in the form
of loadable kernel extensions, which can be loaded/unloaded
dynamically at runtime and execute with the same privilege as
the core operating system kernel. The unrestricted security access
from the drivers to the kernel is nevertheless a double-edged
sword that makes them susceptible targets of trojan attacks.
Given a benign driver, it is now easy to implant malicious logic
with existing hacking tools. Once implanted, such malicious logic
is difficult to detect.

In this paper we propose DRIP, a framework for detecting and
eliminating malicious logic embedded in a kernel driver through
iteratively eliminating unnecessary kernel API invocations from
the driver. When provided with the binary of a trojaned driver,
DRIP generates a purified driver with benign functionalities
preserved and malicious ones eliminated. Our evaluation shows
that DRIP successfully eliminates malicious effects of trojaned
drivers in the system, with the purified drivers maintaining or
even improving their performance over the trojaned drivers.
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I. INTRODUCTION

In state-of-the-art design of commodity operating systems,
drivers usually take the form of loadable kernel extensions.
Privileged users could load them dynamically to support new
devices or extend functionalities of a base kernel at runtime.
They hide the complexity of interacting with hardware devices
and present a neat abstract interface for other kernel compo-
nents. To achieve these properties, drivers execute with the
same privilege as the OS kernel, which makes them susceptible
targets of malicious attacks. Unlike the kernel, which is either
built by trusted companies or with source code opened to the
public, kernel drivers could be provided by third-party vendors
as a binary blob.

Given a binary driver, it is difficult to tell whether malicious
logic is embedded inside it. From customers’ perspectives,
it may work correctly with no suspicious symptoms, but the
embedded malicious code [1], [2] may have already collected
confidential information and cloaked its fingerprint under the
cover of a legitimate driver. Even if we assume that vendors
only perform the functionalities as they claim, there still exist
many binary driver infection techniques [3]-[8] that could
implant malicious logic into benign drivers and transform them
into trojaned drivers. When the trojaned driver is loaded into
an operating system, the hidden malicious code can be loaded
simultaneously with the benign code. Hence the challenge
is: How can we identify malicious/undesirable logic in the
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driver and eliminate it at binary level without impairing driver’s
normal operations?

Existing research efforts to protect device drivers can be
divided into two categories, online monitoring and offline
profiling. Online approaches [9]-[12] were proposed to isolate
the driver in a protection domain and enforce external runtime
checks on its execution. They either cannot target intentionally
malicious drivers or require protection from the underlying
hypervisor. All of them add non-trivial performance overhead
due to the realtime monitoring. Offline approaches [13], [14]
are designed to exercise the driver during testing to find bugs
and vulnerabilities, but they are still incapable of distilling
benign operations and eliminating malicious behaviors in the
driver.

We develop a system called DRIP! to address this problem
from a different angle. Based on our observation, we find that
malicious/undesirable logic embedded inside many trojaned
kernel drivers is orthogonal to drivers’ normal functionalities
and most such logic achieves malicious effects through inter-
acting with the base kernel through kernel API invocations.
Removing these interactions in malicious code will not affect
the correct execution of the driver and it can also neutralize the
malicious behavior. We leverage test suites for the semantic-
level behavior of applications [15]-[17] in order to ensure that
the driver works correctly when used by those applications.
By testing the different application level behaviors, we simul-
taneously test and ensure all of the underlying benign driver
functionality that applications use.

We record interactions between a subject driver and the
kernel during testing. Then we try to select and remove a
subset of driver-kernel interactions to test whether this removal
operation will violate the correct execution of the test suite. We
iterate this testing process until all unnecessary interactions are
removed, and consequently we can generate a purified driver
with malicious/undesirable behaviors removed.

This paper makes the following contributions:

1) A testing approach for differentiating between benign
and malicious logic of a trojaned driver. DRIP only
requires a high-level test suite to cover and retain core
legitimate functionalities of the driver.

2) A Test-and-Reduce algorithm to incrementally reduce
unnecessary kernel-driver interactions and extract a
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minimal subset to ensure the correct execution of the
driver.

3) A clustering mechanism to group kernel-driver in-
teractions according to current execution context. It
provides additional semantic information to speed up
the removal of kernel API invocations in the Test-
and-Reduce algorithm.

The rest of this paper is organized as follows. Section II
presents the motivation and overview of the DRIP framework.
Section III provides the detailed design of DRIP. Section
IV gives functional studies of some representative cases and
evaluates the performance. Section V discusses the limitations
and future work. Section VI describes related work and we
conclude in Section VII.

II. OVERVIEW OF DRIP FRAMEWORK
A. Goals and Assumptions

The goal of DRIP is to purify a device driver with ma-
licious/undesirable logic embedded that may jeopardize the
base kernel. The newly generated driver should have the
benign functionalities of a vanilla driver with malicious effects
eliminated.

Our approach is based on the assumption that the trojaned
driver includes the functionalities of a benign driver. The
malicious logic is parasitically attached to the benign logic
within the driver’s binary and executes persistently when the
driver is loaded. We do not target time-bomb malware in which
the malicious functions can only be triggered at a specific
time because the malicious logic may not be active during
our testing. This problem can be addressed by using symbolic
execution [18] to cover more execution paths. There are some
existing efforts [14], [19], [20] to apply symbolic execution to
driver testing and we can leverage them to complement our
work. In addition we do not target the malicious code that
interacts with kernel through direct memory manipulation. We
could consider kernel memory accesses as part of driver-kernel
interactions and plan to include this feature in our future work.

We assume that a test suite is available that covers the
higher level behaviors of a specific application. As previously
mentioned, testing those behaviors also means that the test
suite covers the necessary driver functionality that they depend
upon. Because we test the application level behaviors, our
technique ensures that the application continues to behave
correctly with the purified driver. This assumption is reason-
able for current software development processes, in which
developers often create test cases from requirements even
before implementation as part of the design phase. We can also
leverage existing test generation techniques [18], [20], [21] to
automatically synthesize test cases.

B. Approach Overview

For a particular application and the environment in which it
executes, we need to ensure that the application continues to
behave correctly. This includes correctly executing any low-
level behaviors in the driver that the application relies upon
and triggers during its operation. We can do this by treating
the driver like a black box, without considering the specifics of
its implementation. For example, we might examine a network

interface controller (NIC) driver. We can cover the functional-
ity of an FTP server through test cases from curl-loader [17]. If
we can ensure the correct execution of curl-loader when using
a purified NIC driver, then we have empirically preserved the
functionalities of the driver needed by curl-loader. In general,
covering the tests of an application will also cover and preserve
the low level driver functionality necessary for that application.

Based on our experience of analyzing conventional rootkits,
we gain the insight that the common goals of malicious code
in kernel space are to retrieve information from base kernel
and manipulate kernel data to hide footprints of user space
malware. It is difficult to generate a completely self-contained
malicious module to achieve all these effects without invoking
kernel APIs. When we face a trojaned kernel driver, the
execution of malicious code is mixed with the execution of
benign code at runtime. Benign code of the driver will also
invoke kernel APIs to request services from base kernel. So
we need to differentiate benign kernel API invocations from
malicious ones. With the availability of a test suite covering
benign functionalities of the driver, we can iteratively eliminate
some of the kernel API invocations at runtime to test whether
it will violate the correct execution of the test suite. If the
removal will not affect the benign behavior, we consider these
invocations unnecessary, and they can be removed from the
binary.

Based on this observation, we first take a snapshot of the
system and execute the test suite from a deterministic state.
We record all kernel API invocations from the driver to the
kernel during testing, which can be captured as control flow
transitions across the boundary of driver’s loading memory
region. Then we try to restore to the snapshot, remove a
subset of these invocations in memory, and re-execute the
same test suite to test whether the removal will affect its
correct execution. We chop the removal set of invocations
iteratively until all the invocations left are critical to the correct
execution of the driver. Because benign functionalities of the
driver are covered by the test suite, the removal of kernel
API invocations within benign code will fail the test suite,
so we consider them critical and preserve them. On the other
hand, because malicious code embedded is either orthogonal
or complementary to core functionalities of its “host” driver,
removal of invocations within malicious code will not violate
the correct execution of the test suite, and they are considered
unnecessary. Finally we can generate a purified driver with all
the unnecessary invocations removed, and the malicious effects
from driver are eliminated concomitantly.

C. Procedure Overview

Figure 1 depicts the overall workflow of DRIP to demon-
strate how to purify a trojaned driver. We divide the whole pro-
cedure into three phases, i.e., profiling, testing and rewriting, as
in Figure 1(a). These three phases are transparent to each other.
We give a brief description of the specific functionality of
each phase first and will elaborate upon them in the following
section.

Before starting the purifying process, we construct the
Testing Environment in Figure 1(b) and prepare the binary file
of the trojaned driver. In the profiling phase, we execute the
test suite to trigger the execution of this driver, record kernel
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Fig. 1: Workflow of DRIP

API invocations, and cluster them according to their execution
context. The output of this phase is the Profiling Data and
it is organized in the structure presented in Figure 1(c). In
the testing phase, we select and remove a subset of these
kernel API invocations and test their influence on the correct
execution of the test suite. The Testing Data shares the same
structure as the Profiling Data. The only difference is that
we mark testing status on every entry in the Testing Data. For
example, in Figure 1(c), shaded entries in Testing Data indicate
that they have been tested. This is an iterative process, and we
feed the Intermediate Testing Data back as input to the testing
phase. The testing phase terminates when all the entries in the
Testing Data have been tested. In the last rewriting phase, we
summarize the testing result, apply the changes on the trojaned
binary, and generate a purified driver.

III. DETAILED DESIGN

In this section, we describe DRIP following the workflow
of the driver purification procedure and discuss the design
of key DRIP components in detail. First, we describe the
setup of the Testing Environment. Then we demonstrate the
profiling, testing and rewriting phases respectively to explain
the procedure of generating a purified driver. Finally, we
present the technical details of the prototype implementation.

A. Environment Setup

Before the purification procedure, we set up the Testing
Environment, prepare the trojaned driver and design a com-
munication channel to send test statuses from the test suite to
DRIP.

Testing Environment: As shown in Figure 1(b), the Testing
Environment consists of a guest virtual machine (VM) and its

underlying emulator (we use QEMU [22] in our environment)
as the analysis platform. We integrate our DRIP system as
a component into the emulator. In the guest VM, we load
the trojaned driver in the kernel space and monitor the code
execution within its loading memory region. We select or
synthesize an automated test suite for the target application to
cover the benign behavior of the subject driver and launch it
in the user space. In order to ensure that the test suite executes
from a deterministic state, we take a snapshot of the VM at
the time right before the test suite is about to run.

Communication Channel: If we pick up an existing test
suite, it would have no knowledge about the underlying system
including DRIP. However DRIP needs to make decisions
based on the current status of the test suite. So we design
a communication channel between the test suite and DRIP.
We can leverage special instructions like hypercall or cpuid,
to send signals to the underlying emulator. The emulator
can extract signals when translating these instructions. We
design 3 signals, TESTON, TESTSUCC, and TESTFAIL, which
respectively stand for the beginning of the test, the end of the
test with a successful result, and the end of the test with a
failing result. Then we embed the communication channel in
the test suite to send these signals at specific time instances.

B. Profiling Phase

In the profiling phase, we record all kernel API invoca-
tions/returns during the execution of the test suite. Because all
recorded invocations in different process contexts are mixed,
we design a technique called Context-Sensitive Clustering to
de-interleave invocations into clusters and label each cluster
with FuncEntry tag. After the recording and clustering of
invocations, we organize the runtime information captured into
the Profiling Data and transfer it to the next testing phase.

Tracking of Driver-Kernel Interactions: Because QEMU
can translate every instruction in the guest VM, we track the
execution of the driver through monitoring its program counter
at the granularity of a basic block. If the current basic block
is within the driver’s memory region and the previous one is
located outside, it means that control flow transits from the
kernel into the driver. If the previous basic block is within the
driver’s region and the address of the current one is out of
the driver’s boundary, it indicates that the control flow transits
from the driver into the kernel. Then all control flow transitions
passing the driver boundary can be recorded. The transitions
between kernel and driver are either in the form of a call/jump
instruction or a ret instruction.

As mentioned earlier, we prepare a test suite for the subject
device driver we want to test. When the test suite begins to
execute, we issue TESTON to notify DRIP of the start of the
test. When the test finishes successfully or terminates due to
an assertion failure, it also notifies our system with the result
through TESTSUCC/TESTFAIL respectively. We denote it as
one Testing Cycle from the beginning of a test to the end.
We record all the transitions that are issued through call/jump
instructions from the driver to the kernel in one Zesting Cycle
and we treat them as kernel API invocations.

After recording kernel API invocations from the driver to
the kernel, we need to capture the return value of each invo-
cation because it may be used by subsequent instructions. We
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Fig. 2: Function Return Value Mapping

record the transitions that are issued through the ret instruction
from the kernel to the driver and we treat them as kernel API
returns. The return value is stored in a general register, e.g.,
EAX under x86. Some kernel APIs are void functions or the
return values are not used any further. We check the def-use
of EAX in subsequent instructions to determine whether the
return value is used or not. If EAX is defined first, it indicates
that the return value is not used and has no effect on later
instructions. If EAX is used first, we need to record this value
and map it to the function invocations recorded before.

Due to multitasking in the operating system, a kernel
driver’s code can be executed concurrently in different process
contexts. Most operating systems also enable the feature of
kernel reentrancy and kernel preemption, which means all
processes can be interrupted in kernel mode and resumed
from a previous checkpoint when the interrupt is handled.
These properties make it complicated to create one-to-one
mapping from the kernel API return to its invocation. Fortu-
nately, the starting address of the kernel stack for different
processes/threads is different and can be used to uniquely
identify the process context. We leverage this property to
identify the current context of the driver code being executed.
Processes may be interrupted to handle hardware interruptions
and nested interrupts are possible. It conforms to the Last
In First Out (LIFO) order in the same process context. We
maintain a call stack for every active process to record the last
function invocation and its expected return address. When a
function returns, we can find the call stack according to the
current process context and map the return value to the last
function invocation stored in this call stack and pop it.

We give a simplified example in Figure 2. We assume
processes 1 and 2 are running simultaneously in the system
and both request the same service of the device driver (dotted
red paths 1 and 4 for process 1 and dotted blue paths 2 and
3 for process 2). For the execution of driver code in Process
I’s context, it invokes API 1 (solid red path 6) of the kernel
and is interrupted before returning from API 1. Then it calls
API 2 (solid red path 8) in the handler of interrupt 1. Before
returning from API 2, the call stack of Process 1 contains both

API 1 and API 2. When returning from API 2 (dashed red path
10), the current process context is Process 1 and it can map the
return to API 2 in Process 1’s call stack and pop API 2 from
call stack. For the execution in Process 2’s context, both API 2
and API 3 in two interrupt handlers have returned (dashed blue
path 9 and 12) and popped from the call stack. There is only
API 1 in the call stack. When API 1 returns from the kernel
(dashed blue path 13), its current process context is Process
2 and then we can map the return value to API 1 and pop it
from the call stack.

Context-Sensitive Clustering: After recording all kernel
API invocations in one Testing Cycle linearly, we find that
invocations in different process contexts may interleave with
each other due to multitasking and kernel preemption. In
Figure 3(a), we present recorded invocations of a trojaned
E1000 NIC driver. It is compromised by the module injection
technique [5] and the payload is a DR rootkit. Each entry
contains a symbol name (just used for clear demonstration,
symbols of the driver are not needed by DRIP), funcaddr and
apiaddr. Funcaddr is the function invocation’s call site address
in the driver and apiaddr is the API’s entry address in the core
kernel. Interleaved invocations make it difficult to design an
efficient removal strategy in the later phase because there is
no information of connections between invocations.

We design a technique called Context-Sensitive Clustering
to de-interleave kernel API invocations recorded during the
profiling phase. It is based on the observation that, for the
trojaned driver, each function in the driver either belongs to the
benign logic or to the malicious logic and we can group kernel
API invocations issued under the same function together.
Thus after clustering according to each function address in
the driver, interleaved kernel API invocations belonging to
benign/malicious logic are naturally separated and become
easier to process in the next phase.

In Figure 3(b), we present the result after applying Context-
Sensitive Clustering and organize the kernel API invocations
in reverse chronological order. The entries in red are function
invocations from the DR rootkit and those in blue are from
the E1000 NIC driver. We denote the group clustered as a
Context Group and present one specific example in the red
rectangle. This Context Group is headed with hook_execve
entry addr:0xf81f08b0 and it contains three function invo-
cations, ptregs_execve, strstr and getname. It means during
the execution of function hook_execve whose entry address is
0xf81f08b0 in the driver, it invokes these three kernel APIs. We
combine the clustered kernel API invocations with the return
values to generate the Profiling Data and transfer to the testing
phase.

C. Testing Phase

In the testing phase, DRIP eliminates kernel API invo-
cations that do not affect the correct execution of the test
suite, which ensures the preservation of the driver’s benign
functionalities. We obtain the Profiling Data that contains
clustered kernel API invocations from the preceding profiling
phase and rename it as Testing Data. Initially, entries in the
Testing Data are not marked with any status.

When the Testing Cycle begins, we load the snapshot to
execute the test suite from a deterministic state. Upon receiving



skb_trim funcaddr: 0xf81e6d3c apiaddr: 0xc04bd530
nommu_map_page funcaddr: 0xf81e6d91 apiaddr: 0xc0108e90
__netdev_alloc_skb funcaddr: 0xf81e6ele apiaddr: 0xc04be900
netif_receive_skb funcaddr: 0xf81e15bb apiaddr: 0xc04c6ba0
eth_type_trans funcaddr: 0xf81e59cd apiaddr: 0xc04da970
skb_put funcaddr: 0xf81e59a3 apiaddr: 0xc04bda80
__netdev_alloc_skb funcaddr: 0xf81e5a18 apiaddr: 0xc04be900
dev_kfree_skb_any funcaddr: 0xf81e474d apiaddr: 0xc04c8150
skb_dma_unmap funcaddr: 0xf81e4746 apiaddr: 0xc04c4640
skb_dma_map funcaddr: 0xf81e3281 apiaddr: 0xc04c4700
kfree funcaddr: 0xf81f0b2b apiaddr: 0xc01ff080

kfree funcaddr: 0xf81f0b23 apiaddr: 0xc01ff080

kfree funcaddr: 0xf81f0b03 apiaddr: 0xc01£f080

kfree funcaddr: 0xf81f0afb apiaddr: 0xc01ff080
copy_to_user funcaddr: 0xf81f0af3 apiaddr: 0xc0356e10
copy_to_user funcaddr: 0xf81f0ae5 apiaddr: 0xc0356e10
strstr funcaddr: 0xf81f0a38 apiaddr: 0xc03566f0
copy_from_user funcaddr: 0xf81f0alc apiaddr: 0xc0356f40
sys_getdents64 funcaddr: 0xf81f09fc apiaddr: 0xc02193c0
__kmalloc funcaddr: 0xf81f09e3 apiaddr: 0xc01ffd70
__kmalloc funcaddr: 0xf81f09d3 apiaddr: 0xc01ffd70
ptregs_execve funcaddr: 0xf81f096a apiaddr: 0xc0103590
strstr funcaddr: 0xf81f0904 apiaddr: 0xc03566f0

getname funcaddr: 0xf81f08f2 apiaddr: 0xc02138e0
sys_kill funcaddr: 0xf81f009a apiaddr: 0xc015f780
sys_open funcaddr: 0xf81f02b1 apiaddr: 0xc0208400
sys_socketcall funcaddr: 0xf81f086e apiaddr: 0xc04b9220
napi_complete funcaddr: 0xf81e4be2 apiaddr: 0xc04c7750
mod_timer funcaddr: 0xf81e4361 apiaddr: 0xc015cb40
round_jiffies funcaddr: 0xf81e4357 apiaddr: 0xc01584c0
__napi_schedule funcaddr: 0xf81e1f99 apiaddr: 0xc04c4a90
_spin_unlock_irgrestore funcaddr: 0xf81e3108 apiaddr: 0xc0591300
__const_udelay funcaddr: 0xf81e8fa5 apiaddr: 0xc03561e0
_spin_lock_irgsave funcaddr: 0xf81e2458 apiaddr: 0xc05911b0

Context-Sensitive
Clustering

©)
Kernel API Invocations Recorded
before De-Interleaving

€1000_xmit_frame entryaddr: 0xf81e3590
|--- skb_dma_map funcaddr: 0xf81e3281 apiaddr: 0xc04c4700
hook_getdents64 entryaddr: 0xf81f0990

|--- kfree funcaddr: 0xf81f0b2b apiaddr: 0xc01ff080

|--- kfree funcaddr: 0xf81f0b23 apiaddr: 0xc01ff080

|--- kfree funcaddr: 0xf81f0b03 apiaddr: 0xc01ff080

|--- kfree funcaddr: 0xf81f0afb apiaddr: 0xc01ff080

|--- copy_to_user funcaddr: 0xf81f0af3 apiaddr: 0xc0356e10
|--- copy_to_user funcaddr: 0xf81f0ae5 apiaddr: 0xc0356e10
|--- strstr funcaddr: 0xf81f0a38 apiaddr: 0xc03566f0

|--- copy_from_user funcaddr: 0xf81f0alc apiaddr: 0xc0356f40
--- sys_getdents64 funcaddr: 0xf81f09fc apiaddr: 0xc02193c0
--- __kmalloc funcaddr: 0xf81f09e3 apiaddr: 0xc01ffd70
--- __kmalloc funcaddr: 0xf81f09d3 apiaddr: 0xc01ffd70

Context Group

hook_execve entryaddr: 0xf81f08b0

|--- ptregs_execve funcaddr: 0xf81f096a apiaddr: 0xc0103590
|--- strstr funcaddr: 0xf81f0904 apiaddr: 0xc03566f0

|--- getname funcaddr: 0xf81f08f2 apiaddr: 0xc02138e0

hook_kill entryaddr: 0xf81f0060

|--- sys_kill funcaddr: 0xf81f009a apiaddr: 0xc015f780
hook_open entryaddr: 0xf81f0270

|--- sys_open funcaddr: 0xf81f02b1 apiaddr: 0xc0208400
hook_socketcall entryaddr: 0xf81f0850

|--- sys_socketcall funcaddr: 0xf81f086e apiaddr: 0xc04b9220
€1000_clean entryaddr: 0xf81e4a90

|--- skb_trim funcaddr: 0xf81e6d3c apiaddr: 0xc04bd530

|--- nommu_map_page funcaddr: 0xf81e6d91 apiaddr: 0xc0108e90
|--- __netdev_alloc_skb funcaddr: 0xf81e6ele apiaddr: 0xc04be900
|--- netif_receive_skb funcaddr: 0xf81e15bb apiaddr: 0xc04c6ba0
|--- eth_type_trans funcaddr: 0xf81e59cd apiaddr: 0xc04da970

|--- skb_put funcaddr: 0xf81e59a3 apiaddr: 0xc04bda80

|--- __netdev_alloc_skb funcaddr: 0xf81e5a18 apiaddr: 0xc04be900
|--- dev_kfree_skb_any funcaddr: 0xf81e474d apiaddr: 0xc04c8150
|--- skb_dma_unmap funcaddr: 0xf81e4746 apiaddr: 0xc04c4640
|--- napi_complete funcaddr: 0xf81e4be2 apiaddr: 0xc04c7750
€1000_intr entryaddr: 0xf81e1f00

|--- __napi_schedule funcaddr: 0xf81e1f99 apiaddr: 0xc04c4a90
€1000_watchdog entryaddr: 0xf81e41b0

|--- mod_timer funcaddr: 0xf81e4361 apiaddr: 0xc015cb40

|--- round_jiffies funcaddr: 0xf81e4357 apiaddr: 0xc01584c0

|--- _spin_unlock_irqrestore funcaddr: 0xf81e3108 apiaddr: 0xc0591300
|

--- __const_udelay funcaddr: 0xf81e8fa5 apiaddr: 0xc03561e0
--- _spin_lock_irgsave funcaddr: 0xf81e2458 apiaddr: 0xc05911b0
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Fig. 3: Context-Sensitive Clustering

TESTON, a subset of kernel API invocations that have not
been marked will be selected and removed from the memory.
As aforementioned, we cluster kernel API invocations in the
profiling phase into different Context Groups. Selection of
candidates for removal is based on the clustering. First we
select one Context Group that is marked as UNTESTED and
try to remove all function invocations in it. Then we change
its status to TESTING. We maintain a FuncStack to record the
current function invocation list that is being tested. Then we
enter the VM to resume executing the test suite. If it runs
to completion successfully, we mark the current kernel API
invocations as UNNEC, which means that they do not violate
the correct execution of the test suite and can be removed
before the next Testing Cycle. If the removal causes failure
of the test suite, we utilize a divide and conquer approach
to split the Context Group into two equal subsets and push
them into the FuncStack. Then we recover current invocations

being tested in memory and re-launch the next Testing Cycle.
If the current set contains only one function invocation, which
cannot be divided any further, we mark this function invocation
as CRITICAL if test fails. If all kernel API invocations in the
same Context Group have been tested, we mark this context
group as TESTED and continue to process the next one. We
will iterate this process until all kernel API invocations in the
Testing Data are marked. The detailed algorithm is presented
in the Test-and-Reduce Algorithm 1.

Recall that we list every function invocation in the Context
Group using reverse chronological order. The reason is that the
result of earlier function invocations will probably impact the
later function invocations. But removing the later invocation
first will not impact the earlier ones. In Figure 4, we present
the function h4x_unlink from KBeast, which is one of the
malicious payloads in our evaluation. h4x_unlink is used to
hijack the sys_unlink system call from Linux. It analyzes the



Algorithm 1 Test-and-Reduce Algorithm in Testing Phase

Input: ContextGroupListhead <= FirstContextGroup
FuncStack <= EmptyStack
CurrContextGroup <= NULL
CurrFuncList <= NULL
ENTRYFUNC <= DISPATCH(signal)

1: procedure DISPATCH(signal) > Dispatch based on signal
2: if signal = TESTON then

3: PATCHTESTEDFUNCS()

4: PATCHCURRFUNCLIST()

5: else if signal = TESTSUCC then

6: MARKCURRFUNCLIST(UNNEC)

7: LOADSNAPSHOT() > Load Snapshot of VM
8: else if signal = TESTFAIL then

9: if S1ZE(CurrFuncList) = 1 then

10: MARKFUNCLIST(CRITICAL)

11: else

12: RECOVERCURRFUNCLIST()

13: {FuncListy, FuncLists} < SPLITLIST()

14: PUSHSTACK(FuncStack, { FuncListy, FuncLista})

15: LOADSNAPSHOT()

16: procedure PATCHTESTEDFUNCS(void)
17: ContextGrouplter <= ContextGroupListhead
18: while ContextGrouplter ## NULL do

19: if ContextGrouplter.status = TESTED or TESTING then

20: for all Func in ContextGrouplter.funclist do

21: if Func.status = UNNEC then

22: REMOVEFUNC(Func) > Remove the invocation in Memory
23: if ContextGrouplter.status = TESTING then

24: ASSERT(CurrFuncList # NULL)

25: return

26: if ContextGrouplter.status = UNTESTED then

27: CurrContextGroup <= ContextGrouplter > Init CurrContextGroup
28: CurrFuncList <= ContextGrouplter.funclist > Init CurrFuncList
29: ContextGrouplter.status <= TESTING

30: return

31: ContextGrouplter <= ContextGrouplter.next

32: procedure PATCHCURRFUNCLIST(void)
33: for all Func in CurrFuncList do

34 REMOVEFUNC(Func)

35: procedure MARKCURRFUNCLIST(status) > Mark statuses in the CurrFuncList
36: if status = UNNEC then

37: for all Func in CurrFuncList do

38: Func.status <= UNNEC

39: else if status = CRITICAL then

40: ASSERT(S1ZE(CurrFuncList)=1)

41: CurrFuncList[0].status <= CRITICAL
42: RECOVERCURRFUNCLIST()

43: if ISEMPTY(FuncStack) then

44: CurrContextGroup.status <= TESTED
45: CurrFuncList <= NULL

46: else

47: CurrFuncList <= POPSTACK(FuncStack)

48: procedure RECOVERCURRFUNCLIST(void) > Recover CurrFuncList
49: for all Func in CurrFuncList do

50: RESTOREFUNC(Func) > Restore Invocation in Memory

pathname argument and protects its own malicious files from
being deleted. We highlight 3 function invocations in blue,
which are kmalloc, copy_from_user and kfree, in the function
body. If we remove these 3 function invocations together in one
Testing Cycle, it is safe and will not cause problem. But other
kernel API invocations located between these 3 invocations
may be marked as CRITICAL.

In this example, o_unlink cannot be removed because it
is the function pointer to the original sys_unlink. Removing
it can make deletion of files ineffective. This critical function
invocation splits the current Context Group and forces removal
of these 3 function invocations to occur in different Testing
Cycles. If we do not use reverse chronological order, we
will try to remove kmalloc first and assign kbuf with a fake

asmlinkage int h4x_unlink(const char __user *pathname) {

char *kbuf=(char*)kmalloc(256,GFP_KERNEL);
copy_from_user(kbuf,pathname,255);

r=(*o_unlink)(pathname);
kfree(kbuf);

Fig. 4: Reverse Chronological Order

address. The subsequent function copy_from_user will write to
an unsafe address and kfree will free a memory block that has
never been allocated. This will probably crash the system. Then
we will mistakenly mark kmalloc as CRITICAL, but in fact it is
not. If we remove backwards in the following order: kfree—
copy_from_user— kmalloc, all 3 invocations will be safe to
remove. This greatly reduces the risk of mutual influences of
function invocations.

In order to accelerate the handling of failing cases, we
add two optimization techniques to handle different failing
scenarios:

1)  Test Suite Halts in the Middle: Removal of some
function invocations will cause the test case to freeze
without progress. We handle this by setting a timer
and the time interval is estimated by profiling the
execution time of previous successful cases. If the
timer expires, we consider this 7esting Cycle a failure
and proceed to execute the next one.

2)  Test Suite Causes OS Crash and Rebooting: Removal
of a critical function invocation may cause OS crash
and rebooting. In this case we do not have to wait
for the timer to expire. Instead, we add rebooting
detection logic by checking whether the paging bit is
set in the control register. We can determine that it
is a failing case if the system is rebooting after we
remove certain invocations.

To eliminate kernel API invocations in the driver, we patch
them in the driver’s memory. The method of patching varies
according to platforms and file formats. For ELF under Linux,
the destination address of call instructions is unknown before
loading. The module loader resolves symbols of the kernel
API in the entries of the relocation section and fixes up the
destination in the code section with the absolute address when
loading the kernel module. For Portable Executable (PE) under
Windows, it utilizes the import address table (IAT) to store
the absolute virtual addresses of kernel APIs. The contents
are populated when that driver is loaded into the system. The
kernel API invocations in PE drivers use two calling styles.
The first one uses the indirect call generated by the compiler
and retrieves its destination address from IAT. The second one
makes a direct call to an indirect jump and the jump destination
is stored in the IAT. If the return value is not used by the
subsequent instructions or it is a void function, we can simply
replace the call or jmp instruction with a series of nops in
memory. If the return value is used later (e.g., as a predicate
condition) and can determine the control flow, replacing the
instruction with nops will lead to an undefined situation.



As we have already recorded the return value of every
kernel API invocation in the profiling phase, we can replace the
calling instruction with a mov instruction that fills the return
value in the EAX register. This kind of replacement can be
applied to the ELF driver and the first calling style of PE
drivers. For the second calling style of PE drivers, we replace
the indirect jump with ret to return to the original direct call
to eliminate this invocation.

The other issue we need to consider during memory patch-
ing is the calling convention of the kernel API. If the caller
is responsible for cleaning up the stack, no additional effort
is needed because push and pop operations are performed in
the same function. If the callee is responsible for cleaning
up the stack, the situation becomes more complicated. In this
scenario, arguments are pushed into stack by the caller and
the callee unwinds the stack before returning. We choose to
remove the push operations before the function invocation in
the caller to solve this problem. We can record the number of
stack bytes that need to be unwound. This is determined by
the 16-bit parameter of the last ret instruction in the kernel
function. We then trace back from the kernel API invocation
instruction to search for push instructions and replace these
instructions with nops.

If the patching operation is successful for the current
Testing Cycle, which means the function invocation is tested
to be UNNEC, we record all the modified content and the
address of this function invocation for the rewriting phase.
After writing new content into the memory address of a
kernel API invocation, we mark this specific basic block as
a candidate for memory invalidation. When the snapshot is
reloaded in the next Testing Cycle and the emulator tries to
execute this basic block, we invalidate the cache of this basic
block and force the emulator to perform binary translation on
it because the instructions inside it have been modified and it
should execute the newly translated code.

D. Rewriting Phase

The last phase of DRIP’s driver purification procedure
is to remove kernel API invocations marked as UNNEC in
the binary file. We have already tested and retrieved the list
of unnecessary API invocations and their addresses in the
memory from previous phases. The procedure of patching the
binary is similar to patching memory in the testing phase.
We need to map the loading addresses of API invocations to
their relative addresses inside the binary and apply the changes
recorded in the testing phase to code sections.

Finishing these steps is not enough for the purified driver to
work correctly. Every relocatable driver has its own relocation
table consisting of a list of pointers. These pointers point to
addresses in the binary that need to be fixed up after the
driver is loaded into the system. If we remove the function
invocations whose addresses are included in the relocation
table, we also need to remove these relocation entries in the
relocation table. Otherwise the loader of the OS will still fix
up the function address and cause memory corruption. Because
holes are not permitted in the relocation table for both ELF
and PE, we swap the value of each removed entry with the
value of last entry in the relocation table to fill the hole and
adjust the table size in the header accordingly. For PE files,

we also need to calculate the new checksum value and write
it into its PE header, otherwise Windows will refuse to load
the driver with the wrong checksum.

After finishing all these steps, we generate a new relocat-
able binary as a purified driver and it can be loaded into the
system for execution.

E. DRIP Prototype

We have implemented a proof-of-concept prototype of
DRIP. The prototype is built as a component of QEMU. As a
full system emulator, QEMU dynamically translates the guest
VM’s code at the granularity of basic blocks and executes
them on the emulated CPU. Such a platform enables us to
perform binary analysis on the code region of drivers, intercept
dynamic control flow, and patch the memory at runtime to test
effects of our kernel API invocation removal operations. In
addition to processor emulation, QEMU also provides a set
of emulated devices, which provides an alternative to verify
the correctness of test cases through mapping the high-level
program to low-level hardware events. For example, we can
simulate keystrokes in emulated hardware and capture the keys
in the test suite to test the keyboard driver.

To prove the generality of DRIP, We have tested the
prototype on two guest operating systems, Ubuntu 10.04 and
Windows XP SP2%. We believe that it is easy to extend our
current system to support more operating systems of different
versions because DRIP does not rely on the semantics of a
guest VM. We support relocatable file formats for both PE
and ELF, which are standard formats for Windows and Linux
drivers.

IV. EVALUATION

In this section, we present the evaluation results for the
DRIP prototype in two aspects, effectiveness and performance.
The hardware configuration of our testing platform is a Dell
OptiPlex 780 with Intel® Core™ 2 Duo CPU E8400 3.00GHz
CPU and 4GB memory. We develop and run the DRIP system
on Ubuntu 11.10 (Linux kernel version 3.0.0) to generate the
purified driver. To prove that changes in the underlying infras-
tructure do not affect the functionality of purified drivers, we
use VMware Workstation 8.0 as the hypervisor and Windows 7
as the host operating system to perform evaluation on purified
drivers. We allocate 1GB memory for each guest VM. The
guest OSes are Ubuntu 10.04 (Linux kernel version 2.6.32)
and Windows XP SP2.

A. Evaluation of Effectiveness

In the effectiveness evaluation, we use trojaned drivers
infected by binary driver rewriting tools as input to DRIP
and generate the corresponding purified drivers. Then we
scrutinize the behavior of the generated driver manually to
validate that the malicious behavior has been eliminated and
the functionality of the benign parts of the driver and the kernel
are not impaired. We present five representative case studies
on drivers in different categories in detail and present other
results briefly in Table L.

2We use Ubuntu 10.04 and Windows XP SP2 because the trojaned driver
samples we perform evaluation on do not support newer versions yet.



Name Infection Type Platform Purified | Note

E1000+KBeast Module injection Linux v E1000 NIC driver infected with KBeast as payload
E1000+DR Module injection Linux v Case Study I

E1000+Adore-ng Module injection Linux v E1000 NIC driver infected with Adore-ng 0.56 as payload
E1000+Sebek Module injection Linux v E1000 NIC driver infected with Sebek-1in26-3.2.0b as payload
E1000+Redir ERESI Linux v Cast Study II

Kbdevents Embedded Linux v Case Study IIT

Null+SSDT DaMouse Windows v Null.sys infected by DaMouse

Kbdclass+SSDT DaMouse Windows v Case Study IV

E1000325+SSDT | DaMouse Windows v E1000325.sys infected by DaMouse

Beep+Klog Binary Transformaion Windows v Case Study V

E1000325+Klog Binary Transformation | Windows v E1000325.sys infected with Klog as payload

TABLE I: Results of effectiveness evaluation against a spectrum of trojaned drivers

Case Study I: E1000 NIC driver with DR rootkit implanted
under Linux: In phrack issue 61 [3], truff described a driver
infection technique to hide the rootkit and ensure that it will
be reloaded after rebooting. The basic idea is to rename the
malicious function evil with init in the section .strtab to trick
the system to load it. It only applies to Linux kernel 2.4.x,
so it is no longer valid for the latest Linux kernel because
the module loading procedure has been changed in new kernel
version. From Linux Forum [5], coolq extended this approach
to Linux Kernel 2.6.x by modifying the module init function
entry in the relocation section .rel.gnu.linkonce.this_module
to guide the system to load the initialization function in
the malicious module. In the latest issue 68 of phrack [4],
styx” proposes a similar approach to infecting modules in
kernel versions 2.6.x and 3.0.x. It redirects init_module to load
function evil instead of original init function. In order to enable
malicious modules to invoke the original init function, it also
updates the symbol binding of init from local to global. The
effects of these two approaches are equivalent and we choose
to use the former method to inject DR rootkit into an E1000
NIC driver as our target.

The DR rootkit leverages a debug register-based hooking
engine, which does not require modification to the system
call table, to perform traditional rootkit behavior, like hiding
processes, sockets, and files. To be more specific, it determines
the name of a file it wants to hide. (In the version we obtain
the name is AAA.) Then it hides the presence of this file
in the file system by modifying the file listing result in the
directory. When executing this file, the rootkit escalates AAA’s
privilege to root, hides all the sockets created, hides all the
child processes forked, and prevents other processes from
opening files owned by AAA.

The trojaned driver contains both the functionality of a
benign E1000 NIC driver and a malicious kernel rootkit. We
pass it to DRIP to cripple its malicious behavior and retain
the benign NIC driver behavior. We select and synthesize
test cases from LTP (Linux Test Project) [15], Linux utility
programs, and Iperf to cover the benign functionalities of
E1000 NIC driver and the reliability of the overall system.
We have validated that the purified driver behaves the same
as a benign E1000 NIC driver with the malicious operations
from the DR rootkit eliminated.

Case Study II: EI1000 NIC driver with kernel function
redirection under Linux: From case study I, we learn that we
can implant malicious code inside the initialization function

to install system call hooks. In fact, when the driver code
invokes the kernel function, we can intercept and redirect any
function invocation to a malicious function first. The malicious
function can act as a proxy to invoke the original function and
return the result to the original invocation. This kernel function
redirection technique is proposed in the libkernsh of ERESI
[8].

We prepare an interposition kernel module, which contains
malicious functions from the KBeast rootkit and link it with the
E1000 NIC driver to generate a trojaned driver. The relocation
table of this new driver contains all the addresses of code/data
that need to be fixed up during loading. We scan this table to
find the function invocation we want to hijack and modify
it to detour to the malicious function in the interposition
module. The payload, KBeast, is a new kernel rootkit based
on other well-known rootkits and supports the latest Linux
kernel versions. It contains traditional rootkit functionalities,
e.g., process hiding, files hiding, keystroke logging, local root
escalation, etc. Its basic idea is to patch the system call table
of Linux and detour system calls to its fake functions that
are crafted by the attacker. Because system calls are hijacked,
KBeast can easily manipulate the intermediate results and
return fake results to the user. We select similar test cases
as in Case Study I to build our test suite to ensure the
reliability of the system and core benign functionalities of the
E1000 NIC driver. After purification, we validate that KBeast’s
cloaking effects on the system have been eliminated and we
still preserve the E1000 driver’s original functionalities.

Case Study III: Kbdevents under Linux: Kprobes [23] is
a lightweight debugging mechanism in the Linux kernel that
allows developers to intercept kernel routines at runtime to
collect debugging information. Kbdevents [24] is a Linux
kernel module based on Kprobes to intercept keyboard events.
It can be used as a debugging tool to verify the correctness of
the keyboard driver. On every key pressed, Kbdevents has ad-
ditional functionality to launch user scripts from kernel space,
e.g., keylogger to dump keystrokes into a file, printscr to take
screenshots and typewriter to imitate typewriter sounds. These
supplementary capabilities are not necessary for debugging
purposes. So we can perform purification on Kbdevents to
minimize it to contain only the debugging functionality. We
build a special test suite to simulate keystrokes out of VM,
i.e., generate keyboard interrupt from QEMU, and capture
them in the guest VM to verify the correctness of Kbde-
vents’ debugging functionality. After purification, we find all




kernel API invocations related to launching user scripts from
the kernel (e.g., call_usermodehelper_{setup,exec}) have been
removed from the driver. The purified driver can still intercept
keystrokes to debug the Linux keyboard driver.

Case Study 1V: Infected Kbdclass driver by DaMouse under
Windows: DaMouse [6] is a PE driver infection technique
under Windows. It implants existing malicious code into a
windows device driver in the system. It utilizes a virus coding
technique called Entry-Point Obscuring (EPO) to patch API
invocation inside the device driver. When this patched API is
invoked, it installs a permanent System Service Dispatch Table
(SSDT) hook to redirect the system call to the hook function
inside the driver. The hook function contains malicious code
to filter the results and can eventually complete the procedure
by invoking the original system call.

In this case study, we use DaMouse to infect kbdclass.sys,
the keyboard class driver in Windows. DaMouse patches the
Kbdclass driver and install the SSDT hook at NtOpenProcess.
Then system calls to NtOpenProcess are redirected to the
hook function called NewNtOpenProcess. The filter code in
the hook function determines whether the target process is
iexplorer.exe, which belongs to the Internet Explorer. If so, the
NtOpenProcess request will be denied. The symptom notice-
able to the user is that he/she cannot open a new web page in
the Internet Explorer. For other processes, the malicious code
extracts the NtOpenProcess’ arguments, e.g., pid and name, of
calling process and dumps the result through DbgPrint. We
build the test suite for Kbdclass through sending keystrokes
from QEMU into VM, which is similar to Case Study III,
and verify them in the test program within the VM. After
purification, we can keep the keyboard driver’s functionality,
Internet Explorer can open new tabs successfully and there is
no process information leakage any more.

Case Study V: Beep driver infected with klog as payload
under Windows: In previous case studies, we have applied
DRIP to purify drivers infected by existing binary infection
tools. In this case study, we try to prove the generality of
DRIP by purifying trojaned drivers generated by a binary trans-
formation tool newly developed in our own research efforts.
This technique enables transplanting binary functional module
extracted from one binary into another binary. We extract the
malicious functions, i.e., keyboard attaching and keystrokes
dumping, from klog, which is a well-known Windows key-
board sniffer. Then we utilize our own binary transformation
technique to implant the extracted functions into the beep
driver of Windows. In order to check if the beep driver works
properly, we add some functionality-checking logic in the
emulated pc speaker in QEMU to verify the beep events.
After purification, we load the purified beep driver into the
production environment and it works as expected and keyboard
can no longer dump sniffed keystrokes to a file any more.

B. Performance Evaluation

The time it takes for DRIP to purify a specific driver is
highly dependent on the driver’s code complexity, coverage
of test suite, and hardware configuration. We present the
complete performance statistics of purification process for each
trojaned driver in Table II. It shows the ratio of “Removed
Function Invocations” to “Recorded Function Invocations”, the

Name Ratio' | Time NTC?
E1000+KBeast 57/69 | 42min 13s | 37
E1000+DR 13/25 | 21min 23s | 40
E1000+Adore-ng 7/23 20min 46s | 39
E1000+Sebek 13/34 | 19min 19s | 35
E1000+Redir 37/53 | 35min 38s | 34
Kbdevents 8/12 8min 25s 13
Null+SSDT 5/7 4min 4s 12
Kbdclass+SSDT 13/21 15min 31s | 32
E1000325+SSDT | 20/24 | 22min 15s 19
E1000325+Klog 22/28 | 24min 35s 19
Beep+Klog 24/35 | 31lmin Is 44

TABLE II: Performance evaluation results with a spectrum of
trojaned drivers

! Ratio here represents the ratio of “Removed
Function Invocations” to “Recorded Function
Invocations”.

2 NTC stands for “Number of Testing Cycles”
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Fig. 5: Comparison of Normalized CPU Performance between
Trojaned Drivers and Purified Drivers

purification time, and the number of testing cycles. Our results
indicate that DRIP is suitable for offline driver purification.

We next measure the system performance overhead with
the purified driver and compare it with system performance
with the trojaned driver. We use SPECINT 2000 under Win-
dows and UnixBench under Linux to measure the CPU perfor-
mance. We normalize the performance results and present them
in Figure 5. The left bars indicate the normalized performance
scores (the higher the better) after loading the original trojaned
driver. The right bars are normalized performance scores after
loading the purified driver. In the experiments with trojaned
E1000+KBeast/E1000+Redir, the system crashed when exe-
cuting the test case file copy in UnixBench. The reason is
that KBeast rootkit cannot survive the workload of test case
file copy in the UnixBench and both trojaned drivers contain
the KBeast’s code. After purification, both drivers support the
benchmark successfully because the KBeast functionality has
been eliminated. For the other experiments, the purified drivers
improve benchmark performance by 1% to 45% compared
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Fig. 6: Comparison of Network Throughput between Trojaned
Drivers and Purified Drivers

with that under trojaned drivers. This is intuitive to understand
because the purified drivers are without unnecessary kernel
API invocations and thus execute less code than the trojaned
drivers.

Besides testing CPU performance, we also utilize Iperf to
measure the network throughput for all cases involving the NIC
driver. We compare the TCP throughput of the trojaned driver
with the purified driver and present the result in Figure 6. The
left bars are bandwidths for trojaned drivers and the right bars
are for purified drivers. From the results, we observe that 4
out of 7 purified drivers maintain the same or slightly better
throughput compared with the trojaned drivers. The worst-case
overhead observed is only 4% for the purified E1000+Sebek
driver.

Our performance evaluation results demonstrate that pu-
rified drivers generated by DRIP can maintain (almost) the
same network performance as under their trojaned versions.
Moreover, the purified drivers lead to better CPU performance
with the removal of embedded malicious operations.

V. DiscussioN

In this section, we discuss the limitations of DRIP and
propose some possible solutions.

Coverage of Test Suite: A test suite can only ensure the
correctness of the tested behaviors within a specific application
and the environment in which it executes. Correspondingly, by
using a test suite, we only guarantee to preserve the driver
functionalities that those tests exercise. This may not cover all
benign functionality within a driver, or it may require new
tests in order to preserve behaviors not originally covered
by a test suite. For practical deployment, we recommend
adjusting test suite and generating new purified drivers based
on different deployments of applications. This can also be
treated as specialization of the driver. If we do not need some
of the redundant features, we can use DRIP to minimize the
functionalities of the driver.

False Positives of Removed Kernel API Invocations: We
remove function invocations that are not necessary to our test

suite, but it does not mean all these removed invocations are
useless. For example, we have found some memory deallo-
cation invocations have been removed. This may not impact
the execution of the test suite over a short period, but it will
cause memory leaks and affect the performance of the system
in the long term. We can add some test cases to prevent these
invocations from being removed. For example, we can measure
the memory usage of the driver and report failure if it exceeds
a threshold. Another simple solution is to add these well-
known functions with specific functionalities into a white list
of functions to keep and skip them when profiling the driver.

Self-contained Malicious Code: Some malicious code can
jeopardize the kernel without invoking any kernel APIs. For
example, some kernel malware can directly modify the kernel
memory to achieve their malicious effects. They can evade
DRIP’s purification as we monitor at the granularity of API
invocations. But the functionalities of such self-contained
malicious code are limited and it is hard for them to adapt
to new kernel versions. We will improve DRIP to monitor at
the level of memory operations during the profiling phase to
address this problem in the future.

Limitation of the Testing Environment: Our Testing Envi-
ronment is based on QEMU to test the drivers. We can support
kernel drivers that extend the core kernel functionalities. For
the device drivers that control real hardware devices, we can
only support those whose devices are emulated by QEMU.
In the DDT research effort [14], the authors propose the
symbolic device, which presents itself as a virtual device to
facilitate symbolic execution of driver code. This technique
can complement DRIP to address the problem that some
devices are not emulated by QEMU. We consider integration
of symbolic device our future work.

VI. RELATED WORK

Online Device Driver Isolation: Nooks [9] involves a
shadow driver mechanism to conceal driver failures from
applications by monitoring the state of real drivers during
normal operation. It inserts itself when failure occurs, thus
improving the reliability of the overall system. SafeDrive [25]
improves kernel extension reliability by adding type-based
checking to driver code and enforcing runtime memory safety.
In order to leverage user level programming tools and reduce
kernel level faults introduced by drivers, Microdriver [26]
partitions an existing driver into a kernel level driver handling
performance critical tasks and a user level driver processing
low-performance issues. The Nexus [27] operating system
moves the device driver to user space and it leverages device-
specific reference monitors to validate that all the interactions
between drivers and devices conform to safety specifications.
To protect untrusted device drivers from compromising a
system, SUD [10] leverages recent hardware support to confine
operations of devices and allows unmodified Linux device
drivers to run in user processes by emulating a Linux kernel
environment in user space. These research efforts are designed
to isolate buggy drivers at runtime. Compared with DRIP,
they incur additional performance overhead and cannot target
intentionally malicious drivers.

HUKO [12] provides a hypervisor-based approach to en-
force mandatory access control policies on the untrusted



extension. It limits the attacker’s ability to jeopardize the
integrity of the kernel. Gateway [11] is also a hypervisor-based
approach to trace kernel malware behavior. It monitors kernel
APIs invoked by untrusted kernel extensions and isolates the
driver at an address space separate from the kernel. These two
approaches both require the underlying hypervisor to support
online monitoring and they do not aim at purifying trojaned
malicious drivers.

Offline Device Driver Testing: SDV [13] statically checks
source code paths of device drivers to make sure they use
the Windows API correctly. DDT [14] exercises the closed
source device drivers to find bugs by using symbolic execution.
These two offline approaches are designed to test buggy drivers
thoroughly but not for removing malicious behaviors from the
driver. On the other hand, both of them can complement DRIP
for improving the coverage of test suites.

Sandboxing: SFI [28] proposed the concept of sandboxing
to prevent unsafe instructions in untrusted modules from
writing or jumping to an address outside of their domain.
Based on SFI, XFI [29] leverages control flow integrity to
prevent circumvention and support fine-grained memory access
control. Vx32 [30] and NaCl [31] isolate the execution of an
application to a sandbox with restricted memory access and
system interface to prevent it from jeopardizing the system.
BGI [32] is a compiler-based software fault isolation approach
to provide byte-granularity memory protection. In order to
enforce API integrity, LXFI [33] utilizes a compiler plug-in
to generate instrumented driver code with security policies
specified by programmers. We can enhance DRIP to perform
finer-grained purification at the level of memory operation by
leveraging their ideas in the future.

Emulation-Based Analysis: Emulation-based techniques
have been widely used in malware profiling and analysis.
Panorama [34] captures the privacy-breaching behavior of
malware by leveraging whole-system taint tracking. K-Tracer
[35] dynamically analyzes a rootkit’s malicious behavior by
using backward slicing and chopping techniques. HookFinder
[36] and HookMap [37] perform dynamic analysis to identify
kernel hooks implanted by rootkits. PoKeR [38] profiles a
kernel rootkit’s behavior by traversing from static objects to
locate dynamic objects and performing address-object map-
ping. Rather than detect malware, DRIP extends the emulation
platform to perform trojaned malicious behavior elimination
from a driver. Virtuoso [39] involves a technique to create
introspection-based security tools automatically out of a VM
by tracing and combining the execution traces of In-VM
programs. RevNIC [40] is a technique that helps automatically
reverse engineer the logic of a network device driver and
synthesize a new driver with the same functionality for a
different platform. Rather than combining traces to re-create
a new binary, the goal of DRIP is to identify malicious logic
in existing drivers and perform binary rewriting to eliminate
their malicious effects.

VII. CONCLUSION

We develop and evaluate DRIP, a framework to eliminate
malicious/unnecessary behaviors of a trojaned kernel driver
and preserve its benign functionalities for a target application.
Through our evaluation, we demonstrate the effectiveness of

DRIP to achieve this goal. After loading a purified driver,
we can maintain or even improve the system’s performance
compared with running the same workload under the trojaned
driver.
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